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Abstract

In this paper, we extend the concept of a matrix angular central Gaussian
(MACG) distribution to the complex domain. First, we consider a normally
distributed random complex matrix (Z) and demonstrate that its orientation
(HZ = Z(Z̄′Z)−1/2) exhibits a complex MACG (CMACG) distribution. We
then discuss the distribution of the orientation of the linear transformation of
the random matrix, the orientation of which has a CMACG distribution. Finally,
we examine the family of distributions that leads to the CMACG distribution.
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1 Introduction
The matrix angular central Gaussian (MACG) distribution has been introduced by
Chikuse (1990), with its density and properties described therein. The distribution
is defined for the elements of the Stiefel manifold. The MACG distribution proved
to be very useful in the Bayesian analysis of cointegration (see, e.g., Koop, León-
González, Strachan, 2009) and in the Bayesian models that combine cointegration
with the idea of common cyclical features (see Wróblewska, 2011, 2012, 2015). One
of the main advantages of using the MACG distribution in Bayesian analyses is
that it is easy to obtain a pseudo-random sample from it. Moreover, as the MACG
distribution is invariant to the right orthonormal transformations, it can be treated as
the distributions defined on the Grassmann manifolds. This feature is advantageous
for the aforementioned analysis, since the data contains only information about
cointegration and common feature spaces, rather than the vectors that span them.
Finally, through the parameter of the MACG distribution, the researcher can easily
and transparently incorporate prior information about the analyzed spaces. However,
if the researcher is interested in the analysis of the seasonally cointegrated process
(see, e.g., Hylleberg et al., 1990, Johansen, Schaumburg, 1999, Cubadda, Omtzigt,
2005) within the Bayesian paradigm, the generalization of MACG to the complex
case proves useful (see Wróblewska, 2025). Another potential area of application for
the discussed distribution is represented by cyclically cointegrated processes, see, e.g.,
Arteche, Robinson (1999), Gregoir (1999a, 1999b).
The proposed distribution extends a complex angular central Gaussian distribution
(ACG, see, e.g., Mardia, Jupp, 2009, pp. 343-344) to the matrix case. ACG has
been employed in various engineering applications, such as shape analysis and signal
processing (see Kent, 1997, Micheas et al., 2006, Ollia et al., 2012, Abramovich,
Besson, 2013a, 2013b, Dryden, Mardia, 2016).
Before defining the complex central Gaussian matrix (CMACG) distribution and its
properties, we present the definition of the complex Stiefel manifold and the measure
defined on it.
The set of m× r (m ≥ r) semi-unitary matrices, i.e. matrices fulfilling the condition
X̄ ′X = Ir, where X̄ ′ denotes the conjugate transpose of X and Ir is the r×r identity
matrix, is called the complex Stiefel manifold (V C

r,m):

V C
r,m =

{
Xm×r : X̄ ′X = Ir, m ≥ r

}
.

An invariant measure on V C
r,m is given by the differential form (Díaz-García, Gutiérrez-

Jáimez, 2011):

(X̄ ′ dX) =
r∧

i=1

m∧
j=i+1

x̄′j dxi,

where
∧

denotes the exterior product and the matrix X1 is chosen such that
X = (X | X1) = (x1, . . . , xr | xr+1, . . . , xm) is an element of the unitary group, U(m),
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i.e. the group of all m ×m complex unitary matrices: X̄′X = Im. It can be shown
that this differential form does not depend on the choice of the matrix X1.
The volume of the complex Stiefel manifold is

V ol(V C
r,m) =

∫
X∈V C

r,m

(X̄ ′ dX) = 2rπmr

ΓC
r [m] ,

where ΓC
r [a] denotes the complex multivariate Gamma function, and is defined by:

ΓC
r [a] =

∫
Ar×r>0,Ā′=A

exp{−tr(A)}|A|a−r(dA) = πr(r−1)/2
r∏

i=1
Γ[a− i+ 1],

where tr(·) denotes the trace, | · | – the determinant and Re(a) > m − 1 (see Gross,
Richards, 1987, Díaz-García, Gutiérrez-Jáimez, 2011).
The normalized invariant measure ([dX]) of unit mass on the considered manifold is
defined as:

[dX] = (X̄ ′ dX)
V ol(V C

r,m) = ΓC
r [m]

2rπmr
(X̄ ′ dX). (1)

The next two theorems provide Jacobians with a transformation which will be used
in the paper.
Theorem 1 (Díaz-García, Gutiérrez-Jáimez, 2011). If Y = AXB + C, where
X ∈ Cm×r and Y ∈ Cm×r are random matrices and A ∈ Cm×m, |A| 6= 0,
B ∈ Cr×r, |B| 6= 0, C ∈ Cm×r are matrices of constants, then

(dY ) = |Ā′A|r|B̄′B|m(dX), (2)

so that J(Y → X) = |Ā′A|r|B̄′B|m.
Theorem 2 (Polcari, 2017). If Y = BXB̄′, where X ∈ Cm×m and Y ∈ Cm×m are
random Hermitian matrices (X̄ ′ = X, Ȳ ′ = Y ) and B ∈ Cm×m is a non-singular
(|B| 6= 0) matrix of constants, then

(dY ) = |B|2m(dX), (3)

so that J(Y → X) = |B|2m.

2 Complex matrix angular central gaussian
distribution

Following the idea of the MACG distribution of Chikuse (1990, 2003) we analyze the
distribution of the “orientation” part (HZ) of polar decomposition of the full column
rank random matrix Zm×r, m ≥ r, r(Z) = r.
The unique polar decomposition of Z is defined as:

Z = HZT
1
2

Z , HZ = Z(Z̄ ′Z)− 1
2 , TZ = Z̄ ′Z.
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Lemma 3. The measure (dZ) is decomposed as

(dZ) = πmr

ΓC
r [m] |TZ |m−r(dTZ)[dHZ ]. (4)

Proof. This is a direct consequence of the definition of the normalised invariant
measure on the complex Stiefel manifold (see Equation 1) and decomposition of the
measure (dZ), obtained by applying Proposition 4 in Díaz-García, Gutiérrez-Jáimez
(2011) to the complex case (β = 2 in their notation):
(dZ) = 2−r|TZ |2(m−r+1)/2−1(dTZ)(H̄ ′Z dHZ) = 2−r|TZ |m−r(dTZ)(H̄ ′Z dHZ).

Using Lemma 3 we obtain the density of the orientation HZ

fHZ
(HZ) = πmr

ΓC
r [m]

∫
T >0,T̄ ′=T

fZ(HZT
1
2 )|T |m−r(dT ) (5)

and of the product matrix TZ

fTZ
(TZ) = πmr

ΓC
r [m] |TZ |m−r

∫
V C

m,r

fZ(HT
1
2

Z )[dH]. (6)

Theorem 4. Assume that Zm×r has the m×r matrix-variate complex central normal
distribution with the parameter P , Z ∼ mNC(0, Ir, P ), where P is an m×m positive
definite matrix and define HZ = Z(Z̄ ′Z)− 1

2 ∈ V C
r,m.

Then it is said that HZ has a complex matrix angular central Gaussian distribution
with parameter P , denoted as HZ ∼ CMACG(P ), and its density is

fHZ
(HZ) = |P |−r|H̄ ′ZP−1HZ |−m. (7)

The density of the product matrix TZ is

fTZ
(TZ) = |P |

−r|TZ |m−r

ΓC
r [m] 0F

(r)
0 (P−1,−TZ), (8)

where 0F
(k)
0 (M1,M2) is the hypergeometric function with complex Hermitian matrix

arguments.

For the definition and properties of hypergeometric functions with (complex) matrix
arguments, see, e.g. Constantine (1963) and James (1964).

Proof. The density of Z is

fZ(Z) = π−mr|P |−r exp[−tr(Z̄ ′P−1Z)],

J. Wróblewska
CEJEME 17: 131-141 (2025)

134



A Note on Some Extensions . . .

so according to (4) the density of HZ is obtained as

fHZ
(HZ) =︸︷︷︸

(5)

πmr

ΓC
r [m]

∫
T >0,T̄ ′=T

fZ(HZT
1
2 )|T |m−r(dT ) =

= πmr

ΓC
r [m]

∫
T >0,T̄ ′=T

π−mr|P |−r exp[−tr(T 1
2 H̄ ′ZP

−1HZT
1
2 )]|T |m−r(dT ) =

= |P |−r

ΓC
r [m]

∫
T >0,T̄ ′=T

exp[−tr(T 1
2 H̄ ′ZP

−1HZT
1
2 )]|T |m−r(dT ).

In the integral, make the change of variables V = M
1
2TM

1
2 , where M stands for

H̄ ′ZP
−1HZ . By (3) (dT ) = |M |−r(dV ) so the integral becomes

fHZ
(HZ) = |P |−r

ΓC
r [m]

∫
V >0,V̄ ′=V

exp[−tr(V )]|VM−1|m−r|M |−r(dV ) =

= |P |−r

ΓC
r [m] |M |

−m

∫
V >0,V̄ ′=V

exp[−tr(V )]|V |m−r(dV ) =

= |P |−r

ΓC
r [m] |M |

−mΓC
r [m] =

= |P |−r|H̄ ′ZP−1HZ |−m.

To obtain the density of TZ we also use the decomposition (4), which leads to:

fTZ
(TZ) =︸︷︷︸

(6)

πmr

ΓC
r [m] |TZ |m−r

∫
V C

m,r

fZ(HT
1
2

Z )[dH] =

= πmr

ΓC
r [m] |TZ |m−r

∫
V C

m,r

π−mr|P |−r exp[−tr(T
1
2

Z H̄
′P−1HT

1
2

Z )][dH] =

= |TZ |m−r|P |−r

ΓC
r [m]

∫
V C

m,r

exp[−tr(P−1HTZH̄
′)][dH]

From Theorem 5 in Shimizu, Hashiguchi (2021) we have:

fTZ
(TZ) = |TZ |m−r|P |−r

ΓC
r [m] 0F

(r)
0 (P−1,−TZ).

Note that the distribution in question inherits the properties of its real counterpart.
There is an indeterminacy in the matrix parameter P by multiplication by a positive
scalar (i.e. CMACG(P )=CMACG(cP ), where c > 0). For P = Im the orientation
HZ is uniformly distributed over the complex Stiefel manifold and TZ has a complex
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Wishart distribution, CW (m, Ir).
It should also be emphasized that the CMACG distribution is invariant under the
right unitary transformations (HZ → HZQ, Qr×r ∈ OC(r), that is, Q̄′Q = Ir), so it
can be treated as the distribution defined on the complex Grassmann manifold.
The decomposition (4) leads to the feature stated below (see Chikuse, 1990, Theorem
2.3 for a more extended discussion of the characterization of such distribution in the
real case).

Theorem 5. If the m × r complex random matrix Z has the density of the form
g(Z̄ ′Z) then its orientation HZ is uniformly distributed on V C

r,m.

Proof. With the help of (5) we obtain:

fHZ
(HZ) = πmr

ΓC
r [m]

∫
T >0,T̄ ′=T

fZ(HZT
1
2 )|T |m−r(dT ) =

= πmr

ΓC
r [m]

∫
T >0,T̄ ′=T

g(T 1
2 H̄ ′ZHZT

1
2 )|T |m−r(dT ) =

=︸︷︷︸
H̄′

Z
HZ=Ir

πmr

ΓC
r [m]

∫
T >0,T̄ ′=T

g(T )|T |m−r(dT ) =

= const.

Theorem 6. Let Z be an m × r complex random matrix with the density fZ(Z)
invariant under right unitary transformation (Z → ZQ, Q̄′Q = Ir). Define a new
m × r random matrix Y = BZ with an m × m non-singular matrix B, (|B| 6= 0).
Consider polar decomposition of these matrices:

• Z = HZT
1/2
Z with HZ = Z(Z̄ ′Z)−1/2 and TZ = Z̄ ′Z,

• Y = HY T
1/2
Y with HY = Y (Ȳ ′Y )−1/2 and TY = Ȳ ′Y .

and let fHZ
(HZ) be the density of HZ (see Theorem 4). Then the density of HY , the

orientation of the random matrix Y , is of the form:

fHY
(HY ) = |B̄′B|−r|W̄ ′W |−mfHZ

(HW ), (9)

where W = B−1HY and HW is the orientation of W , i.e. HW = W (W̄ ′W )−1/2.

Proof. Knowing the density of Z and the Jacobian of transformation Z → BZ = Y ,
(dY ) = |B̄′B|r(dZ), we may obtain the density of Y :

fY (Y ) = |B̄′B|−rfZ(B−1Y ), (10)

J. Wróblewska
CEJEME 17: 131-141 (2025)

136



A Note on Some Extensions . . .

which together with (5) leads to the density of HY :

fHY
(HY ) = πmr

ΓC
r [m] |B̄

′B|−r

∫
T >0,T̄ ′=T

fZ(B−1HY T
1
2 )|T |m−r(dT ). (11)

We follow Chikuse (1990) and apply the idea of her transformation (3.4) to the
complex case:

T = (W̄ ′W )−1/2S(W̄ ′W )−1/2, with W = B−1HY , (12)

the Jacobian od this transformation leads to the relationship between measures
(dT ) = |(W̄ ′W )−1/2|2r(dS) = |W̄ ′W |−r(dS).
From the invariance property of the density of Z we have

fZ(WT 1/2) = fZ(HWS1/2). (13)

Now we can combine the above stated transformation and present the density of HY

as:

fHY
(HY ) = πmr

ΓC
r [m] |B̄

′B|−r ×

×
∫

S>0,S̄′=S

fZ(HWS
1
2 )|(W̄ ′W )−1/2S(W̄ ′W )−1/2|m−r|W̄ ′W |−r(dS) =

= |B̄′B|−r|W̄ ′W |−m πmr

ΓC
r [m]

∫
S>0,S̄′=S

fZ(HWS
1
2 )|S|m−r(dS) =

=︸︷︷︸
(5)

|B̄′B|−r|W̄ ′W |−mfHZ
(HW ).

Theorem 6 leads to the following feature of the CMACG distribution for the linear
transformations of complex random matrices.
Corollary 7. If HZ , the orientation of Z, has the CMACG(P ) distribution, then
HY , the orientation of Y = BZ, has the CMACG(BPB̄′) distribution.

Proof. As the orientation HZ has CMACG(P ) distribution its density is
fHZ

(HZ) = |P |−r|H̄ ′ZP−1HZ |−m, see (7). Using (9) from Theorem 6 we obtain

fHY
(HY ) = |B̄′B|−r|W̄ ′W |−mfHZ

(HW ) =
= |B̄′B|−r|W̄ ′W |−m|P |−r|H̄ ′WP−1HW |−m =
= |B̄′B|−r|W̄ ′W |−m|P |−r|(W̄ ′W )−1/2W̄ ′P−1W (W̄ ′W )−1/2|−m =
= |B̄′B|−r|W̄ ′W |−m|P |−r|W̄ ′W |m|W̄ ′P−1W |−m =
= |B̄′B|−r|P |−r|H̄ ′Y (B̄−1)′P−1B−1HY |−m =
= |BPB̄′|−r|H̄ ′Y (BPB̄′)−1HY |−m,
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which is the density of CMACG(BPB̄′).

The features stated in Theorem 5 and Corollary 7 let us define a more general class
of random matrices with orientations having the CMACG(P ) distribution.

Theorem 8. Assume that an m× r random complex matrix Z has the density of the
form

fZ(Z) = |P |−rg(Z̄ ′P−1Z) (14)
invariant under right unitary transformation (Z → ZQ, Q̄′Q = Ir) with P being an
m×m positive define matrix then its orientation HZ has the CMACG(P ) distribution.

Proof. The proof is a straightforward generalization of the proof of the Theorem 3.2
in Chikuse (1990).
There exists a matrix B such that P = BB̄′ with |B| 6= 0. Define U = B−1Z, so the
distribution of U is

fU (U) = |P |−rg(Ū ′U)|P |r = g(Ū ′U),
which is also invariant under right unitary transformation (U → UQ, Q̄′Q = Ir).
According to Theorem 5 the orientation of U is uniformly distributed on V C

r,m, i.e.
HU ∼ CMACG(Im).
From Corollary 7 applied to the orientation of the matrix Z = BU we obtain that

HZ ∼ CMACG(BImB̄
′) = CMACG(P ).

3 Sampling from the CMACG distribution
As mentioned in the Introduction, one advantage of the CMACG distribution is
that it provides an easy way to obtain a pseudo-random sample, which is especially
useful for Bayesians. To do so, researchers can use the definition of the considered
distribution. Note that Koop, León-González, Strachan (2009) use the same strategy
in the real case. Suppose that one needs a sample from the CMACG(P ) distribution
with the known matrix parameter P . According to Theorem 4 the orientation HZ of
Z – the normally distributed complex random matrix, Z ∼ mNC(0, Ir, P ) – has the
CMACG(P ) distribution. Thus, one draw is generated in two steps:

1. Generate an m× r matrix Z from mNC(0, Ir, P ).

2. Set HZ = Z(Z̄ ′Z)− 1
2 , where (Z̄ ′Z)− 1

2 is the inverse of the square root of Z̄ ′Z .

It was mentioned that due to its invariance property CAMCG(P ) may be treated as
a distribution definite for the elements of the complex Grassmann manifold. Thus,
setting PZ = HZH̄

′
Z we obtain the projection matrix from the desired distribution.
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The above points need additional comments. First, the easiest way to obtain the
draw from the complex matrix variate distribution is to use its relationship with the
real case. That is, if Z = ZR + iZI , where i =

√
−1, then Z has a complex normal

distribution, i.e. Z ∼ mNC(0, Ir, P ), where P = PR + iPI is a Hermitian matrix.
This is equivalent to saying that its real and imaginary parts are jointly normally

distributed:
(
ZR

ZI

)
| ∼ mN

((
0
0

)
, Ir,

1
2

(
PR −PI

PI PR

))
. Second, the square

root of a complex Hermitan matrix (Z̄ ′Z) 1
2 , needed in the polar decomposition of Z,

can be obtained with the Newton’s method, as proposed in Highman (1986).

4 Conclusions
This paper extends the matrix angular central Gaussian distribution proposed by
Chikuse (1990) to the complex case. By considering the polar decomposition of a
random complex matrix and the appropriate decomposition of measures, we obtained
the density function of the matrix’s orientation, which is the element of the complex
Stiefel manifold. We demonstrate that this new distribution inherits the properties
of the MACG distribution. We also discuss the method for obtaining pseudo-random
samples from this distribution.
The complex MACG distribution is a valuable tool for the Bayesian analysis of VEC
models with complex unit roots, including seasonally and cyclically cointegrated VAR
models.
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