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Abstract. The main aim of the paper is to generalize the modulating functions method to be useful in all models described by differential

equations with fractional derivatives, if fractional differential operator is linear. The other aim is to prove that the task of parameter

identification for differential equation with fractional differentials can be simplified or reduced to an integer order. The main role of

modulating functions is to reduce the order of the derivative in the equation, to obtain equations without derivatives of the output signal

and to eliminate the necessity of solving differential equations.
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1. Introduction

During a process of identification, identification of parameters

in particular, sometimes it is difficult to estimate or find the

values of parameters for the assumed model, especially when

equations describing the given object are complicated.

One method of facilitating the process is to simplify the

complicated equations (reducing the order of the derivative or

eliminating it entirely from the equation) by using the mod-

ulating functions method [1–4]. This method was developed

by Shinbrot in the early fifties [5–6], who suggested applying

integral transformations to simplify the process of parameter

identification in the high order non-linear dynamic systems.

The role of modulating functions is:

• to reduce the order of the derivative in the equation

• to yield equations without derivatives of the output signal

• to eliminate the necessity of solving differential equations

• to reduce the impact of measurement noises by integrating

or averaging observations instead of trying to approximate

their derivatives.

Identification of the systems with fractional equations is

valuable when:

a) the classical methods are not completely applicable

b) many fields of science have examples of discoveries, when

description in the classical calculus form is not sufficiently

precise, whereas description in fractional calculus form is

satisfying. The examples are shown in [7–15].

The paper is organized as follows.

In Sec.2 we present definitions of fractional integral and

derivative, properties and assumptions for modulating func-

tion. In Sec. 3 also basic transformations are presented

In Sec. 4 we consider the concept of applying the modu-

lating functions to reduce the order of differential equations

with fractional derivatives. Finally, in Sec. 5 we apply frac-

tional transformations to modulating the spline function of

Maletynski and Sec. 6 is devoted to conclusions.

2. Definitions and assumptions

Definition 1. Riemann-Liouville fractional integral [5].

For real values z > 0 and f(t), the piecewise continuous

on J ′ = (0,∞) and integrable on any finite subinterval

J = [0,∞), for t > 0 the fractional integral of f(t) can

be defined as

D−zf(t) =
1

Γ(z)

t
∫

0

(t − ε)z−1f(ε)dε, (1)

where

Γ(z) =

∞
∫

0

tz−1e−tdt

.

The integral interval (0, t) applies to all the examined is-

sues. Therefore the symbolic notation of integral D−zf(t) in

the above formula is equivalent to 0D
−z
t f(t).

Definition 2. Riemann-Liouville fractional derivative [5].

Let µ > 0 and m be the smallest integer that exceeds µ and

z = m− µ > 0. Then the fractional derivative of f(t) of the

order µ for t > 0 is defined as:

Dµf(t) = Dm[D−zf(t)]. (2)

The (2) formula is derived from the m-fold differentiation

of the formula (1) so as to get a fractional derivative order

equal to µ. If m = µ, then z = 0 and the formula (2) becomes

a simple identity. However, if µ is a positive integer equal to

p, then the derivative Dpf(t) can exist for t > 0, even if f(t)
does not fulfill the requirements of definition 1. For example:

let f(t) be f(t) = t−1. If f(t) has a continuous derivative of
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p order on J , then this function satisfies the definition 1 and

from the below formula

Dpf(t) = Dp+1

t
∫

o

f(ε)dε = Dpf(t), (3)

we can see that the formula (2) agrees with a classic definition

of an ordinary derivative. The proofs of the properties given

below can be found in [12] and [13].

Property 1. Let function f(t) fulfill the requirements of De-

finition 1 and let µ > 0 and z > 0. Then for every t > 0 the

following dependence takes place:

D−z[D−µf(t)] = D−(µ−z)f(t) = D−µ[D−zf(t)]. (4)

Property 2 [13]. Let function f(t) be continuous in [0, T ]
interval and let g(t) be an analytical function in the [0, T ]
interval while t ∈ (0, T ]. Then for z > 0, the dependence

called the Leibniz formula takes place:

D−z[f(t)g(t)] =

∞
∑

k=0

(

−z

k

)

[Dkg(t)][D−z−kf(t)]. (5)

Assumptions. Let the modulating function be denoted as

p(t), further on we will shorten it to p. This function is de-

fined explicitly and it should satisfy the three conditions be-

low (6–9). At this stage we suggest to add a condition that

the fractional derivatives in the interval [0, T ] exist.

Condition 1

p(t) = 0 t /∈ [0, T ] . (6)

Condition 2

Dv,z,ip, exist ∀(v, z, i) in the model. (7)

Condition 3

Dv,z,ip(0) = 0, (8)

and

Dv,z,ip(T ) = 0 ∀(v, z, i) in the model. (9)

The examples of functions fulfilling conditions 1–3 (6–9)

will be given in paragraph 5.

3. Basic transformations

The formulas presented below transform derivatives of inte-

ger order of a function f by integration by parts. They are

crucial for the method of the modulating function approach.

Then the process is extended to fractional derivatives. These

formulas will be applied to differential equations multiplied

with the chosen modulating function.

Let f , g, y be functions f(t), g(t), y(t) therefore the

derivative of the product of f and g functions is expressed by

a formula from definition:

D(fg) = fD(g) + gD(f) (10)

the product of function g and the derivative of function f can

be expressed as:

gD(f) = D(fg) − fD(g). (11)

The integral of product of functions’ f and g derivative

is the product of these functions

D−1 (D(fg)) = fg. (12)

Substituting (10) into (12) we obtain the classical equation

for integration by parts:

D−1 (gD(f)) = fg − D−1 (fD(g)) . (13)

The above procedure leads to the elimination of one func-

tion derivative and incorporating it into another one if this

derivative is of an integer order. Below we shall show that

this trick can be extended also for fractional derivatives of

function of the order v, say consider function f , which can

be expressed by f = Dv(y). The fractional derivative of func-

tion y can be expressed as follows

f = D
(

D−1+v(y)
)

. (14)

Substituting (14) into (13) yields:

D−1 (gD(f)) = D−1
(

gD
(

D−1+v(y)
))

: (15)

D−1 (gD(f)) = gD−1+v(y) − D−1
(

D−1+v(y)D(g)
)

. (16)

In the case of a definite integration on (0, T ), the equality

analogous to (16) can be expressed as:

0D
−1
T (gD(f)) =

[

gD−1+v(y)
]T

0
− 0D

−1
T (D−1+v(y)D(g))

(17)

which, after simple calculations gives:

0D
−1
T (gD(f)) =

[

g(T )D−1+v(y(T ))
]

−

−
[

g(0)D−1+v(y(0))
]

− 0D
−1
T (D−1+v(y)D(g)),

(18)

where 0D
−1
T is a definite integral on (0, T ).

If we have the derivative of a n order, where n is a pos-

itive integer i.e. f = Dn(y), then n ∈ N , the integration by

parts on [0, T ] is as follows:

0D
−1
T (gD(f)) = 0D

−1
T (gD(D−1+n(y))), (19)

0D
−1
T (gD(f)) =

[

gD−1+n(y)
]T

0
−

− 0D
−1
T (D−1+n(y)D(g))

(20)

which results in:

0D
−1
T (gD(f)) =

[

g(T )D−1+n(y(T ))
]

−

−
[

g(0)D−1+n(y(0))
]

+ 0D
−1
T (D−1+n(y)D(g))

(21)

Now we can present the fractional integration of the two

functions f(t) and g(t). Basing on Theorem 2 of the Leibniz

formula (5) substituting fractional derivative of function y(t)
for f(t) yields:

D−v(gf) = D−v(gDv(y)) (22)

in the result we have:

D−v(gf) =

∞
∑

k=0

(

−v

k

)

[

Dk(g)
]

·
[

D−v−k(Dv(y))
]

. (23)
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Let E be an operator representing a shortened denota-

tion of:

Ev =
∞
∑

k=0

(

−v

k

)

. (24)

Simplifying the equation (23) and applying the E operator

(24) the following dependence is yielded:

D−v(gf) = Ev

[

Dk(g)
]

·
[

D−k(y)
]

. (25)

As can be seen from the equation (25), the fractional deriv-

ative was entirely eliminated and replaced by a sum of the

product of two functions from which one is the derivative of

g(t) of the order k and the other one is the integral of y(t)
of the order k.

Similarly, the fractional integration of the product of a two

functions when one of them is the derivative of the order n
where n ∈ N , can be carried out. Therefore:

D−v (gf) = D−v (gDn(y)) = D−v (Dn(y)g) , (26)

D−v (gf) = D−v(Dn(y)g) =

= Ev

[

Dk(Dn(y)
]

·
[

D−v−k(g)
]

(27)

and after simplifying we obtain:

D−v (gf) = Ev

[

Dk+n(y)
]

·
[

D−v−k(g)
]

. (28)

Lemma 1. If functions y(t) and g(t) are continuous on (0, T )
interval and g(t) has a derivative of the order k + 1, the fol-

lowing dependence holds:

0D
−1
T

(

D−v(gDv(y))
)

= Ev

(

[(

D−k−1(y)
)

·
(

Dk(g)
)]T

0

− 0D
−1
T

[(

D−k−1(y)
)

·
(

Dk+1(g)
)]

)

.

(29)

The above dependence is obtained by integrating the for-

mula (25) in the (0, T ) interval according to the (13). It results

in:

0D
−1
T

(

D−v(gf)
)

= 0D
−1
T

(

D−v(gDv(y))
)

=

= Ev0D
−1
T

[(

Dk(g)
)

·
(

D−k(y)
)]

.
(30)

Converting the following expression:

0D
−1
T

(

D−v(gDv(y))
)

=

= Ev0D
−1
T

[(

D−k(y)
)

·
(

Dk(g)
)]

=

= E0D
−1
T

[

D
(

D−k−1(y)
)

·
(

Dk(g)
)]

.

(31)

We finally obtain the (29) dependence.

Lemma 2. If functions y(t) and g(t) are continuous in (0, T )
interval and g(t) satisfies Definitions 1 (1) and 2 (2), and y(t)
has a derivative of the k + n − 1 order, then the following is

true:

0D
−1
T

(

D−v(Dn(y)g)
)

=

= Ev

(

[(

Dk+n−1(y)
)

·
(

D−v−k(g)
)]T

0
−

− 0D
−1
T

[(

Dk+n−1(y)
)

·
(

D−v−k+1(g)
)]

)

.

(32)

This is obtained by integrating formula (18) in the (0, T )
interval according to (13). It results in:

0D
−1
T

(

D−v(fg)
)

= 0D
−1
T

(

D−v(Dn(y)g)
)

=

= Ev0D
−1
T

[(

Dk+n(y)
)

·
(

D−v−k(g)
)]

.
(33)

Expanding integration by parts yields:

Ev0D
−1
T

[(

Dk+n(y)
)

·
(

D−v−k(g)
)]

=

= Ev0D
−1
T

[

D
(

Dk+n−1(y)
)

·
(

D−v−k(g)
)]

(34)

which gives the expression (32) in the effect.

4. Concept of applying the modulating functions

to reduce the order of differential equations

with fractional derivatives

Assumptions were made mainly by Shinbrot as stated in [5,

6], among others, herein will be extended to the fractional

derivatives case. Therefore, using a simple model with lin-

ear parameters we are going to illustrate the mechanism of

fractional transformations.

A linear model with respect to parameters can be ex-

pressed as:

avDvy +

n
∑

i=0

aiD
iy = bzD

zu +

m
∑

i=0

biD
iu, (35)

where m ≤ n and v, z ∈ (0, 1); for m = n = 0 the inequality

z ≤ v shall be true.

Applying modulating function p(t) to the model (35)

along with a suitable transformation of model equation should

allow, besides reduction of the order of integer derivatives,

1◦ to reduce the order of fractional derivatives while coming

to fractional integral,

2◦ to eliminate fractional derivatives and integrals from

equation.

Therefore, the two following cases can be considered:

1◦ Reduction of fractional derivatives. It can happen,

under some circumstances, that a fractional derivative of an

input function u(t) or an output function y(t) does not exist,

but it is reasonably easy to calculate their fractional integrals.

Therefore by applying a modulating function to the model and

then reducing the order of derivatives by integration of inte-

ger order it is possible to eliminate the fractional derivative

of functions u(t) and y(t) from the equation, substituting it

with fractional integral of these functions.

Referring to the linear model with regard to parameters

equation (35), both sides of the equation can be multiplied by

a selected modulating function p(t).

avpDvy +

n
∑

i=0

aipDiy = bzpDzu +

m
∑

i=0

bipDiu. (36)
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Then, we integrate by parts both sides of the equation by

integral of an integer order in [0, T ] interval. This allows to

formulate the following theorem:

Theorem 1. If y(t) is the solution of differential equation of

fractional derivatives as follows

avD
vy +

n
∑

i=0

aiD
iy = bzD

zu +
m
∑

i=0

biD
iu {35}

and if p(t) fulfills conditions 1–3 (6–9), the following equa-

tion is also true:

av

[

[

pD−1+v(y)
]T

0
− 0D

−1
T (D−1+v(y)D(p))

]

+

+

n
∑

i=0

ai

[

[

pD−1+i(y)
]T

0
− 0D

−1
T (D−1+i(y)D(p))

]

=

= bz

[

[

pD−1+z(y)
]T

0
− 0D

−1
T (D−1+z(y)D(p))

]

+

+

m
∑

i=0

bi

[

[

pD−1+i(u)
]T

0
− 0D

−1
T (D−1+i(u)D(p))

]

.

(37)

The proof of the theorem is a result of transformations

(17) applied to fractional transformations and transformations

(20) used to integer ones carried out earlier. Assuming that

p(t) = g(t) and conditions 1–3 (6–9) are fulfilled, the frac-

tional derivatives of functions y(t) and u(t) are eliminated.

What is more, we assumed that functions subjected to frac-

tional differentiation (derivative, integral of these functions)

are in accordance with the Definition 1 of fractional integral

(1) and the Definition 2 of fractional derivative (2).

Assuming that a0 = 1 in the model, the number of para-

meters to be identified is n + m + 3, including parameters of

‘fractional’ elements. As a result, at least the same number of

linearly independent equations has to be generated in order to

calculate all the parameters [3]. Shifting the modulating func-

tion by discrete time intervals like ∆T, additional equations

may be generated. The first modulation acts in [0, T ] interval,

the second in [∆T, T + ∆T ], the third in [2∆T, T + 2∆T ]
interval and so on. We notice that equations based on (35)

allowing to identify parameters should be linearly indepen-

dent. When the number of generated equations is higher than

the number of parameters to be identified in a model, a least

squares method can be applied.

2◦ Elimination of fractional derivatives and integrals.

In the second case we can go further eliminating com-

pletely all the ‘fractional’ elements from functions u(t) and

y(t), with the help of modulating function which will take

over the workload from fractional elements.

Theorem 2. If y(t) is a solution of the following differential

equation with fractional derivatives:

avD
vy +

n
∑

i=0

aiD
iy = bzD

zu +

m
∑

i=0

biD
iu {35}

and p(t) fulfills conditions 1–3 (6–9), the following equation

is also true:

EzEv

[

avD
−z−r+kpDr−ky+EnD−z−r−v−kpDr+i+ky

]

=

=EzEv

[

bzD
r−v−kpD−r+ku+EmD−z−r−v−kpDr+i+ku

]

,
(38)

where, let for simplicity reasons:

Ev =

∞
∑

k=0

(

−v

k

)

; Ez =

∞
∑

r=0

(

−z

r

)

;

En =

n
∑

i=0

ai; Em =

m
∑

i=0

bi.

Proof of the theorem.

Conducting the fractional integration of the order e.g. v of

both sides of equation (36), according to expression (25), the

left side of equation will be free of ‘fractions’ in the result.

Therefore:

avD
−v (pDvy) + EnD−v

(

pDiy
)

=

= bzD
−v (pDzu) + EmD−v

(

pDiu
)

(39)

what can be expressed as:

Ev

[

avD
kpD−ky + EnD−v−kpDi+ky

]

=

= Ev

[

bzD
−v−kpDz+ku + EmD−v−kpDi+ku

]

.
(40)

Then by integrating over z and applying the above proce-

dure we obtain the equation (38) without fractional derivatives

and integrals of functions u(t) and y(t).

D−zEv

[

avD
kpD−ky + EnD−v−kpDi+ky

]

=

= D−zEv

[

bzD
−v−kpDz+ku + EmD−v−kpDi+ku

]

.
(41)

As the result of the above transformations the derivatives

of functions u(t) and y(t) became of the higher k + r order.

Because the stimulating signals and their responses deriva-

tives of such high order might not exist, we should apply the

method of integration of an integer order so as to eliminate

the derivatives of these orders. Then, similarly like in the first

case, the n+m+3 of linearly independent equations have to be

obtained to find the desired parameters.

The second method of transformation is very complicated.

The modulating function has to meet numerous requirements

which might cause the difficulties to find one. To avoid large

scale mathematical complications it is better, in some cas-

es, to use the 1st case of transformations applying stimulating

signals that do not cause problems with fractional integration.

The same concerns the output functions.

5. Fractional transformations applied

to modulating spline function of Maletynski

In this paragraph the transformations of fractional differen-

tial equations with the use of modulating spline function of

Maletynski are discussed. The Maletynski modulating spline

function advantage over the other modulating functions is its

generality in applications [1, 2].
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As it was stated above, the main role of modulating func-

tions is to enable the integral transformations usage on signals

and their derivatives in order to, among others, minimize the

noise in signal. In many cases [3] the modulating functions

were identified experimentally so as to comply three condi-

tions (6–9) (disregarding fractional cases). Maletynski was

the first one who documented an analytical introduction of

a set of modulating function to a single input – single output

systems [3].

a)

b)

Fig. 1. The two approaches to spline modulating application in

a signal

Modulating functions can be applied to a signal in two

ways [3] (Fig. 1a, b):

• both groups of modulating functions are applied simultane-

ously, each of functions being a derivative of the previous

one, beginning from the derivative of order zero or

• modulating function of order zero is applied to signal which

is then differentiated progressively. Every differentiation

gives the modulated signal in the result.

The first approach is useful for illustrating the idea and

definition of modulating functions The second way is helpful

in analysis of modulating functions applied for filtration. For

further applications the functions are grouped together. Each

group consists of modulating functions and their derivatives.

As a rule, each group consists of n + 1 elements, where n is

an order of the modulating function:

– The group of modulating functions:

φn = {φn,j} , where j = 0, 1, . . . , n. (42)

According to the rule the modulating function of the order n
is the first element in the group.

– Modulating function:

φn,0 = φn. (43)

According to definition (42), the first index indicates the order

and the second the number of differentiations of modulating

function.

The axiomatic definition of the group of spline modulat-

ing functions based on the largest n-th order derivative of

modulating function of the n order is given

φn,n(t) =

n
∑

i=0

(−1)i

(

n

i

)

δ(iT − t). (44)

The group is supplemented by the successive (k = n− j)

times integrations

φn,j(t) =

nT
∫

0

. . .

nT
∫

0

φn,n(t)dtk where k = 0, 1, . . . , n, (45)

where n – the first parameter defines the order of the modu-

lating function, T – the second parameter defines the charac-

teristic time, δ – the Dirac delta function.

The spline modulating functions have only two parame-

ters, the order and the characteristic time T . The order of

function is related to the order of the model and usually we

choose one order higher than the order of a model.

Using the equation (45) we can easily match a modulating

function with a model order by further integrations of basic

function which is a modified Dirac delta function. Therefore,

what is left is to find how such group of functions behaves

during differentiation or integration of fractional order.

The definition of a step function implies that it can be

described as follows:

Step function:

1 (t) =

{

1 t > 0

0 t < 0
(46)

If shifted in time, it yields

1 (t − t0) =

{

1 t > t0

0 t < t0
(47)

The Dirac delta function δ(t) is:

δ (t) =

{

0 t 6= 0

∞ t = 0
(48)

and similarly shifted in time by t0:

δ (t − t0) =

{

0 t 6= t0

∞ t = t0
(49)
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after integration on (t1, t2) interval it yields following:

t2
∫

t1

δ (t − t0) =

{

1 t0 ∈ (t1, t2)

0 t0 /∈ (t1, t2)
(50)

In general, we obtain a step function:

t
∫

−∞

δ (τ) dτ = 1(t). (51)

Which after shifting in time yields:

t
∫

−∞

δ (τ − t0) dτ =

t−t0
∫

−∞

δ (τ) dτ = 1(t − t0). (52)

If F (t) is a primitive function of type 1(t) then

d

dt
1(t) = δ(t), (53)

d

dt
1(t − t0) = δ(t − t0). (54)

Based on the above transformations, a similar procedure

can be applied to fractional integration.

Taking advantage of the Property 2 (5) we may write:

D−v (1) = D−v
(

D−1 (δ)
)

=

= D−1
(

D−v (δ)
)

= A,
(55)

where, based on transformation given in [13]:

A =
1

Γ (v + 1)
tv. (56)

Then differentiating both sides of the equation (56):

D
[

D−1
(

D−v (δ)
)]

= D [A] (57)

we obtain a fractional integral of function δ of the order v:

D−v (δ) =
1

Γ (v)
tv−1 (58)

and k times integration of fractional integral of the order v
yields [13]

D−v−k (1) =
1

Γ (v + k + 1)
tv+k (59)

for k ≥ 0.

Derivative of order v of step function is as follows:

Dv (1) =
1

Γ (1 − v)
t−v. (60)

The extended transformations of the above functions can

be found in [7, 13, 14].

The interval where these transformations are determined is

coincide with the interval of validity of the ‘classical transfor-

mations’ of modulating functions determined by Maletynski.

However, it should be noticed that all transformations require

the existence of integrals and derivatives of fractional order

described by definitions 1 and 2 (1–2). Therefore the equation

(44) transformed by fractional integration looks like following

D−v (φn,n) = E
1

Γ (v)
(iT − t)

v−1
, (61)

where the operator E is expressed by:

E =

n
∑

i=0

(−1)i

(

n

i

)

(62)

6. Conclusions

Through the history many scientists, like e.g. Shinbrot, Preisig

and Rippin [4, 5] have been developing the modulating func-

tion methods. In this paper we presented the generalization of

these methods for fractional order systems. The aim of it was

to simplify orders of fractional equations so as to facilitate

calculations, for example to find parameters of identifications

of PVDF and Bismuth Oxide electrical models [8, 9, 11].

Basing on above and formulated in the paper theorems,

beneath we propose the generalized algorithm for fractional

systems applications based on modulating functions:

1. Determination of the model order for the examined system

(considering fractional elements, if they exist).

2. Selection of the modulating function or a set of such func-

tions that could take it upon oneself the fractional differ-

entiating or integrating.

3. Depending on the model complexity, application of one of

the following cases:

a) reduction of fractional derivatives,

b) elimination of fractional derivatives and integrals,

4. Application of the methods to calculate fractional deriva-

tives or integrals from modulating functions.

5. Substitute measured u(t) and y(t) and then calculation of

the model equation parameters using traditional methods.
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