
INTRODUCTION

During the Late Campanian–Early Maastrichtian

(Late Cretaceous), the siliceous sponges were one of

the most common organisms of the epicontinental seas

of Central Europe. They were represented by lithistids

(class Demospongiae Sollas, 1885, with a rigid skele-

ton) and dictyids (class Hexactinellida Schmidt, 1870,

with a dictyonal skeleton, including representatives of

the orders Hexactinosida Schrammen, 1903 and Ly-

chniscosida Schrammen, 1903). Unfortunately, local-

ities with Campanian and Maastrichtian sponges pre-

served as body fossils are relatively rare in Poland (a

few localities in southern Poland; Aleksandrowicz

1954; Barczyk 1956; Bieda 1933; Cieśliński and

Jaskowiak 1973; Hurcewicz 1966, 1968; Hurcewicz

1966, 1968; Różycki 1938; Świerczewska-Gładysz

2006). The Upper Cretaceous Middle Vistula section

(see Marcinowski and Radwański 1983), with a rich

and extensive sponge record is thus of particular in-
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terest. Sponges were first mentioned from this area by

Pusch (1837) and reported subsequently by Sujkowski

(1931), Pożaryski (1938) and Putzer (1942). The first

taxonomic descriptions of sponges from selected in-

tervals were published by Hurcewicz (1966, 1968). 

A taxonomic revision of the Late Campanian–Maas-

trichtian sponges from the Middle Vistula valley was re-

cently published by Świerczewska-Gładysz (2006). Un-

fortunately, the Campanian–Maastrichtian boundary

interval was rather poorly represented in the material

presented. Moreover, the stratigraphic interpretation

adopted in the paper of the boundary interval in the area

(after Błaszkiewicz 1980 and Abdel-Gawad 1986), was

out of date and required revision (see Walaszczyk 2004,

and this issue). Consequently, new fieldwork and col-

lecting was undertaken in the same area. The present pa-

per concentrates on these new collections, with partic-

ular reference to the changes in the sponge assemblages

across the Campanian–Maastrichtian boundary succes-

sion, as currently interpreted. Environmental interpre-

tations based on the sponges are the main focus of this

paper.

GEOLOGICAL SETTING

The Upper Campanian–lowermost Maastrichtian

succession exposed between the villages of Piotrawin

and Kłudzie, around the town of Solec nad Wisłą

(Text-fig. 1A, B), forms a part of the classic Middle Al-

bian–Upper Cretaceous succession of the Middle Vis-

tula River section (see e.g. Marcinowski and Rad-

wański 1983; Walaszczyk, this issue). The succession

is composed of monotonous, poorly bedded siliceous

chalk (opoka), subdivided into three local lithostrati-

graphic units (Walaszczyk 2004, and this issue): Pio-

trawin Opoka, Solec Opoka and Dziurków Opoka

(Text-fig. 2). The chronostratigraphic interpretation

of the succession and the location of the Campan-

ian/Maastrichtian boundary (the Tercis definition) is

based on inoceramid bivalves (Walaszczyk 2004, and

Text-fig. 1 A. Location of study area on the general map of Poland; B. Geological sketch-map with the Upper Campanian and Lower Maastrichtian of the Middle 

Vistula section (after Walaszczyk 2004)



this issue) and confirmed, based on belemnites (Remin

2007 and this issue; Keutgen et al. this issue) and am-

monites (Machalski 2012). The Piotrawin and Solec

opokas are of Late Campanian age, and the Dziurków

Opoka is of earliest Maastrichtian age. The Campan-

ian/Maastrichtian boundary is placed at the ‘boundary

marl’ (Walaszczyk 2004), a thin marly unit, at the

boundary between the Solec and Dziurków opokas

(Text-fig. 2). 

THE BOUNDARY SUCCECSSION

The oldest strata studied herein are exposed in an

abandoned quarry, located c. 500 m to the south of the

village of Piotrawin (Text-fig. 1). The light-yellow

Piotrawin Opoka, exposed there is extremely fossilif-

erous, yielding sponges, bivalves, gastropods, am-

monites, nautiloids and belemnites, as well as echi-

noids, brachiopods and solitary corals. The SiO

2

content in these deposits reaches 42%. There is also an

insignificant admixture of detritic material and glau-

conite. Most of the sponge spicules are dissolved, al-

beit opal spicules are relatively common (Text-fig.

2A–D). Some voids after spicules are filled with cal-

cite or opaque minerals. Oxeas of different sizes (0.05–

1.4 mm) predominate (Text-fig. 2A–B). Several tri-

aenes are also present (Text-fig. 2C). Current lineation

of spicules is observed locally in the upper part of the

succession (Text-fig. 2D). The upper part of the Pio-

trawin Opoka is accessible in the small quarry located

south of the village of Raj (Text-fig. 1).

Walaszczyk (2004) referred the lower part of the

succession to the “Inoceramus” altus inoceramid Zone,

and the middle and upper parts to the “Inoceramus”

inkermanensis inoceramid Zone. 

The overlying Solec Opoka is exposed in the small,

active quarry Raj North, in the abandoned quarry of

Solec, as well as in the Vistula River escarpments in

Podole and in Kłudzie, in close proximity of the ferry

stop (Text-fig. 1). The Solec Opoka is characterized by

a higher content of SiO

2

than in the underlying Pio-

trawin Opoka, reaching 47.5%. The admixture of detritic

material is still very low. Voids after sponge spicules

(oxeas and triaenes) are very common (Text-fig. 2E, F).

Some of them are filled with microcrystalline quartz. A

current lineation of spicules is observed (Text-fig. 2E).

Belemnites are relatively common, as are bivalves, bra-

chiopods, and solitary corals in the upper part of the suc-

cession.

Walaszczyk (2004) referred the lower part of the

Solec Opoka to the Trochoceramus costaecus Zone,

and its upper part to the “Inoceramus” redbirdensis

Zone. The top of the Solec Opoka is placed at the level

of the ‘boundary marl’, which is well exposed in

Kłudzie and Podole (Walaszczyk 2004). Deposits situ-

ated above the “boundary marl” are referred already to

the Dziurków Opoka (Walaszczyk 2004), which spans

the uppermost “Inoceramus” redbirdensis Zone (basal

Maastrichtian) and the overlying Endocostea typica
Zone. In belemnite terms, the Solec Opoka is assigned

to the (Lower Campanian) Belemnella lanceolata Zone

sensu Remin (Remin 2007, and this issue), or to the

Belemnella lanceolata and Belemnella pseudobtusa
Zone sensu Schultz (Keutgen et al. this issue). 

The pale cream coloured, brittle Dziurków Opoka

is macroscopically similar to the Piotrawin Opoka. It

also contains a very abundant macrofauna. The silica

content drops to 36.25%; it additionally contains rare

detritic material and glauconite. Numerous, variably

oriented voids after sponge spicules (oxeas and rare tri-

aenes) are sporadically filled with fine-crystalline

quartz (Text-fig. 2I). Most of the sponges from the

Dziurków Opoka were collected in an active quarry lo-

cated near the eastern part of the village of Dziurków

(Text-fig. 1). Walaszczyk (2004) refers the unit (other

than its basal part) to the Endocostea typica inoceramid

Zone. In belemnite terms, it is assigned to the basal

Lower Maastrichtian Belemnella obtusa Zone by

Remin (2007, and this issue) and to the Belemnella
pseudobtusa and B. obtusa zones by Keutgen et al.
(this issue). 

MATERIAL AND METHODS OF STUDY

The studies are based on the author’s archive col-

lections, housed at the Geological Faculty of Łódź

University (collection no. UŁ XX), and on the au-

thor’s new collections from selected localities. Alto-

gether, the studied material comprises: 369 specimens

from Piotrawin; 77 specimens from Raj; 47 from Raj

North; 20 from Solec; 17 from Podole; 44 from

Kłudzie South; 12 from a series of former small ex-

posures located c. 50–200 m to the south of Kłudzie

South; and 131 from Dziurków. 

The specimens from the Piotrawin Opoka are

strongly limonitized. Due to this fact the course of

canals in the wall as well as the distribution of canal

openings on its surface are poorly visible or even com-

pletely obliterated, which hampers determination at

species level. The siliceous skeleton is usually com-

pletely dissolved. Preserved fragments of the skeleton

are sporadically present in the lower part of the sponges. 

Due to the presence of amorphous silica in the

siliceous chalk, the specimens were subjected to etch-
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Text-fig. 2. Schematic stratigraphic log and thin-section photographs of the uppermost Campanian and lowermost Maastrichtian of the Middle Vistula River valley

section. A–D –  Piotrawin Opoka; A – partly dissolved opal oxeas; B – variable oriented opal oxeas and voids after spicules; C – void after triane and foraminifera;

D –  current lineation of voids after spicules; E, F – Solec Opoka; E – current lineation of voids after spicules; F – void after triaene. G–I – Dziurków Opoka; G –

foraminifera and fragment of echinoderm; H –  void after triaene and variable oriented voids after oxeas; I –  void after dictyonal skeleton of Aphrocallistes 
cylindrodactylus Schrammen, 1912, partly filled with limonite 



ing by hydrofluoric acid (for method see Świerczewska-

Gładysz 2006). Voids after dissolved spicules, often

filled with iron compounds, were viewed under the mi-

croscope. 

Specimens from the Solec Opoka are not or only

slightly limonitized. In a few cases, fragments of the

siliceous skeleton are also present but, due to the high

content of silica in the rock, attempts at isolating the

skeletal elements were not successful. Due to this

fact, studies of the skeletal structures were restricted

to microscopic observations of the spicules exposed

on the surface of some specimens. Data on the skele-

tal structure of these sponges, indispensable for spe-

cific assignment, came from voids after dissolved

spicules, which are well represented in the studied ma-

terial. 

Sponges from the Dziurków Opoka are strongly

limonitized, like those from the Piotrawin Opoka (Text-

fig. 2H). Siliceous spicules are almost absent in the

material. 

Loose spicules (or their voids) dispersed in the rock

have been analysed in thin sections.

565

HEXACTINELLID SPONGES  ACROSS THE CAMPANIAN–MAASTRICHTIAN BOUNDARY

Table 1. Distribution of sponge species in the studied succession (P – Piotrawin, R – Raj, RN – Raj North, S – Solec, Po – Podgórz, K – Kłudzie, D – Dziurków). 

^ – <5 specimens, + – 6–10 specimens, ++ – 11–20 specimens, +++ – >20 specimens



DISTRIBUTION OF SPONGES IN THE STUDIED

SUCCESSION

Piotrawin

Dictyid sponges are very common in this locality

(Table 1), particularly in the “I.” inkermanensis Zone part

of the succession (Text-fig. 2). Throughout the succession,

lump-shaped sponges, and most of the smaller, conical

and cup-like sponges not exceeding 10 cm in height, are

preserved in life positions (see also Świerczewska-

Gładysz 2006). Several specimens possess additional

rhizoidal processes growing out of the lower parts of their

body, c. 2–3 cm above the main rhizoidal processes.

Large conical, cup-like and cylindrical sponges lie on one

side. Their bent or broken stalks terminate in rhizoidal

processes. In the large specimens of Coeloptychium see-
bachi Zittel, 1876 and Leiostracosia punctata Schram-

men, 1902, their disc-like upper parts are broken off, but

can usually be found close to the discs. Crushed fragments

of different specimens have been found only within sev-

eral detritic accumulations in the upper part of the section. 

The dictyid sponges represent a high-diversity, het-

erogeneous assemblage, with a very low dominance

index; no species exceeds 5% of the assemblage. The

most numerous are Hexactinosida (181 specimens),

represented by fourteen species (see Table 1). Less fre-

quent are Lychniscosida (106 specimens), represented

by ten species (Table 1; and Text-figs 5C, D, G). 

Some of the dictyids are characterized by very large

sizes. Specimens of the genus Leptophragma and Wolle-
mannia araneosa Schrammen, 1912 attain up to 20 cm.

Cup- or funnel-shaped specimens of the genus Rhi-
zopoterion are 20–25 cm in height, with the largest ex-

ceeding 30 cm. The umbrella-like specimens of Leios-
tracosia and mushroom-like Coeloptychium seebachi
are 15 cm in height and c. 30 cm in diameter. 

The most common lithistid species (more than half

of all lithistid collected) is Callopegma acaule Zittel,

1878 (Text-fig. 6E), noted exclusively in the upper-

most part of the succession (the highest five to six me-

tres). Other lithistids occurring throughout the suc-

cession are rare, represented by Homalodora plana
Schrammen, 1910, Verruculina miliaris (Reuss, 1846),

Verruculina tenuis (Roemer, 1841) and Aulaxinia sul-
cifera (Roemer, 1864) (Text-fig. 6A), as well as single

specimens of Plinthosella squamosa Zittel, 1878, Tur-
onia variabilis Michelin, 1847 and Ophiraphidites in-
fundibuliformis Schrammen, 1899. The species Homa-
lodora ficus Schrammen, 1910 and Pachycothon
giganteum (Roemer, 1864), also known from single

specimens, have been noted exclusively in the “In-
oceramus” inkermanensis Zone. 

Raj

Hexactinosid and lychniscosid sponges are very

common and evenly distributed throughout the suc-

cession (Table 1). Specimens observed in situ do not

bear traces of post-mortem destruction. The taxonomic

composition of the dictyid sponges is very similar to

that of the sponges from Piotrawin (Text-figs 3E, 4C),

with the exception of seven rare species and Lepi-
dospongia rugosa Schlüter, 1870. Also noted was a

single specimen of Eubrochis cribrosum (Reid, 1964)

(Text-fig. 4F). The lithistids are dominated by Cal-
lopegma acaule (Text-fig. 6D) and Homalodora plana,

as in the upper part of the Piotrawin section. 

Raj North

Dictyid sponges are very rare (Table 1). Most of

them are preserved in life position or lie on one side but

with rhizoidal processes preserved. A serpulid tube was

noted on one of the specimens (Text-fig. 3A). Small

sponge fragments (probably representing the genus Lep-
tophragma) have been found in the biodetritus accu-

mulations. The collected specimens come from the

lower part of the succession, most probably from the

Trochoceramus costaecus Zone. Like in the Piotrawin

Opoka, the most common are Hexactinosida. They are

dominated by Aphrocallistes cylindrodactylus Schram-

men, 1912 (Text-fig. 4H), Leptophragma micropora
Schrammen, 1912 (Text-fig. 3A) and L. murchisoni
(Goldfuss, 1831). The remaining species (Table 1; and

Text-fig. 4A) are rare. Individuals of L. micropora and

Wollemannia araneosa do not exceed 10 cm in height

(due to the regular, cup shape of these sponges their

height can be estimated despite the damage) and are on

average one-third smaller than specimens from Pio-

trawin and Raj. Lychniscosida are rare and of low di-

versity (Table 1). A few specimens of Rhizopoterion
cribrosum (Phillips, 1829) and single specimens of R.

solidum Schrammen, 1912 and Leiostracosia punctata
were found. Lithistid sponges are represented by Aulax-
inia sulcifera, Homalodora plana, Plinthosella
squamosa and fragments of poorly preserved tetractinel-

lid sponges.

Solec

Dictyids are very rare (Table 1). Aphrocallistes
cylindrodactylus, Leptophragma micropora, L.

murchisoni and Rhizopoterion cribrosum have been

noted throughout the succession, and Pleurostoma di-
chotoma was found in the upper part of the section.

A single specimen of Oxyrhizium cf. eximium
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Schrammen, 1912 (hexactinosid species) and one

specimen of Rhizopoterion solidum were found in the

lowermost, at present inaccessible part of the suc-

cession (T. costaecus Zone). Also found were single
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Text-fig. 3. Hexactinosida. A, B – Leptophragma micropora Schrammen, 1912. A – RN9/31, Raj North, × 1; B – D9/34, Dziurków, × 1; C – Polyopesia leavis (Schram-

men, 1912); ULXX 2/12, Dziurków, × 0.7; D – Leptophragma murchisoni (Goldfuss, 1831); ULXX 1/158, Piotrawin, × 0.55, fragment of dermal surface × 1.2; 

E – Pleurostoma dichotoma (Schrammen, 1912), R 9/30, lower part of specimen; Raj, × 0.90; st = serpulid tube; basal skeleton
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Text-fig. 4. Hexactinosida. A – Wollemannia araneosa Schrammen, 1912; RN9/36, Raj North, × 1; B –  Eurete formosum Reid, 1959; D9/5, Dziurków, × 0.90; C,

E –  Aphrocallistes caliciformis Świerczewska-Gładysz, 2006, C – R9/71, Raj, × 10; E – ULXX 7/49, Piotrawin, × 0.55. D – Hapalopegma meandrina Schram-

men, 1912; KŁ9/12, Kłudzie, x 1. F – Eubrochis cribrosum (Reid, 1964); R 9/17, Raj, × 1. G – Aphrocallistes alveolites (Roemer, 1841); P 3/84, Piotrawin, × 1. 

H – Aphrocallistes cylindrodactylus Schrammen, 1912; RN 9/1, Raj North, × 0.70; b = basal skeleton; sp = sieve plate
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Text-fig. 5. Lychniscosida. A – Rhizopoterion cribrosum (Phillips, 1829), D 9/40, Dziurków, × 0.60; B – Rhizopoterion solidum Schrammen, 1912, KŁ9/24, Kłudzie, × 0.75;

C –  Leiostracosia punctata Schrammen, 1902, ULXX 3/44, Piotrawin, × 0.8; D, E – Leiostracosia robusta (Schrammen, 1902), D – ULXX 6/41, Piotrawin, × 0.60; E – UL

XX 6/43, Dziurków, × 0.6. F, G – Coeloptychium seebachi Zittel, 1876, F – PO9/6, Podole, × 0.8; G – ULXX 3/46 Piotrawin, × 0.8; s = stalk; b = basal skeleton; o = oscula
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specimens of the lithistids Aulaxinia sulcifera, Homa-
lodora plana and Plinthosella squamosa. Other lithis-

tids were too poorly preserved to be determined

specifically. 

Podole

The very rare dictyids are dominated by hexacti-

nosid sponges, represented by Aphrocallistes cylindro-

Text-fig. 6. Lithistida. A – Aulaxinia sulcifera (Roemer, 1864); ULXX 3/39, Piotrawin, × 1; B – Verruculina tenuis (Roemer, 1841); D9/41, Dziurków, × 1; C –

Homalodora plana Schrammen, 1910; upper part of specimen; KŁ3/28, Kłudzie, × 1.2; D, E – Callopegma acaule Zittel, 1878; D – upper view; R9/70, Raj, × 1.5; 

E – upper view; ULXX 1/148, Piotrawin, × 1; b = basal skeleton; c = canals 
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dactylus, Leptophragma micropora, L. murchisoni and

Eurete formosum Reid, 1959 (Table 1). Single speci-

mens of Hapalopegma meandrina Schrammen, 1912

and Wollemannia araneosa come from the lower part of

the section. Also found in this part were three lychnis-

cosid species, Rhizopoterion solidum, R. cribrosum,

and Coeloptychium seebachi (see Text-fig. 5F). Higher

in the section, the only representative of lychniscosid

sponges is R. cribrosum. Lithistids are represented by

strongly damaged specimens of Homalodora plana,

Ophiraphidites infundibuliformis and some specifically

undeterminable fragments of tetractinellids. 

Kłudzie

In the Solec Opoka, dictyid sponges are very rare

(Table 1), represented by Aphrocallistes cylindrodacty-
lus, Leptophragma micropora, L. murchisoni, Eurete
formosum and Pleurostoma dichotoma. Lychniscosida

are represented by Rhizopoterion cribrosum and R.

solidum (Text-fig. 5B). Dictyids were not found in the

highest two metres of the Solec Opoka, but they reap-

pear above the “boundary marl” and their frequency

gradually increases upwards. In the uppermost part of

the section, which represents the Dziurków Opoka, they

are relatively numerous. Beside the species occurring in

the lower part of the section, three other hexactinosid

species (Aphrocallistes alveolites (Roemer, 1841),

Wollemannia araneosa, and Hapalopegma meandrina,

see Text-fig. 4D) and one lychniscosid species, Spora-
doscinia decheni (Goldfuss, 1831) were found. Poorly

preserved fragments of undeterminable lithistids and

single specimens of Aulaxinia sulcifera, Plinthosella
squamosa and Homalodora plana are also noted (see

Text-fig. 6C).

Dziurków

The dictyid sponges are numerous (Table 1), pre-

served in life position or lying on one side (Text-fig.

5A). Their dimensions are similar to those of specimens

from the Piotrawin Opoka. The specific composition of

the sponge assemblage is the same throughout the suc-

cession. The most numerous and diverse group is the

Hexactinosida. Aphrocallistes cylindrodactylus is ex-

tremely common, representing 17 % of the dictyids in

this locality (lower, in the “I.” redbirdensis Zone it

reaches 26–28%). Also common are Leptophragma mi-
cropora (Text-fig. 3B), Eurete formosum (Text-fig. 4B)

and Pleurostoma dichotoma. Rarer are L. murchisoni,
Wollemannia araneosa, Eubrochis cribrosum, Aphro-
callistes alveolites, Polyopesia leavis Schrammen, 1912

(Text-fig. 3C) and Hapalopegma meandrina. Apart

from single specimens of Cyclostigma acinosa (Schram-

men, 1902) and C. maeandrina, the other Lychnis-

cosida are represented solely by the family Ventriculi-

tidae Smith, 1848 (Table 1 and Text-fig. 5A, E). Lithistid

sponges are rare but rather diverse. The locality yielded

Aulaxinia sulcifera, Homalodora plana, Plinthosella
squamosa, Turonia variabilis and Verruculina tenuis
(Text-fig. 6B).

DISCUSSION

The dictyids are most abundant and diverse in the

Piotrawin Opoka. Ten hexactinosid and nine lychnis-

cosid species were found in the “I.” altus Zone, and five

other hexactinosid and one lychniscosid species appear

additionally in the succeeding “I.” inkermanensis Zone.

Most of the sponges from the Piotrawin Opoka attain

large body sizes (>30 cm). The growth rate of Recent

hexactinellids reaches 0–7 cm/year (Leys and Lauzon

1998; Krautter et al. 2001), with a maximum 10 cm/year

(Austin et al. 2007). The age of the studied sponges

may thus be estimated at several to over a dozen years.

These observations indicate that the environmental

conditions were favourable for the development of dic-

tyids during that time. 

A drop in abundance and taxonomic diversity of the

dictyid sponges is noted in the Solec Opoka. In the T.

costaecus Zone there are ten hexactinosids (including

nine species known from the Piotrawin Opoka) but

only four lychniscosids. In the lower part of the “I.” red-
birdensis Zone, the dictyid sponges are extremely rare

and represented by only a few species; Hexactinosida by

five species and Lychniscosida by two. Changes in the

sponge assemblages observed in the Solec Opoka indi-

cate a gradual deterioration of life conditions in the lat-

est Campanian. Most probably this was also the cause

of the smaller sizes of the sponges. Dictyids are appar-

ently absent from the uppermost part of the Solec Opoka

(c. 2 m below the “boundary marl”). It thus seems that

the largest crisis in the sponge fauna took place during

latest Campanian times. 

Above the “boundary marl” in the topmost “I.” red-
birdensis Zone, the dictyids gradually reappear. Like in

the lower part of the “I.” redbirdensis Zone, there is a

distinct dominance of hexactinosids, represented by

eight species, over the lychniscosid sponges, repre-

sented by three species. Dictyid sponges become even

more common in the succeeding E. typica Zone, where

ten hexactinosids and six lychniscosid species were

documented. This trend clearly indicates the gradual im-

provement of the environment. All the species are also

known from the Piotrawin Opoka, albeit the number of
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species recognised in the Dziurków Opoka is lower. 

Lithistid sponges are also observed in the studied

sections, but changes in their abundance and taxonomic

composition are difficult to determine. Due to the poor

state of preservation, the number of collected and tax-

onomically determinable specimens is greatly underes-

timated in relation to their actual abundance. The oc-

currence of lithistid sponges in deposits of the

Cretaceous European epicontinental seas indicates that

these sponges inhabited both the littoral as well as the

neritic zone (e.g. Ulbrich 1974; Žítt et al. 2006; Wilm-

sen et al. 2011). Also, the Recent lithistids live both in

deep-water and shallower environments (e.g. Kelly et al.
2007; Schlacher-Hoenlinger et al. 2005), tolerating a

wider range of environmental parameters (e.g. faster

sedimentation rate, higher turbulence) than the hexa-

ctinellids (Pisera 1997; Krautter 1997, 1998; Leinfelder

et al. 1996). Consequently, lithistids are less useful for

palaeoenvironmental interpretations than dictyid

sponges. 

Assessment of the possible role of various environ-

mental parameters on the restriction of the dictyid

sponges noted in the study area during the latest Cam-

panian is not easy. Their development depends on var-

ious, often interconnected factors (Krautter 1997, 1998;

Pisera 1997; Duarte et al. 2001; Whitney et al. 2005),

some of which (e.g. reproduction rate) are difficult to

evaluate in the fossil material. 

Content of silica

The content of silica in sea water plays the key role

in the development of all siliceous sponges (Maldonado

et al. 1999; Gammon et al. 2000; Whitney et al. 2005).

Enzymes indispensable for the formation of opal

spicules are not activated at low silica concentrations

(Krasko et al. 2000). The main component of the Late

Campanian and Early Maastrichtian opokas are loose

spicules of soft demosponges, probably from the order

Astrophorida Sollas, 1888 (compare Hooper and Van

Soest 2002; Pisera et al. 2006). The presence of these

spicules proves that some groups of siliceous sponges

lived in the depositional environments of the opokas, in-

dicating that the silica concentrations were rather high

and could not have restricted the development of the

hexactinellids co-occurring with them. 

Voids after loose spicules of soft demosponges and

rigid skeletons of dictyids and lithistids preserved in the

opokas indicate that the dissolution of biogenic silica

took place mainly in a partly lithified deposit, as in the

case of the Upper Maastrichtian opokas (compare Mich-

niak 1979). Spicules of deceased sponges do not un-

dergo corrosion for several years in certain specific

conditions (Krautter et al. 2006); however, in this case

the process of spicule disintegration began in the freshly

deposited sediment (compare Rützler and Macintyre

1978). Precipitation of calcium carbonate points to the

low pH of the environment, which obviously favoured

the dissolution of spicules. Due to this fact, the pore wa-

ters and the overlying marine waters were additionally

enriched in silica, which was reintroduced to the envi-

ronment (Gammon et al. 2000).

Bathymetry

Recent Lychniscosida are represented by only three

species (Mehl 1992), which generally inhabit the bathyal

zone (Ijima 1927; Van Soest and Stentoft 1988). The

smallest depth at which they were noted was c. 80 m

(Finks and Rigby 2004). Similarly, the Hexactinosida

live at present in the bathyal to abyssal zones (Koltun

1967; Vacelet 1969; Tabachnick 1988; Maldonado and

Young 1996; Duplessis and Reiswig 2004; McClintock

et al. 2005; Janussen and Tendal 2007). They are ex-

tremely rare in shallower seas (Finks and Rigby 2004),

mainly in the peripheral deeper parts of the shelves

(Van Soest and Stentoft 1988). The largest shelf as-

semblage of hexactinosid sponges has been reported

from offshore British Columbia (Krautter et al. 2001,

2006; Conway et al. 2004, 2007; Cook et al. 2008),

where specific conditions, such as slow sedimentation,

low energy, cold water and oligotrophic conditions, are

known to occur (Leys et al. 2004; Whitney et al. 2005;

Yahel et al. 2007). In this area the hexactinellid sponges

(including three species of Hexactinosida) build the

only known Recent sponge reef. The largest reef com-

plex occurs at a depth of c. 140–240 m, whereas smaller

ones have been reported within a range of 100–140 m

(Conway et al. 2007; Cook et al. 2008). The presence

of Recent hexactinosid sponges in shallower zones (less

than 100 m) is very rare. Such cases are known from the

fjords of British Columbia, where sponges were re-

ported even at 25 m (Leys et al. 2004). However, in

most fjords the hexactinosids concentrate at depths of

120–160 m, where they reach larger sizes than sponges

living in shallower conditions (Leys et al. 2004). Some

hexactinosid sponges were found at a depth of several

metres off the coast of Borneo (Ijima 1927), but they

probably came from a deeper zone (Reid 1968).

Late Cretaceous hexactinellids appeared in the ner-

itic zone more often than their Recent counterparts.

However, the assemblages of dictyid sponges in the

North European province occur almost exclusively in

calcareous to marly successions of the deeper parts of

epicontinental seas (e.g. Defretin-Lefranc 1960; Nestler

1961; Reid 1968; Termier and Termier 1981; Wiese et



al. 2004, Žítt et al. 2006). In the shallow-water Creta-

ceous deposits calcareous and lithistid sponges appear

(Finks and Rigby 2004), while dictyids are absent or

very rare. For example, a few dictyids are found in the

rich siliceous sponge assemblage from the uppermost

Lower Campanian deposits in the Subhercynian Creta-

ceous Basin in front of the Harz Mountains, which were

deposited during a regressive phase (Ulbrich 1974).

The occurrence of Late Cretaceous dictyids in shal-

lower-water environments is related to specific condi-

tions, e.g. a very low sedimentation rate and/or up-

welling of cold oceanic waters from the Tethys Ocean

(compare e.g., Mehl and Huschke 1995; Mehl and

Niebuhr 1995). Only a few species of hexactinosid and

lychniscosid sponges have been noted in the Upper

Cretaceous shallow-water deposits (see Schrammen

1912; Reid 1968; Ulbrich 1974; Mehl and Niebuhr

1995; Vodrážka et al. 2009). Out of the numerous Cre-

taceous dictyids, similarly to recent hexactinellids, only

some species could tolerate shallower-water conditions.

It can also be excluded that some broken specimens of

dictyids from shallow-water deposits, especially in con-

glomerates, were not in situ. Redeposited sponges are

usually crushed (Wilmsen et al. 2011) and/or phospha-

tized (e.g. Vodrážka et al. 2009; Świerczewska-Gładysz

and Olszewska-Nejbert 2006; Olszewska-Nejbert and

Świerczewska-Gładysz 2009, 2011), but sometimes

nearly complete sponges with a siliceous skeleton and

an undestroyed surface are found even in glacial de-

posits (undescribed specimens collected by P. Czubla

from Mąkolice near Piotrków Trybunalski, Central

Poland). 

The preference of Recent hexactinellids for a deeper

environment, and the distribution pattern of Cretaceous

dictyid sponges in the North European Province, suggest

that the impoverishment of sponge assemblages ob-

served in the Solec Opoka was caused by sea-level fall

in the latest Campanian. Precise determination of the

basin bathymetry based on the species recognized is not

possible due to the lack of present-day analogues. Rep-

resentatives of only two of the described genera (Aphro-
callistes Gray, 1858 and Eurete Semper, 1868) live at

present and they have a wide bathymetric range (Koltun

1967, 1970; Reid 1968; Finks and Rigby 2004; Leys et
al. 2004; Reiswig and Wheeler 2004). 

The presence of spicules of soft demosponges in the

Solec Opoka evidences that these sponges developed in

conditions that were unfavourable for sponges belong-

ing to other groups. Recent soft demosponges have

very wide bathymetric ranges (Hooper and Van Soest

2002). Accumulations of their spicules are known at

present mainly from deep water settings (Conway et al.
1991), but under certain specific conditions they could

have also formed in shallow marine environments

(Gammon et al. 2000). Pisera et al. (2006) evaluated the

depth of the Miocene sea during the sedimentation of the

Mem Monitz Marls (Portugal) at several tens of metres

to c. 100 m or more, based on an assemblage dominated

by soft sponges with the co-occurrence of lithistids and

dictyids. These values also seem appropriate for the

depth of the sea during the sedimentation of the Solec

Opoka in the study area. 

According to the existing interpretations of bathy-

metric conditions based on molluscs (Pożaryski 1960a;

Abdel-Gawad 1986) and sponges (Świerczewska-

Gładysz 2006), the Late Cretaceous sea in the study area

was deepest during Late Campanian times and shal-

lowest in the terminal Maastrichtian. Although the sea

shallowed progressively throughout the Maastrichtian,

a short-term deepening took place during the deposition

of the lower Upper Maastrichtian marls (see Pożaryski

1960a; Hakenberg and Świdrowska 2001). The ob-

served impoverishment of the dictyid sponge fauna in

the Solec Opoka succession evidences that yet another

eustatic event took place at the Campanian–Maas-

trichtian boundary. Despite the shallowing, the content

of terrigenous material is negligible in the Solec Opoka.

The spiculitic opoka of the Ahlten Formation in north-

ern Germany, which reflects the late Late Campanian

polyplocum regression, is also characterized by a lower

terrigenous input of <10% (Niebuhr et al. 1997; Niebuhr

2005). 

The bathymetric changes indicated in the study area

correspond to global sea-level changes (Haq et al. 1988;

Miller et al. 2003). In the Late Campanian, the sea level

was c. 140 m higher than at present (Haq et al. 1988),

which correlates with the peak of diversity of siliceous

sponges in other areas of the epicontinental basin of Eu-

rope (Wiedenmayer 1994). Fast sea-level fall by c. 50

m at the end of the Campanian (Haq et al. 1988) was

noted both in the Tethys Ocean and in the Boreal epi-

continental seas of Europe (Jarvis et al. 2002; Skupien

and Mohamed 2008; Niebuhr et al. 2011). In inner to

middle shelf deposits, this shallowing is marked by the

presence of shallow marine facies or unconformity sur-

faces with stratigraphic gaps (Pożaryski 1960b; Ol-

szewska 1990; Bless et al. 1991; Niebuhr and Ernst

1991). 

Water energy

Hexactinellid sponges are characterized by a thin

wall and a very delicate, brittle skeleton. Such a struc-

ture does not allow them to exist in turbulent environ-

ments, therefore hexactinellid remains are considered as

indicative of low-energy conditions (e.g. Krautter 1997,
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1998; Pisera 1997; Duarte et al. 2001), especially calm

deeper-water environments below the storm wave base

(Žítt et al. 2010; Schneider et al. 2011). The presence of

hexactinellids in the succession studied indicates that

these deposits were deposited in low-energy environ-

ments. There are no traces of post-mortem destruction

of the specimens that could be linked with short-term

episodes of increased water energy. The sea bottom

colonized by sponges was thus below the wave-base

even during the maximum shallowing in the terminal

Campanian. 

Currents

The distribution of sponges is often linked with the

circulation of sea currents (Krautter 1998). For exam-

ple, the development of Recent hexactinellid sponges

in offshore British Columbia is largely possible due to

currents, which hamper the accumulation of the sedi-

ment unfavourable for sponges and supply oceanic

water rich in silica and nutrients (Leys et al. 2004;

Whitney et al. 2005). A good sea current circulation

was most probably responsible for the peak diversity of

the sponge fauna during the deposition of the upper part

of the Piotrawin Opoka (Świerczewska-Gładysz 2006).

Detritus accumulations (see also Walaszczyk 2004)

and the current lineation of spicules in the Solec Opoka

indicate the presence of weak sea currents also during

the deposition of these sediments. In the latest Cam-

panian, sea currents were most probably responsible for

the preservation of a small sponge population in the

shallowing basin. 

Sedimentation rate

A fast sedimentation rate significantly restricts the

occurrence of hexactinellid sponges (e.g. Mehl and

Niebuhr 1995; Krautter 1997, 1998; Pisera 1997; Duarte

et al. 2001; Leys et al. 2004). Due to their shape (fun-

nel, cup, cone, etc.), these organisms act as traps for the

sediment, which may cause the death of the organism.

Sponges which are only sporadically present in envi-

ronments with slightly faster sedimentation rates protect

themselves by narrowing the osculum (Conway et al.
2004; Cook et al. 2008). Such an adaptation was also re-

ported in the fossil sponges from the Santonian of the

Cracow area (Świerczewska-Gładysz 1997). In the pres-

ent material, morphotypes with shapes pointing to fast

sedimentation were not observed. However, many of the

specimens from the Solec Opoka are damaged as a re-

sult of weathering and it is therefore not possible to com-

pare the shapes of these sponges with those from other

parts of the succession. 

The location of rhizoids in a small number of spec-

imens from Piotrawin indicates partial burial of the liv-

ing sponge in the sediment (Świerczewska-Gładysz

2006). Burial of sponges probably took place during

local accumulations of sediment resulting, for exam-

ple, from the sea-bottom relief, and not as a result of

an increased sedimentation rate in the basin. There is

no evidence either confirming or precluding an in-

creased sedimentation rate in the studied stratigraphic

interval. 

Food

It was previously assumed that hexactinellid sponges

feed on colloidal matter (Reiswig 1990), which controls

their occurrence in deep water habitats (Krautter 1997,

1998; Pisera 1997). Recent studies have shown, how-

ever, that hexactinellids feed mainly on ultraplankton

comprising non-photosynthetic bacteria and nanoplank-

tonic protists (Pile and Young 2006; Yahel et al. 2006,

2007). Demosponges feed on the same sources below

the photic zone, whereas in shallower water they also

feed on fine phytoplankton <10 μm in size (Pile et al.
2003; Yahel et al. 2003). According to Yahel et al.
(2006), in laboratory conditions hexactinellids are also

capable of feeding on phytoplankton, and therefore

their presence in deeper habitats is not a result of their

food preferences. In the photic zone, the plankton is

dominated by large phytoplanktonic cells and the largest

compounds consumed by the hexactinellids do not ex-

ceed 5 μm (Pile and Young 2006). Moreover, in shal-

lower water ultraplankton is used by other, more effi-

cient suspension feeders, including the demosponges

(Pile et al. 2003; Pile and Young 2006). In the same con-

ditions and at the same ultraplankton composition, the

retention efficiencies of the demosponges reach 95-

99%, whereas those of the hexactinellids are only up to

47–54% (Pile and Young 2006). Most probably the

hexactinellids occur below the photic zone because

other filtering organisms are rare there, whereas the

concentration of ultraplankton is relatively high (com-

pare Pile and Young 2006). 

Substrate

Recent hexactinellid sponges dwell on hard sub-

strates such as rocks, pebbles or skeletons of dead

sponges (Krautter et al. 2006). This restricts their oc-

currence to places where such substrates are available

due to a low sedimentation rate or the removal of loose

deposit by currents (Whitney et al. 2005). In contrast to

Recent sponges, most Cretaceous species were adapted

to live on loose substrates (e.g. Helm and Kosma 2006;
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Świerczewska-Gładysz 2006) and only some of them

were able to attach to hard substrates by means of a basal

plate (Wiese and Wood 2001; Vodrážka et al. 2009). In

the studied succession are present species that developed

rhizoidal or additional processes used for fixing the

sponge in loose sediment (see Świerczewska-Gładysz

2006). Thus, the type of substrate did not determine the

distribution and abundance of sponges in particular

conditions. 

Temperature

According to Manconi and Serusi (2008), the cool-

ing phases in the Plio-Pleistocene times restricted the

occurrence of lithistids in the Mediterranean Sea,

where at present they are very rare. A rapid, global cli-

matic cooling took place at the Campanian–Maas-

trichtian boundary (Kauffman 1986; Miller et al. 2003;

Linnert and Mutterlose 2009). Recent lychniscosid

and hexactinosid sponges live in warm seas but at the

greater depths at which they occur the sea water is

cool, with temperatures at c. 10–15ºC (Ijima 1927;

Reid 1968; Van Soest and Stentoft 1988; Finks and

Rigby 2004). Some hexactinellid genera are also

known from polar seas (Koltun 1970; McClintock et
al. 2005; Janussen and Tendal 2007). In British Co-

lumbia, water temperature in fjords inhabited by hexa-

ctinosid sponges is on average c. 9–10ºC (Leys et al.
2004), whereas near the reef complex it is only 5.5–

7.3ºC (Whitney et al. 2005). These data indicate that

a slight decrease in sea-water temperature (c. 2ºC in the

surface waters; see Friedrich et al. 2005) in the epi-

continental basin of Europe at the Campanian–Maas-

trichtian boundary could not have significantly influ-

enced the populations of the sponges studied. Global

climatic changes in the Late Cretaceous correlate with

eustatic sea-level changes (Miller et al. 2003), there-

fore the cooling causing sea-level fall could probably

have indirectly influenced the sponge fauna.

Oxygen content

Hexactinellids live preferably in well-oxygenated

waters (Leys et al. 2004), but at the same time they are

more capable than other organisms of withstanding

seasonal, intense falls of the oxygen content (Whitney

et al. 2005). In the deep-marine setting typical of Re-

cent sponges, the oxygen content may reach 30 μM

(Whitney et al. 2005). Changes in the sponge fauna in

the Middle Vistula succession were obviously not

caused by low oxygen supply. The sedimentary fea-

tures also indicate good oxygenation of the bottom wa-

ters. 

CONCLUSIONS 

The sponge fauna from the Upper Campanian and

Lower Maastrichtian of the Middle Vistula River section

(central Poland) is mainly represented by hexactinellid

sponges belonging to the suborders Hexactinosida and

Lychniscosida. The abundance and taxonomic variabil-

ity of these sponges vary throughout the succession. 

It seems that the most important factor controlling the

hexactinellid sponge populations was basin bathymetry.

The optimum conditions for the development of the

sponges were during “I.” inkermanensis Zone time 

(Piotrawin Opoka). The abundance and specific 

variability of sponges from that unit indicate calm deeper

water conditions (below the maximum storm wave base).

In the latest Campanian (T. costaecus and “I.” redbird-
ensis zones) (Solec Opoka), progressive shallowing of

the basin drastically hampered the development of hexa-

ctinellids. Precise determination of the basin depth at the

end of the Campanian is not possible, but it seems that

the water depth at the peak of the regression could have

dropped to several tens of metres, with the sea-bottom

colonized by hexactinellid sponges remaining below the

normal wave-base and below the photic zone. 

Starting with the beginning of the Maastrichtian,

gradual deepening of the sea allowed re-establishment

of the sponge fauna. Some of the species known from

the “I.” inkermanensis Zone re-colonized the study area

in the Endocostea typica Zone. 
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