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Lossless image compression method using
vector quantization based on minimizing mean
absolute error
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Abstract. In this paper, we propose a novel lossless image compression method. During the prediction stage for each block of 8 x 8 pixels,
a mechanism for preselecting one of N linear predictors from the dictionary is employed. The dictionary is determined individually for each
encoded image using vector quantization (initially with a redundant number of vectors in the dictionary) and a fast algorithm that minimizes mean
absolute error. In next steps, the prediction errors are encoded in a two-step manner using an adaptive Golomb code followed by an adaptive
binary arithmetic coder. In this study, we demonstrate the efficiency of the proposed solution against other competitive codecs, including those
based on deep learning. The proposed method offers high compression efficiency and is characterized by a short decoding time.
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1. INTRODUCTION

Cost optimization plays an important role in computer systems.
Owing to data compression, costs can be lowered at both the
transmission and data archiving levels. The memory require-
ments for storing multimedia data are especially challenging
because of the high memory demand and transmission band-
width. This paper focuses on lossless image compression, which
finds its use in archiving various types of images such as medi-
cal 2D, 3D and 4D (three-dimensional video sequences) [1-5],
astronomical or compressing satellite images [6]. Moreover, the
lossless mode is often required during digital photo processing,
creating advertising materials, film post-production, etc.

Compression methods typically consist of two stages: data de-
composition to decrease information redundancy and data com-
pression using one of efficient entropy coding methods, among
which arithmetic and Huffman coding are the most efficient [7].
In the case of images, decorrelation can significantly reduce
data redundancy due to the high level of dependency between
adjacent pixels. At this stage, wavelet transforms are the most
frequently used, e.g., JPEG2000 [8], SPIHT [9], ICER [10], as
well as prediction methods JPEG-LS [11], CALIC [12]. In the
majority of studies, linear or nonlinear prediction is used. In-
sight into different lossless coding approaches can be found in
review papers [13—15].

The highest efficiency of lossless compression is achieved
by algorithms with high computational complexity that belong
to the time-symmetric class (where coding and decoding times
are equally long). These solutions are based on linear prediction
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models with backward adaptation. They use mechanisms known
from the literature, such as RLS [16], OLS [17-19], or WLS
[20], where encoding and decoding of each subsequent pixel is
accompanied by a procedure of adaptation or recalculation of
linear predictor coefficients.

The latest methods are based on deep learning and use nonlin-
ear neural networks [21-24]. They are also usually characterized
by high computational complexity, and short (not in all cases)
encoding/decoding time is achieved only because of the high
level of parallelization, using GPU/NPU technologies [25-27].
Therefore, in this paper we propose a relatively efficient method
that offers short decoding time without the need for dedicated
high-performance computing units. This advantage is important
because usually images are compressed once, whereas decoding
is performed many times.

The basics of image modeling, which make it possible to
compress data efficiently by reducing data redundancy, are dis-
cussed in Section 2. The original solution, which involves the
initial construction of a dictionary containing N predictors in-
dividually calculated for each encoded image, is presented in
Section 3. In Section 4, the bit average of the proposed solution
and other popular codecs is compared.

2. BASICS OF IMAGE MODELING

One way to remove mutual information from encoded images is
to use linear prediction with an appropriate selection of adjacent
pixels and prediction order. Due to the direction of image en-
coding assumed in this paper (row by row, from top to bottom,
starting from left to right), both the encoder and decoder have
access to the pixels above and to the left of the currently encoded
(decoded) pixel, which is described as the principle of causality.
Using the assumption of decreasing correlation together with in-
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creasing distance between pixels, the neighbouring pixels of the
currently encoded one can be numbered according to the increas-
ing Euclidean distance +/(Ax;)?+ (Ay;)? between them. The
numbering of equally distant pixels is determined clockwise.
This allows us to obtain a one-dimensional signal domain, which
makes it easier to mathematically describe many equations and
relations known from the literature regarding one-dimensional
signals. Figure 1 illustrates the 48 nearest neighbouring pixels
of the currently encoded pixel x,,, where the j-th index indicates
a pixel of value P(j). Theoretically, the higher the pixel index,
the lower its impact on improving encoding efficiency.

46 | 42 | 38 | 43 | 47
37132(26|24|27 (3339

361292016 (14 (17 (21|30 |40
45311911 | 8 | 6 | 9 |12]22(3448
41125157 |3 (2|4 |10]|18(28(44

35023 (13 (5| 1 | xn

Fig. 1. Neighbourhood pixel numbering

Various techniques are used in data modeling. However, in
lossless image compression, a typical linear predictor of order
r is most often used. In linear prediction, the predicted value of
currently encoded pixel x,, is based on r neighbouring pixels (in
accordance with the principle of causality known to the encoder
and decoder). The linear predictor takes the following form

= Z;bj-P(j), (1)
=

where elements P( ) are the values of the nearest neighbouring
pixels of the currently encoded pixel x,,, and b ; are the prediction
coefficients forming a vector B = [b, by, ..., b, ] [7]. In practical
solutions, it is often assumed, that the sum of the coefficients
of such model should be equal to 1 (which is a condition for
an unbiased prediction estimator). With this assumption and an
8-bit greyscale input values, the predicted value £ € (0;255).
The use of linear or nonlinear predictor enables the encoding
of prediction errors only, that is, the differences between the
actual pixel values and predicted values (rounded to the nearest
integer, because often the predicted values belong to the set of
real numbers), which are usually small values oscillating near
ZEero

en =Xp—[%n]. (2)

In this way, we obtain a differential image in which the prob-
ability distribution of errors e, is close to the geometric distri-
bution, enabling efficient encoding of those errors using one of
the entropy coding methods.

2.1. Predictive modeling methods with block division

By taking advantage of the variety of characteristics of different
areas within a single image, it can be divided into blocks (e.g.,
8% 8 or 16 x 16 pixels). Each block is assigned an individual

prediction model (in a form of r linear predictor coefficients in
accordance with the formula (1)). One of the first solutions of
this kind was the method presented in [28], where each 8 x 8
pixels block was assigned one static model from a dictionary
consisting of 8 models in total (dictionary was predefined and
constant), which produced the lowest mean absolute error. The
header information associated with a single block required 3 bits,
and with this data the prediction model index was identified (in
general, each block is coded using one selected predictor from
the dictionary of size N, meaning that the block is assigned a
predictor from dictionary, and an index of this predictor must
be saved in header data).

Further enhancements of this approach introduced the min-
imization of the mean square error (MMSE) as a method for
determining the best set of prediction coefficients. However, the
need to store a very large size of header information emerged,
because of the large number of bits required to save prediction
coeflicients. In order to reduce size of header, blocks with similar
characteristics were grouped together into clusters, with which a
single shared prediction model was associated [29]. Using vec-
tor quantization techniques (as well as fuzzy clustering [30]),
the optimized sets of, e.g., 16 prediction models were created.
Owing to this, even with high prediction order the overall size
of output file header did not significantly increase the bit aver-
age. In paper [31], a technique for combining adjacent blocks
belonging to the same category (associated with the same pre-
dictor) into groups resulting in larger blocks was used. Then,
a map of blocks of different sizes was saved using an efficient
technique for coding quadtrees.

It is possible to obtain prediction coefficients that outperform
predictors created using MMSE method in terms of lowering
entropy [31]. In paper [32], the authors used minimum mean
absolute error (MMAE), which allowed for better results com-
pared to the use of MMSE for applications with block division.
A wider explanation of the nonoptimal influence of MMSE
on entropy minimization was presented in [33]. Therefore, in
proposed solution, we decided to use a convenient method — it-
erative reweighted least squares (IRLS), to determine prediction
coefficients based on minimizing mean absolute error criterion
(see Section 3).

2.2. Cumulative prediction error correction method

In many cases, prediction methods can contain a constant com-
ponent Cpix, Whose value depends on the characteristics of
the individual context. Hence, many solutions offer an adap-
tive method for Cy,jx removal (bias cancellation), also known
as context-based error correction techniques, which improve
the results of predictive modeling. In this case, the “context”
is understood as a set of features resulting from the dependen-
cies occurring between several nearest pixels of the currently
encoded value x,,.

Adaptive context-dependent constant removal method is used
i.e. in CALIC and JPEG-LS. For each context, the number of its
occurrences M; is recorded together with its accumulated sum
of errors ;. Based on these values, the currently determined
prediction error is being corrected [12]. The value of constant
component Cpix = S;/M; is added to predicted value calculated
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with main predictor, and after rounding the result to the nearest
integer the final prediction error value is calculated as

3)

A broader description of our method for determining context
number can be found in [34].

en =X — X5+ Chix]-

2.3. Components of proposed codec

The proposed solution is based on cascading approach (see
Fig. 2), in which beside predicted value determined using linear
prediction, a CDCCR (context-dependent constant component
removal) block for removing constant component Cp,ix associ-
ated with certain context is used. The final blocks of the cascade
are used for efficient prediction error e, encoding using an adap-
tive Golomb coder and context-adaptive binary arithmetic coder
(CABAC). The calculation of the constant component Cyix and
our prediction error coding algorithm are described in detail
in [34].

Algorithms 1 and 2 show the data processing steps in coder
and decoder of the solution proposed in this paper, respectively.
Before encoding with Algorithm 1, it is necessary to build a dic-
tionary of N centroids based on vector quantization (described
in Section 3) and determine the number of the best-fit centroid
for each encoded square.

Algorithm 1. Encoder data processing steps

1: For each sequentially encoded pixel x,:

2: Read predictor number (associated with a given 8 x 8 pixels square)
from dictionary.

3: Determine predicted value (1) and prediction error e, (3) after
taking into account context-dependent constant component Cpix .

4: Convert prediction error e, into a stream of bits using an adaptive
Golomb coder.

5: Encode bitstream from step 4 using adaptive binary arithmetic
coder.

6: If there are remaining pixels to encode, then return to step 2.

Algorithm 2. Decoder data processing steps

1: For each sequentially encoded pixel x,:

2: Convert input bitstream using an adaptive binary arithmetic de-
coder, resulting in a Golomb codeword.

3: Convert the Golomb codeword into prediction error e, form.

4: Read predictor number (associated with a given 8 X 8 pixels square)
from dictionary.

5: Determine predicted value (1) and Cpix, and then add those values
to e, to obtain decoded value of pixel x;,.

6: If there are remaining pixels to encode, then return to step 2.

P(0)

N e(0

3. LINEAR BLOCK PREDICTION METHOD

The compression method proposed in this paper utilizes a linear
prediction, where each block of 8 x 8 pixels is associated with
one predictor from dictionary (individually calculated for each
encoded image (see Section 3.3)). In contrast to the classic
k-means approach, we proposed a scheme with a redundant
number of predictors in dictionary and a procedure for their
reduction to the desired amount. The final set of these predictors
is determined in several steps (initialization, vector quantization
process).

The initialization process begins with calculating the individ-
ual predictor for each 8 x 8 pixels block by minimizing the mean
absolute error (see Section 3.1). For example, an 512 x 512 px
image will have 4096 individual predictors. In the next step this
number has to be lowered to much smaller amount of 1.5N
shared predictors, and this is done at the dictionary initializa-
tion stage (see Section 3.2). Classes group blocks with similar
features and have one shared predictor (centroid), which is used
to encode pixels of blocks belonging to certain class. After the
initialization stage, blocks are reclassified (reassigned) into the
class that best matches their characteristics. After this, the vector
quantization procedure begins leading to the optimization of bit
average. After each reclassification step, centroids are recalcu-
lated using blocks based on current assignment to classes. Thus,
classes are adapting to the characteristics of regions encoded by
them (to the set of blocks with similar characteristics). In con-
trary to the MRP codec [31] which uses MMSE, in this paper
the MMAE (based on IRLS see Section 3.1) is used. Moreover,
the initial number of classes is redundant and is later reduced
to the specified Nyqp level in the last stage of the predictor de-
termination algorithm. To optimize compression efficiency the
values: N and N, were selected experimentally depending on
the resolution of compressed images (see Section 3.3).

3.1. Iterative reweighted least squares algorithm

In paper [32], it was proposed to use the minimum mean ab-
solute error, which allowed (in the case of dividing the image
into squares of size 8 x 8) to obtain better results compared to
the use of MMSE. It is noteworthy that to determine the pre-
diction model it is not necessary to know the optimal solution
which guarantees mean absolute error minimization, but an ap-
proximate solution is sufficient [35]. To achieve this, instead
of using improved simplex algorithms, a method that uses the
classic MMSE to reduce the problem to the problem of min-
imizing weighted least squares (WLS) can be used. For this,
an iterative approach, namely iterative reweighted least squares
(IRLS) [36] with a parameter p = 1 is used, which enables to
relatively quickly (compared to simplex method) obtain a sub-
optimal solution of mean absolute error minimization.

(

Prediction block

) Bit stream Bit stream’
> Golomb code CABAC

Fig. 2. Block diagram of cascade coding proposed in this paper
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IRLS allows to get approximated /,, — norm solution mini-
mizing average error for data in area Q

1/p
lell,, = ( > |en|P) : @)

neQ

by solving the problem of minimization of the weighted least-
squares, which offers relatively low computational complexity

1/p
llell,, = ( Zwi-|en|2) : (5)

neQ

It is possible to perform an approximate minimization for
any /,, — norm using an iterative algorithm that minimizes the
expression

1/p
llell,, = ( > |en|<P2>-|en|2) : (6)

neQ

In the first iteration, weights are set to w,, = 1, and weighted
least-squares minimization is performed using (5). Then, the
equation is solved using Cholesky decomposition

B=R!.P, (7)

where R is a r X r square matrix of elements R(J,?)

RO, = Y Wi YD) ya (), (8)
neQ

where j ={1,2,...,r},i={1,2,...,r}, and P is a r X 1 vector
of P(j) elements

P(j)= D wih X yuli), ©)
neQ

where x,, denotes the value of the n-th sequentially encoded pixel
and vector Y, = [v,,(1),¥,(2),...,y,(r)]. In proposed solution,
the prediction model uses the » nearest neighbouring pixels (see
Fig. 1), therefore the vector Y,, = [P,,(1), P,,(2),...,P,(r)]. In
next iterations of the IRLS algorithm, the weights are set using
errors 99 received based on linear prediction model received
in previous iteration using

old‘(”’z)/z '
n

wn = e (10)

Each subsequent iteration in the IRLS algorithm converges to-
wards the expected minimization accuracy. In the case of 8-bit
data used in images, good results are achieved after approx-
imately eight iterations. To minimize mean absolute error, a
parameter p = 1. Then, substituting (10) into (5), we obtain the
classical WLS problem

1 2
lelly =) oo leal’ = > leal.
n

neQ neQ

(1)

Special attention should be paid to the prediction errors
oscillating around zero and preventing division by 0. Guard
€] — max{0.6, €3]} gives good results.

3.2. Dictionary initialization

In order to speed up the convergence of the k-means algorithm,
we proposed our own algorithm for initializing centroids dic-
tionary (as opposed to the classical k-means approach, where
initialization is done by random selection of N input data vec-
tors). During the initialization process, a dictionary containing
1.5N classes that group blocks (8 x 8 pixels squares) with similar
features are created. Later, during encoding stage, these blocks
use a shared linear predictor (centroid) of the class to which
they are assigned. As a part of the steps of the dictionary build-
ing algorithm, predictors are adapting to the characteristics of
image, and the number of classes is gradually reduced to Nop.
The number of classes depends on the dimensions of the image
— the larger the image, the more classes are used.

Prediction errors are encoded using a two-stage Golomb-
CABAC coder (see Fig. 2). Due to the fact, that this coder
adapts the probability distributions after each sequentially en-
coded value of |e,,|, it is problematic to minimize the bit average
at the stage of determining the predictors assigned to classes
(centroids). Therefore, a certain simplification can be made by
calculating the bit average as follows

Nstop : (r - 1) : (nb +2)
img height - img width
log, Ntop

(square size)? ’

Lavg = H(S) +

(12)

where np, is the number of bits reserved for the fractional part
of prediction coefficient, r is a prediction order, and (r — 1) is
the number of coefficients saved into file (the first coefficient
b is skipped, because the sum of all coefficients b; is equal
to 1, therefore skipped coefficient can be easily reconstructed on
decoder side), H(S) is an entropy of prediction errors calculated
using the following formula

[€max |
HS)=- "
i=1

pi-log, pi, (13)

where p; is the probability of occurrence of prediction error
equal to 7.

To determine the Ny, predictors offering the lowest possible
bit average, a vector quantization algorithm must be used. Unlike
classical methods such as LBG (k-means), in our case, the target
function is defined differently and is based on the Minkowski
distance. It is not a mean-square error but a function based on
minimizing the mean prediction error values (in a given square)

1 z
di=— ) lej|",
z <
J=1

where z is the number of pixels in a square, and i denotes square
index. Depending on the phase of the algorithm, different values
of parameter « are used.

(14)
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The starting set of 1.5N classes is initialized in a hybrid
manner: first 0.5N via Algorithm 3, and the remaining N via
Algorithm 4.

Algorithm 3. First algorithm to determine class membership

1: For each square in the image, an individual linear predictor is cal-
culated using the MMAE method, and each square is then encoded
using (1) and (2).

2: For each square, a value of target function d; with @ = 1 is calcu-
lated (14).

3: Results are sorted by the values of d; assigned to each square and
divided into 0.5N equal parts, creating a set of 0.5/ initial classes.

Algorithm 4. Second algorithm to determine class membership

1: 5; <0
2: for j <—O,k_—2 do
3: if bj > bj then

4: si e 85;+27
5: if A; > A then
6: s ;42K

The second method for determining centroids (Algorithm 4)
is to calculate the arithmetic mean from all individual predictors
at the beginning, creating an averaged vector B = (by,...,b,).
The class membership is determined using Algorithm 4.

Symbols in Algorithm 4 denotes:

i — square index,

s; — class index assigned to the square of index i,

N = 2% — number of centroids,
and value of A; and A are calculated as

Ar=>d;- b =0, (15)
j=1
1 number of squares
A= . A; (16)
number of squares P
where y = 1.9 (value chosen experimentally) and
- 1
d a7

T B+ (b))

where Ax; and Ay; represents horizontal and vertical distance
between pixel x, and P(j) on Fig. 1.

Both sets created as a result of Algorithms 3 and 4 are then
combined into a single set of size 1.5N. Then, the assignments
of squares to classes are removed. This is due to the fact, that
by using two independent initialization algorithms working on
the same set of squares, the assignments of squares to classes
are created within each of these algorithms, meaning that the
final assignment of squares will be doubled after combining
sets into a single merged set. Therefore, after calculating pre-
dictors of initial set of 1.5N classes, the assignments are cleared,
and squares are once again assigned to the nearest class at the
reclassification stage (described in Section 3.3).

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 5, p. €154734, 2025

3.3. Building a dictionary of predictors

Initialization is the first stage of the dictionary building algo-
rithm. It begins with the calculation of individual predictor for
each block (8 x 8 pixels square) using the MMAE method. To
achieve this, an iterative IRLS algorithm is used (described in
Section 3.1), which offers fast calculation of the approximated
solution. The number of iterations of the IRLS algorithm for
calculating the individual predictors was set to 10.

After initialization (Section 3.2), having already created the
first set of 1.5N classes, the quantization procedure (summarized
in Algorithm 5) begins. Coder for ¢, iterations reclassifies blocks
between classes (second stage of dictionary building). During
reclassification, all blocks are encoded with each centroid (pre-
dictor associated with a single class). After block encoding, the
target function (14) with parameter @ = 1.2 is calculated, which
determines the measure of the block proximity to given class.
Blocks are assigned to the class which offers the lowest values
of d;. At the end of each iteration of reclassification, the matri-
ces R and vectors P of all blocks assigned to certain classes are
added and using (7) based on MMAE (3 iterations of IRLS) a
new shared predictor is calculated.

Algorithm 5. Quantization algorithm

1: Reclassification of squares to the closest class (in terms of criterion
(14) with @ = 1.2).
2: Recalculation of centroids based on current squares assignment
using MMAE (3 iterations of IRLS).
3: Repeat steps 1-2 for 71 times.
4: Removal of the least used class and new assignment of its squares
to the closest class (in terms of criterion (14) with @ = 1.2).
5: Recalculation of centroids based on current squares assignment
using MMAE (3 iterations of IRLS).
6: Reclassification of squares to the closest class (in terms of criterion
(14) with @ = 1.2).
7: Repeat steps 46 for tp = 1.5N — Ntop times.
8: Reclassification of squares to the closest class (in terms of criterion
(14) with @ = 1.2).
9: Recalculation of centroids based on current squares assignment
using MMAE (3 iterations of IRLS).
10: Repeat steps 8-9 for 73 times.

After completing #; iterations of the second stage of the algo-
rithm, the class settings (centroid and assigned blocks) giving
(within #; iterations) the lowest bit average (12) are saved and
passed on to the third stage, where during 7, = 1.5N — N it-
erations a number of 1.5N classes is gradually reduced to Ngop
classes. In each iteration, the class assigned with the fewest
blocks is removed and its blocks are assigned to the clos-
est (in terms of criterion (14) with @ = 1.2) of the remaining
classes. After this operation, the predictors of each class are de-
termined again and all squares are reclassified. After reaching
Niop classes (wWhere Ngop < 1.5N), the fourth stage takes place,
during which an additional 73 iterations of reclassification of all
squares is performed (similarly to second stage).

Based on the experiments performed on 45 test images [42],
consisting of images with three different resolutions: 256 x 256,
512 %512, and 720 x 576 pixels, the individual parameters pre-
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Table 1
Bit average based on a database of 45 standard test images for different codecs
Tmages Pngcrush WebP WebP2 JPEG-XL MRP MRP Proposed
[37] [38] [39] [40] [41] optimized codec
Average 4.719 4216 4.266 4.123 4.058 4.022 3.983
Table 2
Bit average based on a test image dataset from paper [21]

Images BPG PNG LCIC lez)%g I PSSG - I;ELG " FLIF  WebP WebP2 L3C CWPLIC dLugi Pioopd‘ffd
Airplane 432 426 399 4.00 3.80 3.71 3.82 3.87 3.84 4.56 3.69 3.69 3.63
Barbara 506 522 46l 4.61 4.70 4.40 4.56 4.55 451 5.44 435 4.36 3.94
Coastguard 570  5.06  4.82 4.83 4.86 4.73 493 4.81 4.82 5.82 4.80 4.83 441
Comic 6.15 584 563 5.65 5.30 5.07 5.50 5.45 5.39 6.60 4.83 4.83 5.01
Flowers 518 5.08 491 4.92 4.62 4.51 4.74 4.76 4.70 5.53 4.41 435 438
Goldhill 495 470 458 4.59 443 4.37 4.50 447 441 5.27 433 433 4.22
Lennagrey  4.54 461 431 4.31 4.24 4.16 4.28 4.14 4.13 4.95 4.13 4.08 3.96
Mandrill 6.61 623  6.11 6.11 6.04 5.98 6.14 5.89 5.90 6.97 5.95 5.89 5.74
Monarch 410 426 3.82 3.82 3.70 3.54 3.68 3.73 3.72 4.37 3.40 345 3.42
Pepper 477 490  4.63 4.63 451 4.48 4.58 4.50 447 5.38 4.67 4.38 4.28
Ppt3 220 235 241 2.41 2.04 1.84 1.87 2.06 2.01 3.71 2.14 2.07 1.93
Zebra 583 519 4389 4.89 4.81 4.66 4.84 4.86 4.84 6.08 4.65 4.68 4.36
Average 4951 4.808 4.559 4564 4421 4288 4453 4424 4395 5.390 4.279 4.245 4.113

sented in Table 3 were selected. Larger images, which may
contain many regions with different characteristics are encoded
using a larger number of classes in contrast to smaller images.
The prediction order r is approximately 35. The number of iter-
ations #; = t3 = 20 was also selected.

In practice, nearly 98% of the coded data are compressed
prediction errors. About 1.5% is the cost of storing indexes (to
the rows of dictionary) assigned to each square. The size of the
dictionary, on the other hand, is only about 0.5% of the size of
the encoded file. It has Nyp rows, and each row consists of r
prediction coefficients, which are (np, +2)-bit (see Table 3). The
size of dictionary equals Ny - (1 +2) - (r — 1) bits, where Nyop

is a number of classes (shared predictors), np +2 is a number
of bits required to save single prediction coefficient, and r is a
prediction order (see (1)).

4. EXPERIMENTS

The bit averages of several known lossless compression meth-
ods are compared in Table 1. Experiments were performed on
images with different features (with small and large variations
of noise, photographs, artificially generated images with soft
tonal gradations, images with textured areas etc.). The configu-
rations of tested codecs were set to achieve the best results and
is presented in Table 5.

Table 3 From [21], we decided to use another set of test images (in
Coding parameters for images with different resolutions 8-bit grayscale) (see Table 2), because it is one of the few com-
Resolution r N Nstop np ‘
<256%256 35 4 6 9 Table 5
~512%512 6 T 16 0 Configuration of tested codecs
> 512x512 35 3 32 10 ] Codec Configuration
Pngcrush -reduce -brute
Table 4 WebP -lossless -m 6 -q 100
Time statistics for MRP codec and proposed codec WebP2 -q 100 -alpha_q 100 -effort 9
MRP optimized Proposed codec JPEG-XL —distance=0 —effort=9
Encoding time [s] 565.584 263.837 MRP with default configuration
Decoding time [s] 0.062 0.327 MRP optimized -0
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parisons referring to the use of neural networks (LCIC, L3C,
CWPLIC, LCIC duplex codecs), in which bit averages for indi-
vidual encoded images are shown (unfortunately, in the case of
many deep learning papers, there is usually one average result
for the entire image database, which makes it difficult to analyze
in more depth the capabilities offered by individual codecs for
different types of images). The authors of mentioned paper also
included several classical codecs (e.g., accepted by JPEG [43])
in their comparison.

In Table 4 the time statistics are shown for coding an exam-
ple image Lennagrey (512 x 512 pixel) using processor AMD
Ryzen 7 5700x 3.4GHz. The statistics were collected for two
solutions based on linear prediction with block division. The
results presented in Tables 1 and 4 show the advantage of the
proposed solution over MRP Optimized in terms of both bit
average and encoding time.

5. CONCLUSIONS

In this paper, a method for lossless image compression was pre-
sented. At the prediction stage, for each block of 8 X 8 pixels, a
mechanism of preselecting one of the N linear predictors from
the dictionary was employed. The dictionary was calculated in-
dividually for each encoded image using original vector quanti-
zation method and fast mean absolute error minimization. After
calculating prediction error, a simple method for correcting the
cumulative prediction error was used. Such prepared prediction
errors were coded in a two-step manner using the Golomb code
followed by an adaptive binary arithmetic coder.

The developed method is asymmetric in terms of time, and
offers a relatively short decoding time. For example, for the im-
age Lennagrey (512 x 512 pixels) (using AMD Ryzen 7 5700x
3.4GHz processor) the encoding time is shorter by 53% com-
paring to MRP — Optimized codec and is equal to 263.837 s
(see Table 4). Although there are methods offering compres-
sion efficiencies higher by a few percent, the decoding time is
usually higher even several times (e.g., Vanilc WLS-D [44],
Blend-28 [34]).

For the future development of proposed codec, it is planned to
improve compression efficiency by introducing compression of
the prediction coefficients dictionary, and improving the mecha-
nism of dictionary initialization. The introduction of fuzzy quan-
tization at the building stage of the dictionary is also considered.
Importantly, this will not affect the decoding time compared to
the solution presented in this paper.
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