

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
DOI: 10.24425/bpasts.2024.150113

Enhancing Nano Grid Connectivity through AI-

Based Cloud Computing Platform And

Integrating Recommender Systems with Deep
Learning Architectures for Link Prediction

Nagaraju Sonti1, Rukmini M S S2, Venkatappa Reddy Pamulapati3

1,2,3 Department of ECE, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, 522213, India.

Abstract. Cloud computing has become ubiquitous in modern society, facilitating various applications ranging from essential
services to online entertainment. To ensure that Quality of Service (QoS) standards are met, cloud frameworks must be capable
of adapting to the changing demands of users, reflecting the societal trend of collaboration and dependence on automated
processing systems. This research introduces an innovative approach for link prediction and user cloud recommendation,
leveraging nano-grid applications and deep learning techniques within a cloud computing framework. Heuristic graph
convolutional networks predict data transmission links in cloud networks. The trust-based hybrid decision matrix algorithm is
then employed to schedule links based on user recommendations. The proposed model and several baselines are evaluated using
real-world networks and synthetic data sets. The experimental analysis includes QoS, mean average precision, root mean square
error, precision, normalized square error, and sensitivity metrics. The proposed technique achieves QoS of 73%, mean average
precision of 59%, root mean square error of 73%, precision of 76%, normalized square error of 86%, and sensitivity of 93%.
The findings suggest that integrating nano-grid and deep learning techniques can effectively enhance the QoS of cloud computing
frameworks.

Keywords: Cloud computing; Link prediction; Cloud recommendation; Nano grid application; Deep learning

1. INTRODUCTION

Recently, Link prediction (LP) has attracted much interest due

to its practical applications in real-world scenarios like friend

recommendations, e-commerce, and finding potential

partners. Predicting future links that will or won't occur is the

LP issue. Although LP has been studied for more than 20

years, David LibenNowell and Jon Kleinberg's work

considerably influenced this field and is currently gaining

more attention. [1]. Common neighbours (CN), Resource

Allocation (RA) and Adamic Adar (AA) are some of the

traditional heuristic methods used in link prediction. On the

other hand, supervised learning techniques like Naive Bayes,

SVM, and bagging are also employed [2]. Despite numerous

sophisticated LP methods, simple heuristic approaches or

combinations often yield more accurate results for certain

network types. The effectiveness of a given heuristic method

depends on the network topology, which may differ between

social networks (SNs).

This variability limits the performance of heuristic

approaches. Consequently, determining the optimal heuristic

strategy for a given SN often requires a trial-and-error

process.

Based on the surrounding subgraph, the Weisfeiler-Lehman

Neural Machine (WLNM) method [3] suggested an automatic

way to recognize appropriate ways. WLNM is regarded as an

advanced link prediction method because of its high accuracy.

Link prediction is crucial in helping us understand

individual connections and interactions on networking

platforms. The annual growth rate of users of social networks

has been consistent. With an estimated 3.9 billion people

using the internet as of April 2020 [4], researchers are

interested in exploring new avenues for link prediction across

massive social media platforms. Forecasting links in large

scale social networks has been the subject of several efforts

[5]. The Spark framework has been effectively employed in

distributed computing environments for link prediction

studies, enabling precise prediction of vast social networks.

With numerous computing resources, link prediction analysis

is now possible in less time thanks to Spark's scalability

features, memory computation, and parallel job processing

capabilities. Spark provides a range of application properties

that allow you to tailor the computation method [6].

*e-mail: sontinagaraju.vu@gmail.com

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

THIS IS AN EARLY ACCESS ARTICLE.
This article has been accepted for publication in a future issue of this journal,
but has not been fully edited. Content may change prior to final publication.

2. RELATED WORKS

The prediction of links has been the subject of much research

and has been approached from many angles. Various heuristic

methods have typically been proposed to determine the scores

for every node pair. These techniques rely on structural data

regarding the pair of nodes under consideration, such as their

shortest path and overlapped neighbours. Preferential

attachment and familiar neighbors are two metrics used to

gather data regarding one-hop neighbors and determine these

scores [7]. In addition, it has been suggested to include data

about connections extending more than one hop using higher-

level heuristic approaches like SimRank, PageRank, and Katz,

as well as second-order heuristic strategies such as resource

allocation and Adamic-Adar. These heuristic techniques are

highly efficient for link prediction. Most heuristic techniques

rely on manually designed structural information, which can

limit their applicability. To overcome this drawback,

embedding-based techniques have been recommended [8].

These approaches use the connections between nodes to learn

node embeddings, which are then used to calculate similarity

scores. Matrix factorization is commonly used to learn node

embeddings by breaking down the graph's adjacency matrix.

Other techniques like Deepwalk and node2vec use random

walks to generate Skip-Gram embeddings [9]. LINK [10]

learns to categorize the presence of links based on the

connectivity information in each row of the adjacency matrix.

However, embedding methods can be brutal to generalize due

to their performance being influenced by the sparsity of the

input graph.

Recently, there have been attempts to use Graph Neural

Networks (GNNs) for link prediction, as they are effective at

learning graph representations. GAE and VGAE [11] use

GCNs to learn node representations in an auto-encoder

architecture to recreate the input graph. Link prediction has

seen various GNN architectures, many of which are based on

the GAE. However, SEAL [12] takes a different approach by

reformulating the link prediction task to include subgraph

classification. Rather than directly predicting links, SEAL

performs the task of graph classification. To do this, it samples

enclosing graphs around every target link to compose a

dataset. [13] proposed several measures based on the

structural data of nodes for link prediction. Common

neighbours (CN) is one of the most commonly used measures.

CN measures the similarity between two nodes by the number

of shared neighbours, as proposed by [14]. Using CN,

normalization techniques like Sorensen's index and Jaccard

coefficient, as mentioned in [15], can increase link prediction

accuracy.

 To calculate the probability of a link between two nodes,

a weight is given to each shared neighbour in preferential

connection and resource allocation is evaluated [16].

Recently, [17] proposed a novel similarity measure depending

on the tree-augmented naive (TAN) Bayes likelihood-based

model. Better link predictions are produced by the TAN

model because it considers the relationship among shared CN

[18]. The global structural information of nodes, including

paths and errands, has also been the subject of numerous

studies [19]. Each pair of connected nodes has had its

similarity evaluated using local path techniques based on the

two- and three-hop neighbours of each other [20]. The

similarity score was calculated using all paths of various

lengths between nodes in [21]. At the same time, the SimRank

technique was proposed, which assumes that if two nodes are

connected to the same nodes, they are comparable. Notation

and their explanation are shown in table 1.

TABLE 1. Notation and their explanation

Notation Explanation

F(x) objective function

𝜌𝑡 Weight

𝑟𝑡𝑖 pseudo-residual representing

R1() and R2() pseudo-random number generator

(PRNG) functions

𝑉𝑏𝑐 behavioural constraint

C set of classes

S to calculate entropy

A information gain

H(S) the set S's entropy

𝑉𝑏𝑟 Rate of Behavior Change

p(c) ratio of the number of items in

class c

𝑤1 Weight coefficients

𝐹˙𝑡−1
𝑥𝑖 the loss function’s negative

gradient

H group of all potential regression

trees

Vbe behavioural experience denoted

3. SYSTEM MODEL

This section proposes link prediction for data transmission in

cloud networks using deep learning techniques based on cloud

recommendation. Heuristic graph convolutional networks

were used to predict data transmission links, and the trust-

based hybrid decision matrix algorithm was utilized to

schedule links based on user recommendations. Figure 1

illustrates the system framework for designing and predicting

cloud links.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

BULLETIN OF THE POLISH ACADEMY OF SCIENCES

Fig. 1. Framework for cloud link prediction and scheduling

3.1. Cloud network data transmission link prediction using

heuristic graph convolutional networks

The goal is to assign a set of data packets, including both

primary and sensitive data, to different cloud servers,

minimizing execution time while ensuring encryption of

sensitive data and some preliminary data. The input data

packets are separated into distinct sub-packages, with details

on the length of each packet and the time spent in each

working mode. Cloud service providers offer encryption and

non-encryption modes of operation. The output is a plan for

assigning data packets to different clouds, considering

execution time and security.

To achieve this, a similarity score is computed using only

the structural characteristics of neighbours that coincide with

the specified nodes. The structural elements of each node are

used as the foundation for this operation. However,

conventional GCN cannot compute this score due to a

normalized adjacency matrix and hidden representation

dimension being more minor than the number of nodes. The

small size makes it difficult to distinguish the characteristics

of each neighbourhood after aggregation, preventing GCN

from detecting overlapping areas. Additionally, the

normalized adjacency matrix prevents GCN from counting

multiple neighbourhoods. To address this, the neighbourhood

overlap-aware aggregation scheme is proposed to determine

the neighbourhood overlap-aware score.

The proposed system framework uses heuristic graph

convolutional networks to predict data transmission links in

cloud networks. The trust-based hybrid decision matrix

algorithm then schedules links based on user

recommendations. Figure 2 illustrates the system framework

for designing and predicting cloud links.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

BULLETIN OF THE POLISH ACADEMY OF SCIENCES

Fig. 2. The link prediction framework of the GCN.

An adjacency matrix teaches GCNs beneficial structural traits,

and they estimate similarity scores based on overlapping

neighbourhoods. (a) First, GCNs use the structural feature

generator F to create structural feature vector 𝑋𝑠𝑡𝑟𝑢𝑐𝑡 ∈ 𝑅𝑁×1

from an adjacency matrix 𝐴 ∈ 𝑅𝑁×𝑁. When only features of

overlapped neighbours between nodes are to be considered,

GCNs (a) build a diagonal matrix 𝑋𝑠𝑡𝑟𝑢𝑐𝑡 ∈ 𝑅𝑁×𝑁and (b)

multiply the sum of powers of adjacency matrices to aggregate

the features of multi-hop neighbourhoods. In order to (d)

compute similarity scores and adaptively mix them with the

learnable parameter.

The purpose of machine learning methods is to obtain an

approximation, F(x), of objective function F(x), which maps

instances x to their output values y, given a training dataset

𝐷 = {𝑥𝑖 , 𝑦𝑖}1
𝑁. The learning process can generally be viewed

as an optimization problem where the goal is to minimize the

anticipated value of a particular loss function, 𝐸[𝐿(𝑦, 𝐹(𝑥))].

This predicted loss can be roughly estimated using data:

∑𝑖=1
𝑁  𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

The approach is constructed using the additive expansion in

eq. (1) in the specific case of gradient boosting.

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝜌𝑡ℎ𝑡(𝑥), (1)

Where 𝜌𝑡 is the tth function's weight and ℎ𝑡(𝑥). The

approximation is built in stages, with each step creating a new

model ht without altering any existing models in 𝐹𝑡−1(𝑥𝑖).

Initially, eq. (2) initializes the additive model with a constant

approximation

𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼∑𝑖=1
𝑁  𝐿(𝑦𝑖 , 𝛼) (2)

and to reduce Eq. (3), the following models are created

(𝜌𝑡 , ℎ𝑡(𝑥)) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌,ℎ∑𝑖=1
𝑁  𝐿(𝑦𝑖 , 𝐹𝑡−1(𝑥𝑖) + 𝜌ℎ𝑡(𝑥𝑖))

 (3)

Nevertheless, the problem is divided into two parts rather

than jointly solving the optimum for ℎ𝑡. Each method is first

trained to discover the loss-data-based function's gradient

vector. To do this, each model, ℎ𝑡is trained on a fresh dataset,

D = {𝑥𝑖 , 𝑟𝑡𝑖}𝑖=1
𝑁 , where rti is the pseudo-residual representing

the loss function’s negative gradient at 𝐹˙𝑡−1
𝑥𝑖 by eq (4)

𝑟𝑡𝑖 = −
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
|𝐹(𝑥)=𝐹𝑡−1(𝑥) (4)

For the given data points, which are parallel to the

gradient of L at 𝐹𝑡−1(𝑥), the function, ht, is anticipated to

produce values that are close to the pseudo-residuals (x). But

remember that h's training is typically influenced by square-

error loss, which may differ from the provided objective loss

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

function. But, after solving an optimization issue using line

search on the provided loss function, the value of t is

determined. Lasso combines Eq's l1 regularisation and linear

classification (5),

𝑚𝑖𝑛𝑤  ∑(𝑥𝑖,𝑦𝑖)  𝑙(𝑥𝑖 , 𝑦𝑖 , 𝑤) + 𝜆|𝑤|1. (5)

the element-wise operator Eq. (6) definition of the capped l1

norm

𝑞𝑐(𝑤𝑖) = 𝑚𝑖𝑛(|𝑤𝑖|, 𝜖) (6)

By modifying the associated regularisation parameters, 𝜇, 𝜆 ≥

0 by eqn (7, 8), one can regulate trade-off among feature

extraction and regularisation when capped l1 norm is paired

with a regular l1 (or l2) norm

𝑚𝑖𝑛𝑤  ∑(𝑥𝑖,𝑦𝑖)  𝑙(𝑥𝑖 , 𝑦𝑖 , 𝑤) + 𝜆|𝑤|1 + 𝜇𝑞𝜖(𝑤). (7)

𝐻𝑒𝑟𝑒 𝑞𝑐(𝑤) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 [𝑞𝑐(𝑤1), … , 𝑞𝑐(𝑤𝑑)] (8)

Boosting assumes that limited-depth regression trees are

utilized to pre-process data. H denotes the group of all

potential regression trees. Assume |H| to be finite By taking

into account the restricted precision and identifying trees that

get the same values across the whole training set as belonging

to the same tree (albeit possibly large). We suggest learning a

linear classifier in this transformed space, considering that

inputs are mapped into R|H| through 𝜙(𝑥) =

[ℎ1(𝑥), … , ℎ|𝐻|(𝑥)]
⊤

. Eq. (9) changes to

𝑚𝑖𝑛𝛽  ∑(𝜙(𝑥𝑖),𝑦𝑖)  𝑙(𝜙(𝑥𝑖), 𝑦𝑖 , 𝛽) + 𝜆|𝛽|1 + 𝜇𝑞𝜖(𝛽). (9)

A sparse linear vector that selects trees in this case is β.

Despite being very high dimensional, optimization in Eq. (10)

is tractable because β is quite sparse. We derive a final

classifier by assuming, without sacrificing generality, that

trees in H are arranged such that the first T entries are non-

zero β.

 𝐻(𝑥) = ∑𝑡=1
𝑇  𝛽𝑡ℎ𝑡(𝑥). (10)

The revised parameters are given by the equation (11–18):

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) − 𝜂𝑤𝛥𝑤𝑖𝑗 (11)

𝛥𝑤𝑖𝑗 =
𝜕𝐿

𝜕𝑤𝑖𝑗
=

𝜕𝐿

𝜕𝑦ˆ

𝜕𝑦ˆ

𝜕𝑤𝑖𝑗
 (12)

𝑚𝑖𝑗(𝑡 + 1) = 𝑚𝑖𝑗(𝑡) − 𝜂𝑚𝛥𝑚𝑖𝑗 (13)

𝛥𝑚𝑖𝑗 =
𝜕𝐿

𝜕𝑚𝑖𝑗
=

𝜕𝐿

𝜕𝑠𝑖𝑗

𝜕𝑠𝑖𝑗

𝜕𝑚𝑖𝑗
 (14)

𝜎𝑖𝑗(𝑡 + 1) = 𝜎𝑖𝑗(𝑡) − 𝜂𝜎𝛥𝜎𝑖𝑗 (15)

𝛥𝜎𝑖𝑗 =
𝜕𝐿

𝜕𝜎𝑖𝑗
=

𝜕𝐿

𝜕𝑠𝑖𝑗

𝜕𝑠𝑖𝑗

𝜕𝜎𝑖𝑗
 (16)

𝑘𝑓,𝑣(𝑡 + 1) = 𝑘𝑓,𝑣(𝑡) − 𝜂𝑘𝛥𝑘𝑓,𝑣 (17)

𝛥𝑘𝑓,𝑣 =
𝜕𝐿

𝜕𝑘𝑓,𝑣
=

𝜕𝐿

𝜕𝐶𝑓𝑖

𝜕𝐶𝑓𝑖

𝜕𝑘𝑓,𝑣
 (18)

3.2 Link recommendation using trust-based hybrid decision

matrix algorithm

When evaluating the trust of a device's identity, it is crucial to

consider privacy issues. If a device's ID is made public, it

could be vulnerable to identity fraud, creation of false data,

and other malicious activities. Public Key Infrastructure (PKI)

is a secure authentication technique used in edge computing

that simplifies one-to-one communication in a distributed

context. Since identity trust is a critical component of overall

trust evaluation, this study proposes a critical generation

approach that reduces computational complexity and

simplifies various PKI elements. During the resource request

process, Identity Trust VI assesses the reliability of ECU

identities. We assume that the Elliptic Curve Cryptosystem

(ECC)-based anonymous verification approach preserves

ECU identity trust. [11], which is used to generate keys for

each ECU to compute VI. The following two steps involve

creating the public and private keys after the ECC produce a

discrete elliptic curve named E:

Step 1: Generating Server Keys The neighbourhood edge

server produces the critical pair (Kp, Ks) presented in

equations (19, 20):

𝐾𝑝 = 𝐻(𝐼𝑙 , 𝐼𝑐) (19)

𝐾𝑠 = 𝑀(𝐾𝑝) (20)

The hash function H uses ID Ie of ECUs and ID Il of edge

server to calculate public key Kp. Encoding function M

calculates the private key Ks based on Kp.

Local edge servers transmit identity information D = {Kp, E,

O} to ECUs after calculating Kp and Ks.

Step 2: Key Generation of ECUs: ECUs calculate the three

keys Kvi, Kep, and Kes after receiving D as an equation (21,

22):

 𝐾𝑣𝑖 = 𝑅1(𝑂(𝑥, 𝑦)) 𝐾𝑒𝑝 = 𝑅2(𝑂(𝑥, 𝑦)) (21)

𝐾𝑒𝑠 = 𝑅1 (𝑀(𝐾𝑒𝑝)) (22)

Virtual key where R1() and R2() are pseudo-random

number generator (PRNG) functions, Kes and Kep are the

private and public keys of ECUs, and Kvi is used to secure the

genuine ID of ECUs. The local edge server receives a message

F = {IDe, Kv, Kep, a}, a from the ECUs at that point. Edge

servers and ECUs communicate with one another during the

later authentication stage using the public key, and the private

key is utilized to complete the identity matching. Vi is set to

1 if ECUs successfully authenticate; otherwise, Vi is set to 0.

The proposed framework uses fuzzy rules to construct

trust values, with subjective and objective trust values serving

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

as fuzzy inputs and fuzzy outputs as trust values. i) Fuzzy

inputs have three states: high, medium, and low, with values

between 0 and 1. (ii) With values between 0 and 1, fuzzy

outputs have three states: low, medium, and high. The trust

repository is updated as part of the agent's responsibility to

update trust values. Uncertainty, mistrust, and trust are the

three states in the fuzzy rules map that produce a trust value.

If the gathered trust value is low, the CSPj trust value equates

to mistrust. If the CSPj trust value is high, it maps to trust; if

not, it maps to doubtful.

Behavior Trust

𝑉𝑏𝑐 = 𝑤1𝜉1 + 𝑤2𝜉2 + ⋯ + 𝑤𝑐𝜉𝑐 (23)

Here, behavioural constraint is denoted by𝑉𝑏𝑐, behavioural

experience is denoted by Vbe, and Vbr indicates behavioural

change rate. Weight coefficients, wbc +wbe+ wbr = 1, can be

altered to suit specific jobs.

1) Behavior Constraint: Various ECUs notice a varying

number of interactions or behaviour limitations that are

imposed by particular activities according to equation (24):

𝑉𝑏𝑐 = 𝑤1𝜉1 + 𝑤2𝜉2 + ⋯ + 𝑤𝑐𝜉𝑐 (24)

Behavior Experience: Since environment for edge computing

is constantly changing, it is vital to take change of trust into

account dynamically. ECUs that will be tested are listed as

ECUc. Behaviour experience Vbh implies interactive

reliability of the recent past for interactions between several

ECUs, where little engagement can nonetheless result in

strong trust-building. Let's say that ECUs have been

communicating with ECU1, ECU2, and ECUk, which are the

other k ECUs. Given by eqn (25)

𝑠𝑗(𝛥𝑡) = {𝜏𝑗
1, 𝜏𝑗

2, … , 𝜏𝑗
𝑠 , … , 𝜏𝑗

𝑡} (25)

Define by eq. (26)

𝐻𝑗
+(𝛥𝑡) = ∑𝑖=1

𝑡  1(𝜏𝑗
𝑖 ≥ 𝛼𝑗)

(26)

If condition is true, 1(.) function returns 1, else it returns 0.

Eq. (27) is utilized to define Vbe

 𝑉𝑏𝑒 =
1

𝑘
∑𝑗=1

𝑘  
𝐻𝑗

+(𝛥𝑡)

𝑡
 (27)

Rate of Behavior Change: Rate of behaviour change, which is

denoted as 𝑉𝑏𝑟 and reflects the actual change in behaviour

trust, changes with time. By way of eqn (28)

𝑉𝑏𝑟 =
1

𝑘
∑𝑗=1

𝑘  (
(1−𝜆)𝑉𝑏𝑒𝛥(𝑡−1)

1+√𝑡−𝐻𝑗
+(𝛥(𝑡−1))

+
𝜆𝑉𝑏𝑒𝛥(𝑡)

1+√𝐻𝑗
+(𝛥𝑡)

) (28)

Trusted Capability: Capability trust is the weight given to a

device's capacity properties, such as response time, available

bandwidth, accessibility, and so forth.

In this study, we propose a hybrid approach that combines

a decision tree and a neural network to enhance the

performance of classification decisions. A neural network is

integrated into each decision tree node to achieve improved

results compared to using each technique individually. Neural

networks excel at classifying items into smaller categories,

while their performance improves with an increase in the

number of categories. Decision trees, on the other hand, can

handle multiple distinct categories by employing a collection

of binary options such as 0 or 1 to construct the tree. The

attribute with the best information gain is selected to obtain

the same outcome. We use entropy, a widely used information

theory metric that indicates the (im) purity of any set of

samples, to calculate information gain. Entropy H(S)

measures the degree of uncertainty in a given dataset S.

𝐻(𝑆) = ∑𝑐∈𝐶   − 𝑝(𝑐)𝑙𝑜𝑔2 (𝑝(𝑐)) Where S - dataset that is

being used to calculate entropy at this time. p(c) is the ratio of

the number of items in class c to the total number of elements

in set S. C is the set of classes in S, where C = 0, 1. The set S

is perfectly categorized if H(S) = 0.

The difference in entropy between before and after the set

S is split on a result attribute A, which is known as information

gain or IG(A). After splitting set S on outcome attribute A by

eq(29), the amount of uncertainty S was reduced is

represented by this quantity.

 𝐼𝐺(𝐴, 𝑆) = 𝐻(𝑆) − ∑𝑡∈𝑇  𝑝(𝑡)𝐻(𝑡) (29)

Where H(S) is the set S's entropy. T - The subsets produced

when set S was divided by the outcome attribute A so that in

eq (30)

𝑆 = ⋃𝑡∈𝑇  𝑡. (30)

The portion of items in set t divided by the total items in

set S is represented as p(t), while H(t) is the entropy of subset

t. The remaining properties are evaluated for their information

gain, and the property with the highest gain is selected to split

set S at each iteration. Then, a neural network is built using

the attribute with the highest information gain. A separate

neural network is constructed for each binary classification

only when the issue is present. At each decision tree node, the

neural network consists of all possible outcome attributes that

could result in a 0 or 1.

4. PERFORMANCE ANALYSIS

The effectiveness of the proposed approach is demonstrated

by comparing it with standard techniques using various real

benchmark dynamic networks. The experiments are

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

conducted on a server coded in Python with a 16GB RAM and

tensor flow anaconda environment.

4.1. Parameter Setup

The approach employed in this study involves an encoder

method that combines a convolutional network and a graph

network. Each dataset is segmented at predetermined

intervals, resulting in 320 network sequences. The training set

comprises the first 240 networks, while the remaining 80

networks form the test set. The model consists of a single

convolutional network and four GCN networks, with each

GCN network utilizing a Chebyshev polynomial

hyperparameter K of 3. The hidden layer dimensions of

LSTM for the first five datasets are 256, while the last dataset

uses 512. Similarly, the hidden layer dimension of the GCN

network for the first five datasets is 512, while the last dataset

uses 512. The model undergoes 200 iterations during the

training phase, with the inputs being eleven continuous

network sequences from the training set.

4.2. Baseline Methods

In this study, we compare the effectiveness of the proposed

technique with various standard methods such as DDNE,

GTRBM, ctRBM, TNE, and node2vec. Node2vec: This

method uses a 2nd order biassed random walk algorithm to

explore a node's neighbourhood, allowing for a balance of

local and network-wide features. Node2vec is used as a

starting point for predicting dynamic links.

4.3. Proposed analysis

TABLE 2. Parametric analysis for the proposed technique

No. of

samples

Qo

S

Mean

average

precision

Root

mean

square

error

Precis

ion

Normaliz

ation

square

error

sensitiv

ity

100 88 91 65 79 82 77

200 89 92 68 81 83 81

300 91 93 71 82 85 83

400 93 94 73 84 87 85

500 97 95 74 85 88 86

Table-2 presents a parametric analysis of the proposed

technique based on the number of epochs. Figure 3 illustrates

the results of a parametric analysis of QoS based on the

number of epochs. The proposed technique achieved a QoS of

88% after 100 epochs, 89% after 200 epochs, 91% after 300

epochs, 93% after 400 epochs, and 97% after 500 epochs,

depending on the number of samples used in the neural

network training.

Fig. 3. Parametric analysis of QoS

Fig. 4. Parametric analysis of mean average precision

The parametric analysis for mean average is depicted in

Figure 4. The proposed technique achieved a mean average

precision of 91% for 100 epochs, 92% for 200 epochs, 93%

for 300 epochs, 94% for 400 epochs, and 95% for 500 epochs.

Fig. 5. Parametric analysis of Root mean square error

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

The parametric analysis for Root Mean Square Error based on

the number of epochs is presented in Figure 5 above. The

proposed technique achieved a Root Mean Square Error of

65% for 100 epochs, 68% for 200 epochs, 71% for 300

epochs, 73% for 400 epochs, and 74% for 500 epochs, based

on the number of samples used in the neural network training.

Fig. 6. parametric analysis of precision

The results of the parametric analysis for precision based on

neural network training for different numbers of samples are

presented in Figure-6. The proposed technique achieved an

accuracy of 79% for 100 epochs, 81% for 200 epochs, 82%

for 300 epochs, 84% for 400 epochs, and 85% for 500 epochs.

Fig. 7. parametric analysis of Normalization square error

The parametric analysis for Normalized Square Error based

on the number of epochs is depicted in Figure 7 above.

According to the results, the proposed technique achieved a

Normalized Square Error of 82% for 100 epochs, 83% for 200

epochs, 85% for 300 epochs, 87% for 400 epochs, and 88%

for 500 epochs based on the number of samples in the neural

network training.

Fig. 8. parametric analysis of sensitivity

Figure 8 displays the parametric analysis for sensitivity based

on the number of samples in the neural network training. The

proposed technique achieved a sensitivity of 77% for 100

epochs, 81% for 200 epochs, 83% for 300 epochs, 85% for

400 epochs, and 86% for 500 epochs.

4.6. Comparative analysis

TABLE 3. Analysis based on various baseline methods

Dataset Techniques QoS

Mean

average

precision

Root

mean

square

error

Precision
Normalization

square error
sensitivity

Node2vec

GCN 55 41 59 61 71 81

VGAE 59 43 63 63 73 83

AI_CC_LP_DLA 61 45 65 65 75 85

TNE

GCN 59 42 61 62 72 82

VGAE 63 46 63 66 76 86

AI_CC_LP_DLA 65 48 66 69 78 88

ctRBM

GCN 61 45 62 63 75 83

VGAE 65 49 65 65 79 88

AI_CC_LP_DLA 68 52 69 69 83 89

GTRBM

GCN 63 46 65 65 77 85

VGAE 66 49 69 69 82 89

AI_CC_LP_DLA 69 53 72 72 83 92

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

DDNE

GCN 65 48 68 69 79 88

VGAE 71 55 73 74 83 92

AI_CC_LP_DLA 73 59 75 76 86 93

Table 3 compares the proposed technique's performance with

existing techniques such as node2vec, TNE, ctRBM,

GTRBM, and DDNE. The analysis is based on several

metrics, including QoS, mean average precision, root mean

square error, precision, normalized square error, and

sensitivity.

Figure 9 depicts the analysis of baseline techniques,

including node2vec, TNE, ctRBM, GTRBM, and DDNE, for

QoS. The suggested method yielded a QoS of 61%, compared

to 59% for the current GCN and 59% for VGAE using the

node2vec baseline approach. The proposed method obtained

a QoS of 65% for the TNE baseline technique, compared to

59% for the current GCN and 63% for VGAE. For the ctRBM

baseline approach, the suggested technique achieved a QoS of

68%, compared to 61% for the current GCN and 65% for

VGAE. The proposed technique obtained a QoS of 69% for

the GTRBM baseline method, compared to 63% for the

existing GCN and 66% for VGAE. Lastly, the suggested

technique obtained a QoS of 73% for the DDNE baseline

technique, compared to 65% for the current GCN and 71% for

VGAE.

Fig. 9. Comparison of QoS

Fig. 10. Comparison of Mean average precision

The analysis for Mean Average Precision is shown in Figure

10. The proposed method outperformed the current GCN with

a Mean Average Precision of 53% for the GTRBM baseline

method, compared to 46% for the GCN. For the DDNE

baseline method, the suggested method yielded a Mean

Average Precision of 59%, compared to 48% for the current

GCN and 55% for VGAE.

Fig. 11. Comparison of Root mean square error

The analysis for baseline methods, which include node2vec,

is shown in Figure 11. The existing GCN obtained a RMSE of

59%, whereas the suggested method achieved a value of 65%.

The proposed technique received an RMSE of 66% for the

TNE baseline technique, compared to 61% for the existing

GCN and 63% for VGAE. The suggested method produced an

RMSE of 69%, compared to the ctRBM baseline method's

62% and 65% for the existing GCN and VGAE.

Fig. 12. Comparison of precision

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

A precision analysis is shown in Figure 12. The proposed

method obtained a precision of 65% for the node2vec baseline

method, whereas the current GCN obtained 61% and VGAE

obtained 63%. The proposed technique achieved 72%

precision for the GTRBM baseline technique, compared to

65% for the existing GCN and 69% for VGAE.

Fig. 13. Comparison of Normalization square error

The analysis for Normalization Square Error for TNE,

ctRBM, DDNE, node2vec, and GTRBM baseline techniques

is shown in Figure 13. The proposed technique achieved 83%

Normalization square error for the GTRBM baseline method,

compared to 77% for the existing GCN and 82% for VGAE.

Ultimately, the suggested method produced an 86%

Normalization square error for the DDNE baseline method.

A sensitivity analysis of the node2vec, TNE, ctRBM,

GTRBM, and DDNE baseline techniques is shown in Figure

14. For the DDNE baseline method, the proposed technique

achieved a sensitivity of 93%, while existing GCN attained

88%, and VGAE attained 92%.

Fig. 14. Comparison of sensitivity

RESULTS OF LINK PREDICTION

For the model's training, we utilized ten consecutive snapshots

"Gt10, • • •, Gt1" to predict the subsequent snapshot "Gt."

There are typically two methods for processing networks: 1)

Predicting the subsequent snapshot Gt utilizing only the (t-1)th

snapshot Gt1; 2) Predicting the subsequent snapshot, Gt, by

combining the previous ten snapshots (Gt10, • • •, Gt1) into a

single sample. In this research, we used the first option for

node2vec and the second option for other methods. Each

indicator was thoroughly examined. It is observed that, for

both long-term and short-term prediction capabilities, the

proposed model outperforms all baseline methods, while

node2vec performs worst in most cases. This implies that

other dynamic prediction techniques perform significantly

better because they are capable of capturing dynamic

characteristics, whereas network embedding techniques,

which are designed for static networks, may not be as effective

in capturing temporal changes.

5. CONCLUSION

In this study, we proposed a novel link prediction method for

cloud data transmission that includes secure link

recommendation. Our approach leverages heuristic graph

convolutional networks to predict the data transmission link

and a trust-based hybrid decision matrix algorithm to

recommend the user link. We achieved accurate link

classification by integrating learned visualizations of related

nodes to generate a vector for a link, which we then fed into a

regression algorithm. We evaluated our method using 3

metrics and observed that it outperformed all baseline

methods in terms of short- and long-term prediction

capabilities. Specifically, our proposed technique achieved a

QoS of 73%, mean average precision of 59%, root mean

square error of 73%, precision of 76%, normalized square

error of 86%, and sensitivity of 93%. These results

demonstrate the potential of deep learning architectures for

improving link prediction in cloud data transmission, and

highlight the value of combining multiple techniques for

achieving better performance.

ACKNOWLEDGEMENTS

We declare that this manuscript is original, has not been

published before and is not currently being considered for

publication elsewhere.

FUNDING: Not Applicable

CONFLICTS OF INTEREST/COMPETING INTERESTS: The

authors do not have any conflicts of interest.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AVAILABILITY OF DATA AND MATERIAL: Not

Applicable

CODE AVAILABILITY: Not Applicable

REFERENCE

[1] N. N. Daud, S. H. Ab Hamid, M. Saadoon, C. Seri, Z. H. A. Hasan

and N. B. Anuar, “Self-ConFig.d Framework for scalable link

prediction in twitter: Towards autonomous spark

framework,” Knowledge-Based Systems, 255, 109713, 2022.

[2] J. Zheng, X. Deng, J. Yang, W. Zhang, X. Lin, S. Jiang & H. Shen,

“Analysis of thermal characteristics with multi-physics coupling

for the feed system of a precision CNC machine tool Junjian,”

Bulletin of the Polish Academy of Sciences Technical Sciences,

e148941-e148941, 2024.

[3] M. Bohlooly Fotovat & T. Kubiak, “Non-bifurcation behavior of

laminated composite plates under in-plane compression. Bulletin

of the Polish Academy of Sciences,” Technical Sciences, 72(2),

2024.

[4] C. Cao, W. Dong, W. Zhang and Y. Gao, “WiEdge: Edge

Computing for Audio Sensing Applications with Accurate

Wireless Link Prediction,” IEEE Internet of Things Journal, 2022.

[5] J. Wang, J. Ma, D. Meng, X. Zhao, K. Zhang, Q. Liu & K. Xu,

“Diagnosis of inter-turn short circuit fault in IPMSMs based on

the combined use of greedytracking and random forest,” Bulletin

of the Polish Academy of Sciences Technical Sciences, e148943-

e148943, 2024.

[6] P. Steinbach, F. Gernhardt, M. Tanveer, S. Schmerler and S.

Starke, “Machine learning state-of-the-art with uncertainties,”

arXiv preprint arXiv:2204.05173, 2022.
[7] Y. Qi, X. Zhang, Z. Hu, B. Xiang, R. Zhang and S. Fang,

“Choosing the right collaboration partner for innovation: a

framework based on topic analysis and link

prediction,” Scientometrics, 127(9), 5519-5550, 2022.

[8] L. Yang, X. Jiang, Y. Ji, H. Wang, A. Abraham and H. Liu, “Gated

graph convolutional network based on spatio-temporal semi-

variogram for link prediction in dynamic complex

network. Neurocomputing, 505, 289-303, 2022.

[9] S. Bates, T. Hastie and R. Tibshirani, “Cross-Validation: What

Does It Estimate and How Well Does It Do It?,” Journal of the

American Statistical Association, 1–12, 2023.

[10] M. Nie, D. Chen and D. Wang, “Graph Embedding Method Based

on Biased Walking for Link Prediction. Mathematics, 10(20).

[11] S. Raschka, "Model evaluation, model selection, and algorithm

selection in machine learning." arXiv preprint arXiv:1811.12808

2018.
[12] S. Noel and V. Swarup, “Dependency-Based Link Prediction for

Learning Microsegmentation Policy,” In Information and

Communications Security: 24th International Conference, ICICS

2022, Canterbury, UK, September 5–8, 2022, Proceedings (pp.

569-588, 2022.

[13] G. Xu, X. Zhou, J. Peng and C. Dong, “SCL-WTNS: A new link

prediction algorithm based on strength of community link and

weighted two-level neighborhood similarity,” International

Journal of Modern Physics B, 36(20), 2250120, 2022.

[14] F. Müller, “Link and edge weight prediction in air transport

networks An RNN approach,” Physica A: Statistical Mechanics

and its Applications, 128490, 2023.

[15] A. Elsheikh, A. S. Ibrahim and M. H. Ismail, “Sequence-to-

sequence learning for link-scheduling in D2D communication

networks,” Journal of Network and Computer Applications, 212,

103567, 2023.

[16] N. N. Daud, S. H. A. Hamid, C. Seri, M. Saadoon and N. B.

Anuar, “Scalable link prediction in Twitter using self-configured

framework,” arXiv preprint arXiv:2208.09798, 2022.

[17] Y. Xiu, K. Cao, X. Ren, B. Chen and W. K. V. Chan, “Self-Similar

Growth and Synergistic Link Prediction in Technology-

Convergence Networks: The Case of Intelligent Transportation

Systems,” Fractal and Fractional, 7(2), 109, 2023.

[18] P. Sathre, A. Gondhalekar and W. C. Feng, “Edge-Connected

Jaccard Similarity for Graph Link Prediction on FPGA,” In 2022

IEEE High Performance Extreme Computing Conference

(HPEC), 1-10, 2022.
[19] W. Quan, M. Liu, N. Cheng, X. Zhang, D. Gao and H. Zhang,

“Cybertwin-driven DRL-based adaptive transmission scheduling

for software defined vehicular networks,” IEEE Transactions on

Vehicular Technology, 71(5), 4607-4619, 2022.
[20] K. W. Cho, M. Cominelli, F. Gringoli, J. Widmer and K.

Jamieson, “Cross-Link Channel Prediction for Massive IoT

Networks,” arXiv preprint arXiv:2212.07663, 2022.
[21] C. Xing, Y. Li, C. Chen, F. Li, Z. Zeng and X. Zou,

“Determinantal point process-based new radio unlicensed link

scheduling for multi-access edge computing. World Wide

Web, 25(5), 2215-2239, 2022.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

