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Abstract

Artificial neural networks (ANNs) are widely used in science and technology, and have been successfully applied
in plant tissue cultures. First of all, ANNs can simulate the growth of plants under different in vitro conditions.
Their usefulness has been confirmed in the estimation of biomass in plant cell cultures and the length of shoots
In vitro, in the classification of somatic embryos, evaluation of the physical conditions of an 7z vitro environment,
and in the prediction of optimal conditions for in vitro culture to achieve maximum efficiency and productivity.
Secondly, with the help of various types of neural models, in vitro-regenerated plants are sorted, respectively,
to their quality and likeliness of further development. Thirdly, ANNs are capable of predicting plant behavior
during in vitrorhizogenesis and subsequent acclimatization to ex vitro conditions. Several neural and neurofuzzy
models for the aforementioned biological processes are reviewed in this paper. In addition, the fundamentals of
neural modeling, namely the construction of ANNSs, are presented and their flexibility and attractiveness are
highlighted.
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Introduction

The in vitro method used for growing plants is one
of the most popular methods employed in plant biotech-
nology. Without 1z vitrotechniques, plant micropropaga-
tion, androgenesis, gynogenesis, somatic embryogene-
sis, or the production of secondary metabolites would
not be possible. Such processes can be studied because
they take place in controlled conditions like strict steri-
lity, defined temperature, light and humidity as well as
on solid or liquid media of a scheduled composition. Alt-
hough there are many biological processes that can
easily be observed in plant tissue cultures, none of them
are linear, and, moreover, they are influenced by many
other factors as well. Thus, appropriate modeling can be
applied to quite accurately predict and simulate the
growth kinetics of the culture and also predict the resul-
ting biomass. Conventional analytical techniques based
on mathematical models are not suitable for these pur-
poses, because they are not developed for plant in vitro
cultures (Prasad and Dutta Gupta, 2008a).

Artificial neural network technology is an effective
alternative used for a reliable and objective assessment
of biological processes. ANNs, by drawing inspiration
from the construction and functioning of the human

brain, simulate the brain’s key features, such as its abi-
lity to learn and to generalize acquired knowledge.
These functions are the advantages for creating seman-
tic models of biological processes (Kosiriski, 2002). Alt-
hough ANNSs have shown significant progress in control-
ling bioprocesses, their use in the complex systems of
plant tissue cultures is relatively infrequent.

The purpose of this review is to present the techni-
ques of neural modeling as tools for data analysis and
their application in plant in vitro cultures for classifica-
tion, clustering, estimation, prediction and simulation.

Neural modeling basics

Neural modeling is the creation and modification of
any process models with the use of neural networks and
implemented in specialized computer programs. The main
purpose of modeling is to simplify a complex reality,
including the relationships and processes that take place
within it. ANNs imitate the construction of models of
neural structures in the brain and copy the phenomena
that occur in the human nervous system. The basic ele-
ments of ANNs are combined together and grouped in
a layer of processing elements called neurons. The wor-
king of the neural network depends on the number of
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Fig. 1. Structure of single artificial neuron
(according to Zhang, 2008)

neurons, the neuron model and the network’s archi-
tecture. An artificial neuron is composed of input para-
meters (weights associated with inputs and bias), the
postsynaptic potential function, the transfer (activation)
function and the output. The proper working of a net-
work requires a proper choice of parameter values, e.g.
neuron weights and bias (Tadeusiewicz, 1993; Tade-
usiewicz et al., 2007). Inputs are used to enter informa-
tion into the neuron. Exceeding the bias value activates
the neuron. Each neuron processes information in two
steps: first, the inputs (x;) are combined together to
form a weighted sum of inputs and the weights (w,) of
the connecting links (Fig. 1); and then, the neuron con-
verts the sum to an output viz a transfer function. The
non-linear sigmoid transfer function (Prasad and Dutta
Gupta, 2008a) is the most commonly used function
in biological systems. In neural modeling, the number of
layers and the number and types of neurons in each la-
yer must first be selected. Then, the weights of all neu-
rons are determined in the training process in order to
minimize the error of the network. This assignment is
achieved by a suitable training algorithm which depends
on the type of input data, and should be able to calculate
the desired output values. The data from plant in vitro
cultures can be classified as: i) binary data which take
only two values, such as yes/no, organogenic/non-orga-
nogenic; ii) discrete data which consist of more than two
values, e.g. the number of proliferated shoots; iii) conti-
nuous data which can reach any value, such as callus
weight; iv) temporal data; v) time series data; vi) catego-
rical data, such as the type of growth regulator, or the
type of response; and vii) fuzzy data that refer to the de-
velopmental stages of embryos, callus colour, and degree
of vitrification (Prasad and Dutta Gupta, 2008a; Gago
etal., 2010c; Gallego et al., 2011). There are many types
of ANNs depending on the network topology, the manner
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in which information flows between the layers, and the
construction and connection of single neurons. These
ANN types are: i) feedforward networks, e.g. percep-
trons, single- and multilayered (MLP); ii) recurrence
networks with feedback loops; iii) self-organizing net-
works, such as Kohonen networks; iv) radial basis func-
tion networks (RBFN); v) resonance (ART - adaptive re-
sonance theory); vi) probabilistic and hybrid (fuzzy and
neurofuzzy logic) networks.

The most common network architecture used to esti-
mate biological processes is a multilayer perceptron.
The MLP consists of three basic layers of neurons: input,
hidden and output. The neurons are each connected to all
of the units in the preceding layer (Fig. 2). A weighting
factor is assigned to each connection. Hidden neurons
allow the virtual modeling of any problem and the num-
ber of layers of these neurons can be arbitrary (Osowski,
2006). MLP networks are trained by using the “learning
with teacher” strategy, i.e. on the example of a set of
training data, input data and corresponding output data.
Based on these data, the training algorithm modifies the
network parameters and produces results as close as
possible to the output data. There are many MLP net-
work training algorithms, among which the most freq-
uently chosen are: the backpropagation algorithm, gra-
dient descent, conjugate gradient method, and quasi-
Newton (variable metric). The application of neural tech-
nology requires preparation of a training data set in the
training process. The process of training can be control-
led by selecting the number of epochs (iterations) for
training and the testing of weights on the data from the
validation set which is used to assess the quality and
capacity of the network to generalize the acquired know-
ledge. The final assessment of the quality of the network
is made after the training comes to an end by using a set
of test data based on global error (GE), which is calcula-
ted for all test patterns from the set. Quality standards
are the neural model error values, such as the sum of
the squares of the error (SSE), mean error (ME), root
mean square (RMS), mean square error (MSE), and the
linear Pearson’s correlation coefficient (R). Neural mo-
deling can interfere with the training data set and the
network structure to obtain the best-suited model.
In most cases, good results can be achieved by using
a simple MLP network structure. In order to optimize
MLP, changes are made in the number of hidden layers
in the network, the number of neurons in these layers,



Neural modeling of plant tissue cultures: a review

255

INPUT OUTPUT
SETS: MLP networks SETS:
- root weight

-pH ) - prediction of

- volume Input Hidden Output optimal conditions
T Of medium layer layer layer for growth
b, Had

hairy root cultures More l

micropropagation

] - Fourier
[\ coefficients
== of embryo
(52 42
=) shape
somatic embryogenesis

- sucrose
/—\ -glucose
[s2as% - fructose
cell suspension .
, - digitized Bias
= 4 4 images

|

Il - concentrations
i/ of media

other networks:

- simulation of
temperature

- simulation of growth
parameters

layers
oo o

neyron

- classification of embryos

- estimation of cell
biomass

neuron

Bias (i
/ﬂ; i 2 :
in vitro or ex vitro

- estimation of shoot
number and length

components ART, - clustering of plants
plant regeneration fuzzy ART,
RBF,

Kohonen SOM,
neurofuzzy logic,
hybrid models

Fig. 2. Structure of MLP networks and actual ANN application in plant tissue cultures (see inputs and outputs)

in the initial weights, type of learning algorithm, momen-
tum, etc., so as to obtain a better prediction of the model
during the testing phase (Prasad and Dutta Gupta,
2008a; Sadat Noori et al., 2011).

A frequently chosen network for modeling is RNN
- a radial neural network (radial basis function network
- RBFN or RBF) with a characteristic topology and
structure of neurons in the hidden layer. This network’s
structure is feedforward and has three layers (Fig. 3).
In the input layer, there is one neuron for each predictor
variable. In the case of categorical variables, N-1 neu-
rons are used: where N is the number of categories. The
input neurons standardize the range of the values by
subtracting the median and dividing by the interquartile
range, and then they feed the values to each of the neu-
rons in the hidden layer. The hidden layer has a variable
number of neurons (the optimal number is determined
by the training process). Each neuron consists of a radial
basis function centered on a point with as many dimen-
sions as there are predictor variables (Sherrod, 2013).
The spread (radius) of the RBF function may be different

for each dimension. The centers and spreads are deter-
mined by the training process. When presented with the
x vector of input values from the input layer, a hidden
neuron computes the Euclidean distance of the test case
from the neuron’s center point and then applies the RBF
kernel function to this distance using the spread values.
The resulting value is passed to the summation layer.
The summation layer consists of linear neurons whose
number depends on the number of network output para-
meters. The value proceeding from a neuron in the hid-
den layer is multiplied by a weight associated with the
neuron (W1, W2, Wn in Fig. 3) and passed to the summa-
tion, which adds up the weighted values and presents
this sum as the output of the network. Not shown in this
figure is a bias value of 1.0 that is multiplied by a weight
WO and fed into the summation layer. Due to classifi-
cation problems, there is one output (and a separate set
of weights and summation unit) for each target category.
The value output for a category is the probability that
the case being evaluated has that category (Tadeusie-
wicz, 1993; Tadeusiewicz et al., 2007; Sherrod, 2013).
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Another theory widely used in neural modeling is
adaptive resonance theory (ART). The performance of
resonance networks is associated with ART as developed
by G.A. Carpenter and S. Grossherg (1987, by Prasad
and Dutta Gupta, 2008a). The theory of ART consists of
several concepts (ART1, ART2, ART-2A, ART3) which
describe how information is processed by the brain.
In these models, it is assumed that both the supervised
and the unsupervised manner of information flow will be
used to analyze and recognize the patterns - reference
data, shapes, sizes. ART1 is a basic model that is used to
identify binary signals, and its modification is ARTZ2,
which is used for the analysis of continuous data, such as
analog signals. The ART-2A model is a simplified conti-
nuation of ART2 and enables a much faster calculation.
Its development is ART3, which includes an analysis of
complex models that occur at the joints of individual
neurons, i.e. it simulates the action of a neurotransmit-
ter. In ART systems it is possible to work on continuous
data and to analyze them in a fuzzy way - in which there
are no clear boundaries between the analyzed indivi-
duals. Fuzzy ART neural networks are characterized by
intermediate values between the integer values (0 and 1
— typical for images). The application of a fuzzy ART net-
work significantly reduces the number of mistakes and
errors made during the analysis at every level of diagno-
sis, analysis and data classification. These networks are
flexible and can change their structure with respect to
the flow of input signals. Furthermore, they are chara-
cterized by two systems of memory (long- and short-li-
ved), corresponding to the human memory. ART models
are characterized by a much higher efficiency of training
in a shorter period of time compared to training in multi-
layer networks with backpropagation error. This is be-
cause the system remembers the already learnt patterns
(Osowski, 2006). Resonance networks consist of two
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main layers, one at the bottom and one at the top, and
also include two systems - control and orienting (Fig. 4).
The input shape is stored in the input layer. The other
layer, i.e. the output (top), is responsible for identifying
the class to which the input shape is classified. In this
layer, only one neuron has one state, while all others are
cleared. At the same time, it is used to verify the degree
of similarity between the shape of the input to the stored
patterns and, depending on the evaluation result of the
verification, between the response of the upper layer to
the lower back. If the returned signal corresponds exactly
to the pattern, the classification is completed, and if not,
appropriate modifications to the connection weights are
made. The individual layers communicate up and down,
or resonate by adjusting weights, and the process is
repeated until maximum similarity is obtained. The ART
network is a learning network in real time, which iden-
tifies the shapes that differ significantly from the stored
patterns, and, subsequently, memorizes them as new
patterns. This network can also correct patterns accor-
ding to observed deviations. Control and orienting sys-
tems monitor these processes (Tadeusiewicz, 1993;
Osowski, 2006; Tadeusiewicz et al., 2007).

The most recent models of plant in vitro cultures
have been designed using fuzzy hybrid networks. Neuro-
fuzzy logic combines the adaptive learning capabilities of
ANNSs with the generality of representation from fuzzy
logic through simple conditional rules (Shao et al., 2006;
Gallego et al., 2011). The usefulness of neurofuzzy logic
in effective modeling of complex nonlinear relationships
between variables has been proved (Landin et al., 2009;
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Gallego et al., 2011). Fuzzy neural network design requi-
res qualitative, but not quantitative, knowledge. Deci-
sions are based on a database of rules. Neurofuzzy logic
generates these rules in a clear, understandable format:
if there is a prerequisite, then there is a conclusion; thus
representing the cause-effect relationships in experimen-
tal data. ANNSs are used to optimize certain parameters
of fuzzy systems in neurofuzzy logic and automatically
extract fuzzy rules from numerical data. The simplest
approach to designing such systems is to establish rules

and membership functions by observing these rules, and
then to check how this system operates. If the design of
the system does not work, the membership functions
can be modified. The network structure used in neuro-
fuzzy logic embeds fuzzyfication, inference and defuzzy-
fication facilities (Fig. 5). The classic design of the fuzzy
model refers to the definition of operations performed at
each step: 1) fuzzyfication, which involves determining
the degree of membership of a particular input to the
size of each of the corresponding fuzzy sets covering the
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range of possible input values - this operation is redu-
ced to calculating functions or finding appropriate values
in the tables; ii) the use of fuzzy logic operators to deter-
mine the extent to which a condition is met in each of
the rules; iii) application of the method of implication,
which leads to the creation of fuzzy sets corresponding
to each of the outputs occurring in the conclusion; iv)
aggregation of all output combinations for each of the
corresponding output sets and all rules in one fuzzy set;
v) defuzzyfication, involving the assignment of a specific
value to each of the outputs of the fuzzy set obtained
after aggregation. There are numerous implementations
of neurofuzzy logic, including algorithms: ANFIS (Adap-
tive Neuro-Fuzzy Inference Systems), NEFPROX (Neuro-
Fuzzy Systems for Function Approximation) or ASMOD
(Adaptive Spline Modeling of Data) (Shao et al., 2006).
A commonly used implementation is the ASMOD algo-
rithm, through which the software generates several trai-
ning models (submodels), and then tests them so as to
achieve the best fit to the data. The quality of the models
is checked on the basis of various statistical parameters.
An ideal model should predict with high probability and
define clear and simple conditional rules.

Neural network software

There are many good software packages that can be
used to aid the building neural network models. Neural
network software is used to simulate, research, develop
and apply ANNs. Generally, the following software
is used for the design of ANNs: Statistica Neural Net-
works, Neural Networks Matlab Toolbox, INForm and
FormRules (Intelligensys Ltd, UK), NeuroShell, Neuro-
Solutions, Alyuda Neurolntelligence, BioComp iModel,
SPSS Neural Connection, etc. However, some of these
may be quite expensive. Statistica Neural Networks in
the Statistica package is one of the most advanced and
best performing ANNs’ applications on the market. It
has a wide selection of ANN architectures and training
algorithms and is easy to use, both for experienced
users and for first-time users alike, owing to its automa-
ted network search tool. Neural Network Matlab Tool-
box can be used in applications such as data fitting,
pattern recognition, clustering, time-series prediction,
and dynamic system modeling and control (see www.
mathworks.com/products/neural-network). INForm is
used in modeling and optimizing processes by MLP neu-
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ral network architecture, standard and accelerated back-
propagation algorithms, genetic algorithms and also fuz-
zy logic (see www.intelligensys.co.uk/inform.htm). Form-
Rules is software for the data mining performed to find
models and rules that use neurofuzzy logic (see www.
intelligensys.co.uk/formrules.htm). NeuroShell is avai-
lable as NeuroShell Predictor, NeuroShell Classifier and
GeneHunter (genetic algorithm software) and they all
are contained in the Al Trilogy package (see www.
wardsystems.com). NeuroSolutions is also a powerful
and flexible ANN modeling software package, which has
an icon-based network design interface with advanced
learning procedures and genetic optimization (see www.
neurosolutions.com/products/ns). Alyuda Neurolntelli-
gence supports all stages of ANN design and application
(see www.alyuda.com). BioComp iModel is used in non-
linear predictive model development with self-optimizing
(see www.biocompsystems.com/products/ imodel). SPSS
Neural Connection is a powerful combination of ANNs
and traditional statistical methods and can be used for
classification, prediction, time-series forecasting and
clustering. It also includes ANN tools: MLP, RBF, Baye-
sian neural network and the Kohonen network (see
www.spss.com). Gallego et al. (2011) recommended the
use of software packages within an easy-to-use interface,
i.e. those used in Gago et al. (2010b, d) - INForm and
FormRules.

Application of ANNSs in plant in vitro cultures

Neural modeling as a technique is very flexible, ef-
fective and versatile in dealing with the nonlinear re-
lationships that prevail in plant tissue cultures. The ap-
plication of ANNs brings distinct advantages, especially
since it does not require knowledge of the nature of the
phenomenon under investigation, prior knowledge of the
relationship between the variables describing the model-
led phenomenon, or knowledge of the distribution of
these variables or the relationship between the input
and output (Prasad and Dutta Gupta, 2008a). ANNSs are,
therefore, increasingly used for the interpretation and
analysis of data obtained in studies conducted on tissue
cultures. Models designed for this purpose are described
below and the ANN application in plant in vitro cultures
is presented in Fig. 2. This figure shows the structure of
the MLP that is usually used for modeling processes
in plant in vitro cultures. As can be seen, the data sets
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from in vitro experiments used in individual models are
placed in the schematic input layer: i) the pH value of
the medium and its volume and the corresponding
weight of the hairy roots from root cultures; ii) the valu-
es of CO,, the amount of sucrose and light intensity and
corresponding temperatures and growth parameters
from micropropagation cultures calculated by the MLP;
iii) the Fourier coefficients and corresponding shapes in
the output layer and the number of somatic embryos
classified by MLP; iv) concentrations of sucrose, glucose
and fructose and the corresponding values of biomass in
suspension cell cultures; v) digital images of the plants,
concentrations of media components and the correspon-
ding number and length of the shoots, also assigned to
a given class of plants. Thus, the output layer of the net-
work in Figure 2 provides a summary of all types of ob-
tained results calculated by these models. The publica-
tions cited in this paper also describe other types of
networks (ART, fuzzy ART, RBF, Kohonen SOM, neuro-
fuzzy logic) used to design models of processes in plant
In vitro cultures.

With the use of specialized software, the obtained
data can be entered as inputs into the ANN. This soft-
ware allows selection of the type and architecture of
ANN, the transfer function, training algorithm, and mo-
del validation, and one can determine its output; and
thus, build a model or model the process. However, the
final quality of the model depends on the amount of data
in the input set.

Classification of somatic embryos

Somatic embryogenesis, a multi-step in vitroregene-
ration process, is controlled by a number of different
physical and chemical factors and is a promising and eco-
nomically important way of cloning numerous plant spe-
cies. Although this process has been used for many va-
luable crops, there are still several problems, e.g. low
germination and conversion rates, which restrict its wi-
despread use (Kepczyniska and Zieliniska, 2006, 2011).
Somatic embryogenesis is a process whereby somatic
cells differentiate into somatic embryos which, in turn,
morphologically resemble zygotic embryos. The produc-
tion of somatic embryos from in vitro cultures and their
classification to the appropriate stage of development
has been automated with the use of ANNs. A MLP with
one hidden layer was applied for the classification of ce-
lery somatic embryos and non-embryogenic structures
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(Fig. 6). This model also predicted the time needed to
transfer the somatic embryos to the next stage of culture
(Uozumi et al., 1993; Honda et al., 2001). Four input pa-
rameters were used to train the ANN: area, ratio of
length to width, circularity, and distance dispersion from
images of celery embryos. After training on the basis of
the first three parameters, the network was able to clas-
sify embryos and non-embryogenic structures, and it also
distinguished between globular, heart-shaped and tor-
pedo stages at a level comparable to a human. This ANN
was also used to predict the number of plants regene-
rated from the heart and torpedo embryos after 14 days
in the second stage of regeneration.

Classification and pattern recognition models built
by ANNs are already being widely used in plant tissue
cultures (Prasad and Dutta Gupta, 2008a), usually be-
cause the selection of somatic embryos in embryogenic
cultures is tedious, costly and time-consuming. A system
that recognizes the patterns and morphological features
of carrot somatic embryos has been constructed using
artificial intelligence technology (Ruan et al., 1997).
A hierarchical decision tree consisting of three layers
and four nodes was used to obtain an optimal classifi-
cation. Neural classifiers were incorporated into each
node (Fig. 7a). These classifiers grouped the embryos
into categories based on the Fourier coefficients, which
characterized the morphology of the somatic embryos.
These coefficients were obtained in an analysis of the
Fourier transform method. In the first node, the embryo
population was grouped into four categories: callus,
globular stage, torpedoes and “others”. The “others”
group in the second node was divided into three groups:
oblong and heart, secondary, twin and cluster. In the
third and fourth node, the ANNSs distributed the com-
mon groups from the second node into single groups.
A three-layer MLP, which was trained by a backpropaga-
tion algorithm and constructed in the NeuroShell soft-
ware, operated in each node. The input layer of all the
networks was formed by 34 neurons corresponding to
the Fourier properties and the size of the embryos,
while the number of neurons in the output layer cor-
responded to the number of classification groups on that
node. The number of neurons in the hidden layer was
varied and influenced the network’s capacity to solve the
problem. Ruan et al. (1997) model categorized carrot so-
matic embryos with 90% accuracy or higher. Therefore,
the pattern recognition system based on ANNs has
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Fig. 7. Hierarchical decision tree with four ANN nodes for somatic embryos classification (A) (according to Ruan et al., 1997)
and with two ANN nodes (B) (according to Zhang et al., 1999)

shown great potential for sorting embryos and artificial
seed production automation. A system similar to the
above classification has applied to the somatic embryos
of the Douglas fir (Pseudotsuga menziesii) (Zhang et al.,
1999). In this system, the geometric features of somatic
embryos were analyzed based on images and were con-
verted to numerical values by a discrete and fast Fourier
transform. Then, these values and some of the shape
factors were incorporated into an ANN contained in two
nodes in a hierarchical decision tree (Fig. 7b). Normal
embryos were identified with more than 80% accuracy.
Three-layer MLP topology in NeuroShell software was
used to build the ANN. The input layer was composed of
19 neurons representing the radius, length, width, circu-
larity, area, perimeter and the corresponding Fourier co-
efficients. The hidden layer, which distinguished be-
tween normal and abnormal embryos in the first node,
consisted of 30 neurons or 25 neurons, when it differen-
tiated the stages of the normal embryos in the second
node. The weighting network connections were adjusted
via a backpropagation learning algorithm. During the

training phase, it was found that Fourier coefficients
played a major role in distinguishing between normal
and abnormal embryos, and those coefficients that de-
pended on the shape were the main factors for classi-
fying the various stages of development. Zhang et al.
(1999) model was evaluated as a useful tool for optimi-
zing the process of the somatic embryogenesis of coni-
fers, and the rejection of abnormal embryos through this
model would help to minimize the low frequency of so-
matic embryo conversion.

Estimation of biomass in plant cell cultures

The advantage of neural modeling over conventional
tools has also been found during the calculation of the
mass growth of plant cells (Albiol et al., 1995). In order
to estimate the biomass growth of carrot cells (Daucus
carota), an MLP was built with bias and one hidden
layer (see Table 1). The composition of the hidden layer
included three neurons. The input layer consisted of 8
neurons for data on the time of the initial biomass, con-
centration of sucrose, glucose and fructose. The output
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Table 1. Optimum parameters of ANN model for estimation of biomass in plant cell cultures
ANN Number Nurpber Transfer | Learning
Inputs Outputs of hidden | of hidden . .
structure function | algorithm
layers neurons
time, initial level of inocu- final biomass level, concentra- radient
MLP 8-3-4 | lum, concentration of glu- tion of glucose, fructose 1 with bias 3 sigmoid iescent
cose, fructose and sucrose and sucrose

layer was composed of four neurons for data on the final
biomass levels, sucrose, glucose and fructose. Data for
network training were chosen from two different biore-
actors with different levels of inoculum and concentra-
tions of sugars. The sigmoid function was selected as the
transfer function to designate the output signal for the
learning algorithm. The weights were altered, based on
the measured mean square error at the output of the
network. Then, the gradient descent method in the back-
ward direction was used for the network training. After
training by data from two different experiments, the net-
work performance was validated by using a new set of
input data. The network approximated better input from
two experiments than from one and correctly predicted
the changes in sugars and biomass cell suspension. This
method successfully measured the levels of sugars and
biomass during the cultivation of plant cells. The neural
model of Albiol et al. is an efficient alternative to a determi-
nistic mathematical model, even with a small number of ex-
perimental data and a minimum amount of information
(Prasad and Dutta Gupta, 2008a; Gallego et al., 2011).

Simulation of temperature distribution
inside culture vessels

A controlled microenvironment inside the culture
vessels is a critical prerequisite for plant growth in tis-
sue cultures. Environmental factors, such as CO, con-
centration, degree of ventilation, light intensity, and air
temperature inside the culture vessels, affect the growth
of regenerated plants. In particular, an increase in air
temperature at high light intensity inhibits growth (Pra-
sad and Dutta Gupta, 2008a). A finite element model
(FEM) was constructed using ANN technology to predict
the temperature distribution inside the culture vessels.
For this model, permanently defined Nusselt numbers
(Nu - heat transfer coefficient) were required for the
analysis of heat transfer by forced convection (Suroso

et al., 1996; Murase et al., 2008). The ANN was used
in this case to calculate the constants as defined by the
Nusselt number. Input data for the threelayer MLP
were collected from up to four neurons corresponding to
the temperatures of nodes defined in the finite element
model (Fig. 8). On the basis of the temperature at diffe-
rent air speeds, the ANN permanently estimated the
Nusselt equation, and then these coefficients were used
to calculate convective heat penetration into the culture
vessels. The error between the experimental and simula-
ted temperature was approximately 5%. Due to the ran-
domness of the MLP network input data, all possible
combinations of heat transfer coefficients were genera-
ted. During network training, the Nusselt equations
were directly and accurately determined by the tempera-
ture measured during the experiment (Murase et al.,
2008). The physical conditions during in vitro culture
can be simulated with models such as those described
above.

Estimation of shoot length in vitro

Honda et al. (1997) demonstrated a neural network-
assisted estimation of shoot length in in vitro regenera-
ted rice. Data for calculations were taken from digitized
images of regenerated cultures. Two different types of
ANNSs with fuzzy logic (FNN - fuzzy neural network)
were used for neural modeling to distinguish between
the different regions of the shoot. The FNN-A network
was one model with three inputs and outputs, while the
FNN-B network consisted of three independent models
with three inputs and one output (Fig. 9). Every single
network node (neuron) was activated with a sigmoid
function. The networks were trained using the backpro-
pagation algorithm. The weights in the trained model
were introduced in the form of table rules of colors and
compared with one another to obtain the relationships
between the colors of the differentiated regions, the
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Fig. 8. System with finite element model (FEM) and three-laye-
red MLP neural network for simulation of temperature dis-
tribution inside culture vessel (according to Suroso et al., 1996)

callus and the medium. The range of complexity in the
mutual relationships between the individual components
of the color was computed from the connection weights
of the trained network. In this way, the model had a hi-
gher degree of accuracy (95%) in the identification of
shoots. The FNN-B model was more effective in identi-
fying the callus regions than the FNN-A. A trinary image
was reconstructed based on the outputs of the FNN-B
model, which was then subjected to a two-step extraction
method of thinning and extraction of the longest path.
The shoot region was separated from the rest of the ima-
ge and its length was calculated. Elongated shoots in the
regenerating calluses were measured and compared with
values simulated by the network. The mean error be-
tween the predicted and experimental shoot lengths was
only 1.3 mm (Honda et al., 1997).
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Fig. 9. Structures of FNN-A (A) and FNN-B (B) models
for image analysis to estimate shoot length 1 vitro
(according to Honda et al., 1997)

Clustering of in vitro regenerated plants

Micropropagation through the tissue culture techni-
que is widely used for the propagation of plants. The
main obstacle in the commercialization of micropropa-
gation is the low survival rate of in vitro regenerated
plants after transfer to ex vitro conditions. Environmen-
tal factors in vitro, such as differences in humidity and
CO, concentration or the different distribution of light
intensity and air temperature inside the culture vessel,
have a particular impact on the quality of the regenera-
ted plants during micropropagation; and thus, result in
a diversity of plants (Prasad and Dutta Gupta, 2008a).
The development of an automatic decision-making sy-
stem that reflects the diversity of in vitro regenerated
plants was much needed with regard to ensuring the
high quality of micropropagation. An ANN was built to
assess the quality and to qualify sugarcane plants regene-
rated in tissue cultures. The ANN was based on photo-
metric parameters which are true indicators evaluating
the behavior of cultures capable of regeneration (Honda
etal., 1999). The inputs to the ANN were a reflection of
the leaf and the intensity of spectral brightness on di-
gitized images.

Similarly, the regenerated plants of gladiolus ( G/adio-
lus hybridus) were sorted by using their photometric be-
havior: mean brightness, grayscale level, maximum pixel
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Fig. 10. Fuzzy ART module for clustering in vitroregenerated
plants (according to Prasad and Dutta Gupta, 2008b)

count in luminosity and the trichromatic components (red,
green and blue (RGB)) from the digitized images of leaves
(Mahendra et al., 2004; Prasad and Dutta Gupta, 2008b).
Photometric data were the input set for the model
constructed using different ANNs: ART2-type resonance
(Mahendra et al., 2004; Prasad and Dutta Gupta, 2008b),
fuzzy ART (Fig. 10) and Kohonen self-organizing networks
(Prasad and Dutta Gupta, 2008b). The ART2 networks
and fuzzy ART networks in the models of Mahendra et
al. (2004) and Prasad and Dutta Gupta (2008b) were
trained using a set of input data from the image
extraction of 25 leaves from 1n vitroregenerated plants,
while the validation set consisted of 55 leaves. The
ART2-type algorithm grouped the validation set into two
classes in a 19:36 ratio, while the fuzzy ART network
was separated into seven groups. This separation,
however, was wrong; due to the lack of a correlation with
the ability of these plants to form corms (Prasad and
Dutta Gupta, 2008b). The third type of ANN used for
clustering plants, i.e. the Kohonen self-organizing net-
work, is the most common type of network. The self-or-
ganizing mapping (SOM) network was designed in Mat-
lab software and has a hexagonal grid topology with a li-
near function of distance (Fig. 11). A 25-element input
set was incorporated into the network. This type is
a competitive learning network that is based on input
patterns. It produces the output in such a way as to best
reproduce dependence in the space of the input vectors.
The use of the Kohonen algorithm in the SOM network

263

Input layer

Map layer

Fig. 11. SOM topology with hexagonal lattice grid
(according to Hanafizadeh and Mirzazadeh, 2011)

ordered a validation set of Gladiolus hybridus plants into
two groups in a ratio of 28:27 (Prasad and Dutta Gupta,
2008b). Moreover, the biological validation of the rege-
nerated plant groups was determined. It was confirmed
which plant groups are more capable of inducing corms.
Only in groups differentiated by the ART2 model was
there a significant difference: 36.8 and 69.4% of induced
corms, which indicates the potential usefulness of this
model.

Predicting optimal conditions for in vitro culture

Plant tissue culture experiments comprise a part of
very complex studies. The growth of plant tissues can be
regulated and controlled by changing the composition of
the culture media. Optimization of the mineral and plant
growth regulator contents is very laborious and time-con-
suming, and therefore predicting the composition of the
growth media and the culture conditions is very useful
for choosing the most favorable of these in order to
achieve maximum productivity. Neural network software
has been successfully used for modeling and optimiza-
tion of the process of estimating the best in vitro culture
conditions (see Table 2). Gago et al. (2010d) developed
a neural model to analyze the effect of two variables: su-
crose and light on the proliferation of kiwi fruit micro-
shoots (Actinidia deliciosa). For this purpose, commer-
cial INForm v.3.6 software (Intelligensys Ltd, UK) was
used. This is an implementation of MLP neural networks
with different backpropagation learning algorithms. This
software also includes genetic algorithms which serve to
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Table 2. Comparison of ANNSs for predicting optimal conditions for in vitro culture
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optimize the performance of the models. A detailed des-
cription of this software package can be found in Shao
et al. (2006). The model of Gago et al. (2010d) was
a three-layer MLP with one hidden layer using a linear
transfer function and a fast adaptive resilient backpropa-
gation (RPROP) learning algorithm. The input data were
concentrations of sucrose in the medium and light inten-
sity. The model outputs were: i) the response index
- the mean percentage of explants with at least one
microshoot for each combination of sucrose/light, ii) the
proliferation — the mean of the number of shoots per
explant for each combination and iii) growth — the mean
length in cm of the microshoots for each combination.
After training, the network was validated and tested for
prediction by using the correlation coefficient R-square
(R?) parameter. The best in vitroculture conditions were
concluded and thus the best combination of factors was
estimated for in vitro kiwi fruit proliferation in order to
obtain the best results for three parameters: response
index, proliferation and growth. Moreover, the neural
model for this type of experiment is an alternative to the

traditional statistical methods and can be developed, for
example, by adding new inputs to the database (the pre-
sence of a plant growth regulator) and outputs (survival
rate, rooting ability) (Gago et al., 2010d), or also by
using another algorithm.

Successful attempts at modeling in vitro culture
parameters have also been made in the hairy root cultu-
res of Glycyrrhiza glabra(Mehrotra et al., 2008; Prakash
et al., 2010). Initially, the prediction model of in vitro
culture conditions was designed along with the inoculum
properties for optimum root biomass production (Mehr-
otra et al., 2008). This model consisted of an MLP per-
formed in Matlab software. The network consisted of
a seven-element input layer, one hidden layer consisting
of 7 neurons and one output element. The hidden layer
had a hyperbolic tangent activation function (tansig) and
the output layer included a linear transfer function (pure-
lin). The input data were: pH and volume of the medium,
incubation temperature, the month of inoculation and
the inoculum properties: size in cm, fresh weight, and
density (number of explants per flask). The output was
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given the total mean fresh weight of root biomass per
flask after 40 days of incubation. The best results and
those most similar to the experimental data were pre-
dicted by the network trained with the trainrp algorithm,
but the largest output range was obtained by the net-
work trained with the traincgb algorithm (Mehrotra
et al., 2008). Two neural models, also in Matlab (Pra-
kash et al., 2010), were built to evaluate culture parame-
ters such as inoculum density, pH and medium volume
as well as the concentration of sucrose in the culture me-
dium for the hairy roots of Glycyrrhiza glabra. Both
models take into account the fact that the biomass fresh
weight of roots at the output is a function approximating
four input parameters: inoculum density per flask, pH of
growth medium, percentage of sucrose in the growth
medium and volume of growth medium per flask. One
model was an MLP with the sigmoid activation function
(logsig) and a linear transition function in the output
layer (purelin) trained with the gradient descent algo-
rithm, while the other was a regression neural network
(RNN). All the experimental data from the hairy root
cultures were used to test both types of ANNs and were
then compared with predicted values (Prakash et al.,
2010). Both ANNs were found to be efficient for the
prediction of optimal culture conditions to produce large
amounts of fresh root weight; yet, the RNN forecasts
were more accurate. Subsequently the hybrid model was
adapted for hairy root cultures in vitro. This model was
based on ANN in combination with a hidden Markov
model (HMM) (Mehrotra et al., 2013). The model sy-
stem for this study was the Agrobacterium rhizogenes-
mediated hairy root cultures of Rauwolfia serpentinaand
five test culture conditions as inputs to ANN and HMMs:
pH of liquid growth medium, volume of medium per cul-
ture vessel, sucrose and nitrate concentration in the me-
dium and density of initial inoculum per culture vessel
and their corresponding fresh weight biomass as the out-
put. Mehrotra et al. (2013) received simulated results
for the optimal conditions of maximum fresh weight pro-
duction from ANN-HMM and pure ANN models. These
results were similar to experimental results, but the
deviation was lower. The lowest deviation was observed
in the simulated results obtained from the combinatorial
ANN-HMM model.

Recently, a prediction of the best conditions for in
vitro culture has been achieved on data from the micro-
propagation of apricot (Gago et al., 2011). For this pur-
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pose, hybrid neurofuzzy logic technology was used which
identified the relationships between several factors, such
as cultivars, nutrient minerals, plant growth regulators
and growth parameters (number and length of shoots
and productivity), and extracted biologically useful infor-
mation from each database to create a model from it.
Gago et al. (2011) used FormRules v.3.31 software (In-
telligensys Ltd, UK) to create the model. The input data
were five varieties of apricots, the concentration of ben-
zyladenine (BA) and different essential mineral elements
in the culture media (K', NO,, NH,’, Ca®, Cl', Mg”',
POZ’, SOZ’), while the output growth parameters were
the number of shoots per explant, average shoot length
and productivity (number of shoots x average length).
Based on this database, the neurofuzzy model presented
rules from which it would be possible to obtain the
longest apricot shoots. A key factor in controlling shoot
growth on the length of the Helena, Lorna and Bulida
cultivars was the concentration of the NH, ions: the
average content of NHZ stimulated growth of the shoots.
Concentrations of BA had a pronounced effect on shoot
length, i.e. the lower the concentration, the longer the
shoot, regardless of the Mg concentration. Further-
more, high concentrations of Ca*" in all of the media pro-
moted the shoot to grow in length. Such a neurofuzzy
model quickly answered the question as to which combi-
nations of factors were relevant in obtaining the best re-
sults and, at the same time, the model could be applied
to different data types (binary, discrete, continuous, ima-
ges, temporal, fuzzy, historical). In practice, the model
generated similar results to those obtained in actual
physical experiments, but it was more understandable
and usable. Only in the case of one cultivar could the
model not predict accurately since the database for this
cultivar is not complete. This model can be expanded by
including additional information on inputs and outputs,
such as additional mineral nutrient concentrations, other
growth regulators, organic compounds, physical condi-
tions, etc. (Gago et al., 2011).

Modeling of in vitro rhizogenesis

and acclimatization of regenerated plants
Successful rooting in micropropagation is essential for

the in vitro production of plants and can cause problems

in some plant species. Acclimatization of these plants to

ex vitro conditions may also be limited. Both processes

strongly depend on the concentration of auxins (Gago
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etal., 2010a, b). The importance of three relevant factors
in rhizogenesis and in the subsequent acclimatization of
grapevines ( Vitis vinifera L., cv. Mencia and Albarifio)
was identified using ANN technology (Gago et al., 2010a).
In this project, different types of data from plant rhizo-
genesis and acclimatization phases were integrated.
INForm v.3.6 software was used to construct a model for
this project; thus, a model of an MLP with the backpro-
pagation learning algorithm was created (see Table 3).
Three inputs formed the input layer of the network: cul-
tivar, a concentration of auxin - indole-3-butyric acid
(IBA) and IBA exposure time. Then, there was one hid-
den layer in the network with the asymmetric sigmoid
transfer function. The output layer consisted of four
outputs: i) the mean number of roots formed from the
initial microshoots during rhizogenesis, ii) the mean
height of the plants, iii) the mean number of leaves for-
med ex vitro, and iv) the mean number of nodes of the
plants during acclimatization. For modeling, the data set
was divided into three groups: training, test and valida-
tion data. The backpropagation algorithm RPROP was
used to train the model for 2000 epochs. This model was
used to predict the optimal combination of input factors
in order to obtain the best performance of output para-
meters during rhizogenesis and then during acclimati-
zation. The model suggested that the IBA exposure time
is important only if the concentration of IBA increases
in the medium; thus, if the IBA concentration is higher,
then the IBA exposure time should be shorter in order
to obtain the same number of roots for both grapevine
cultivars. Moreover, the Albarifio cultivar was more sen-
sitive to the influence of IBA, since it produced more
roots than the Mencia cultivar in the presence of IBA
in all of the concentrations. This model also indicated
that the minimum IBA exposure time or its absence pro-
motes shoot growth per length, regardless of the con-
centration of IBA. The best results were obtained for the
rhizogenesis process in the presence of IBA at the
highest concentrations, but alonger exposure time redu-
ced growth during the next phase - acclimatization.
In addition, genetic algorithms were used to optimize
the model in order to obtain the optimum combination
of the IBA concentration and the duration of action for
efficient plant production during acclimatization. Thus,
the best conditions were inferred from the model, but
these were not used during the experiment. These re-
sults can be used to optimize experimental conditions in
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the future. ANN technology allowed the development of
a model representing both rhizogenesis and acclima-
tization which was able to predict different conditions for
both processes simultaneously and for two cultivars. It is
possible, of course, to develop this model by expanding
its database, adding new inputs such as type of media,
other plant hormones and new outputs, such as the
weight of plants, chlorophyll and carotene content, sto-
mata analysis, etc. (Gago et al., 2010a).

Understanding the cause-effect relationships be-
tween culture conditions and plant growth parameters is
the basis for the development of high-quality micropropa-
gated plants. Modeling the in vitro rhizogenesis and
acclimatization of plants of Vitis vinifera L. cv. Albarifio
was continued by using the hybrid technology of neuro-
fuzzy logic (see Table 3) (Gago et al., 2010b). A neuro-
fuzzy model was built by using FormRules v.3.31 soft-
ware. Three variables: auxin type (indole-3-acetic acid
(IAA), IBA, o-naphthaleneacetic acid (NAA)), the auxin
concentration in the medium and the sucrose concentra-
tion were incorporated as the inputs, while the number
of roots and root length after 28 days of rhizogenesis,
survival percentage and plant height after 21 days of ac-
climatization were the outputs. For each output, a sepa-
rate submodel was first created and then subjected to
training, during which the structural risk minimization
method proved to be most accurate. The neurofuzzy
model of Gago et al. (2010b) generated four sets of con-
ditional rules for rhizogenesis and acclimatization para-
meters. Moreover, the optimization of the model was
made by selecting a combination so that the best para-
meters were obtained simultaneously for rhizogenesis
and acclimatization. The neurofuzzy model generated on
the basis of these results gave a general rule: if the con-
centration of auxin, IAA, IBA or NAA is medium and the
sucrose concentration is medium, then all the parame-
ters of rhizogenesis and acclimatization (number and
length of roots, survival and plant height) achieve the
highest value (Gago et al.,, 2010b). Neurofuzzy logic
technology has made it possible to answer the question
of which combination of factors is optimal to obtain the
best (highest) values for plant growth parameters during
In vitro rhizogenesis and acclimatization.

Conclusions

Artificial intelligence technology is currently the
most promising and preferred method for modeling com-
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Table 3. Comparison of ANNs for modeling in vitro rhizogenesis and acclimatization of regenerated plants
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number of nodes
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Neurofuzzy logic concentration, . submodels .
ge root length, survival . . - risk
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tration percentage, plant height minimisation

plex biological processes. ANNs can also play a signifi-
cant role as a prognostic tool with a high potential for
modeling studies in plant in vitro cultures. The appli-
cation of an ANN (Fig. 2) also brings spectacular bene-
fits due to the ANN’s ability to capture nonlinear re-
lationships between the data, regardless of their origin
or type, and even among incomplete data sets, without
the requirement that the user has prior knowledge
regarding these data sets. From a practical point of view,
neural or neurofuzzy models are capable of predicting
what will happen under other circumstances, i.e. those
not incorporated into the input to the model. Neural
modeling can now be performed with a limited number
of experiments, which consequently reduces the costs of
plant tissue cultures grown under laboratory conditions
and on an industrial scale. Neural modeling serves to aid
the development of a virtual workshop that can later be
used in a specific way in practice. Finally, adding new
inputs and outputs to the model database can easily
increase the amount of knowledge derived through the
use of ANNs. This may provide a new outlook aimed at
understanding the regulatory, developmental and physio-
logical processes in plants. In the future, neural mo-
deling could be used for the mechanization and auto-
mation of plant breeding via in vitro cultures and in the
segregation of plant tissues in terms of quality, also in
aseptic conditions. Moreover, ANNs are very flexible
and more useful than other strategies in hybrid models.
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