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Abstract. Cloud computing has become ubiquitous in modern society, facilitating various applications ranging from essential 
services to online entertainment. To ensure that Quality of Service (QoS) standards are met, cloud frameworks must be capable 
of  adapting  to  the  changing  demands  of  users,  reflecting  the  societal  trend  of  collaboration  and dependence  on  automated 
processing  systems.  This  research  introduces  an  innovative  approach  for  link  prediction  and  user  cloud  recommendation, 
leveraging  nano-grid  applications  and  deep  learning  techniques  within  a  cloud  computing  framework.  Heuristic  graph 
convolutional networks predict data transmission links in cloud networks. The trust-based hybrid decision matrix algorithm is 
then employed to schedule links based on user recommendations. The proposed model and several baselines are evaluated using 
real-world networks and synthetic data sets. The experimental analysis includes QoS, mean average precision, root mean square 
error, precision, normalized square error, and sensitivity metrics. The proposed technique achieves QoS of 73%, mean average 
precision of 59%, root mean square error of 73%, precision of 76%, normalized square error of 86%, and sensitivity of 93%. 
The findings suggest that integrating nano-grid and deep learning techniques can effectively enhance the QoS of cloud computing 
frameworks.
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1. INTRODUCTION

 

Recently, Link prediction (LP) has attracted much interest due 

to its practical applications in real-world scenarios like friend 

recommendations, e-commerce, and finding potential 

partners. Predicting future links that will or won't occur is the 

LP issue. Although LP has been studied for more than 20 

years, David LibenNowell and Jon Kleinberg's work 

considerably influenced this field and is currently gaining 

more attention. [1]. Common neighbours (CN), Resource 

Allocation (RA) and Adamic Adar (AA) are some of the 

traditional heuristic methods used in link prediction. On the 

other hand, supervised learning techniques like Naive Bayes, 

SVM, and bagging are also employed [2]. Despite numerous 

sophisticated LP methods, simple heuristic approaches or 

combinations often yield more accurate results for certain 

network types. The effectiveness of a given heuristic method 

depends on the network topology, which may differ between 

social networks (SNs). 

This variability limits the performance of heuristic 

approaches. Consequently, determining the optimal heuristic 

strategy for a given SN often requires a trial-and-error 

process.  

 

 

Based on the surrounding subgraph, the Weisfeiler-Lehman 

Neural Machine (WLNM) method [3] suggested an automatic 

way to recognize appropriate ways. WLNM is regarded as an 

advanced link prediction method because of its high accuracy.  

Link prediction is crucial in helping us understand 

individual connections and interactions on networking 

platforms. The annual growth rate of users of social networks 

has been consistent. With an estimated 3.9 billion people 

using the internet as of April 2020 [4], researchers are 

interested in exploring new avenues for link prediction across 

massive social media platforms. Forecasting links in large 

scale social networks has been the subject of several efforts 

[5]. The Spark framework has been effectively employed in 

distributed computing environments for link prediction 

studies, enabling precise prediction of vast social networks. 

With numerous computing resources, link prediction analysis 

is now possible in less time thanks to Spark's scalability 

features, memory computation, and parallel job processing 

capabilities. Spark provides a range of application properties 

that allow you to tailor the computation method [6]. 
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2. RELATED WORKS 

The prediction of links has been the subject of much research 

and has been approached from many angles. Various heuristic 

methods have typically been proposed to determine the scores 

for every node pair. These techniques rely on structural data 

regarding the pair of nodes under consideration, such as their 

shortest path and overlapped neighbours. Preferential 

attachment and familiar neighbors are two metrics used to 

gather data regarding one-hop neighbors and determine these 

scores [7]. In addition, it has been suggested to include data 

about connections extending more than one hop using higher-

level heuristic approaches like SimRank, PageRank, and Katz, 

as well as second-order heuristic strategies such as resource 

allocation and Adamic-Adar. These heuristic techniques are 

highly efficient for link prediction. Most heuristic techniques 

rely on manually designed structural information, which can 

limit their applicability. To overcome this drawback, 

embedding-based techniques have been recommended [8]. 

These approaches use the connections between nodes to learn 

node embeddings, which are then used to calculate similarity 

scores. Matrix factorization is commonly used to learn node 

embeddings by breaking down the graph's adjacency matrix. 

Other techniques like Deepwalk and node2vec use random 

walks to generate Skip-Gram embeddings [9]. LINK [10] 

learns to categorize the presence of links based on the 

connectivity information in each row of the adjacency matrix. 

However, embedding methods can be brutal to generalize due 

to their performance being influenced by the sparsity of the 

input graph. 

Recently, there have been attempts to use Graph Neural 

Networks (GNNs) for link prediction, as they are effective at 

learning graph representations. GAE and VGAE [11] use 

GCNs to learn node representations in an auto-encoder 

architecture to recreate the input graph. Link prediction has 

seen various GNN architectures, many of which are based on 

the GAE. However, SEAL [12] takes a different approach by 

reformulating the link prediction task to include subgraph 

classification. Rather than directly predicting links, SEAL 

performs the task of graph classification. To do this, it samples 

enclosing graphs around every target link to compose a 

dataset. [13] proposed several measures based on the 

structural data of nodes for link prediction. Common 

neighbours (CN) is one of the most commonly used measures. 

CN measures the similarity between two nodes by the number 

of shared neighbours, as proposed by [14]. Using CN, 

normalization techniques like Sorensen's index and Jaccard 

coefficient, as mentioned in [15], can increase link prediction 

accuracy. 

 To calculate the probability of a link between two nodes, 

a weight is given to each shared neighbour in preferential 

connection and resource allocation is evaluated [16]. 

Recently, [17] proposed a novel similarity measure depending 

on the tree-augmented naive (TAN) Bayes likelihood-based 

model. Better link predictions are produced by the TAN 

model because it considers the relationship among shared CN 

[18]. The global structural information of nodes, including 

paths and errands, has also been the subject of numerous 

studies [19]. Each pair of connected nodes has had its 

similarity evaluated using local path techniques based on the 

two- and three-hop neighbours of each other [20]. The 

similarity score was calculated using all paths of various 

lengths between nodes in [21]. At the same time, the SimRank 

technique was proposed, which assumes that if two nodes are 

connected to the same nodes, they are comparable. Notation 

and their explanation are shown in table 1. 

TABLE 1. Notation and their explanation 

 

Notation Explanation 

F(x) objective function 

𝜌𝑡 Weight 

𝑟𝑡𝑖 pseudo-residual representing 

R1() and R2() pseudo-random number generator 

(PRNG) functions 

𝑉𝑏𝑐 behavioural constraint 

C set of classes 

S to calculate entropy 

A information gain 

H(S) the set S's entropy 

𝑉𝑏𝑟 Rate of Behavior Change 

p(c) ratio of the number of items in 

class c 

𝑤1 Weight coefficients 

𝐹˙𝑡−1
𝑥𝑖  the loss function’s negative 

gradient 

H group of all potential regression 

trees 

Vbe behavioural experience denoted 

3. SYSTEM MODEL 

This section proposes link prediction for data transmission in 

cloud networks using deep learning techniques based on cloud 

recommendation. Heuristic graph convolutional networks 

were used to predict data transmission links, and the trust-

based hybrid decision matrix algorithm was utilized to 

schedule links based on user recommendations. Figure 1 

illustrates the system framework for designing and predicting 

cloud links. 
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Fig. 1. Framework for cloud link prediction and scheduling  

3.1. Cloud network data transmission link prediction using 

heuristic graph convolutional networks 

The goal is to assign a set of data packets, including both 

primary and sensitive data, to different cloud servers, 

minimizing execution time while ensuring encryption of 

sensitive data and some preliminary data. The input data 

packets are separated into distinct sub-packages, with details 

on the length of each packet and the time spent in each 

working mode. Cloud service providers offer encryption and 

non-encryption modes of operation. The output is a plan for 

assigning data packets to different clouds, considering 

execution time and security. 

To achieve this, a similarity score is computed using only 

the structural characteristics of neighbours that coincide with 

the specified nodes. The structural elements of each node are 

used as the foundation for this operation. However, 

conventional GCN cannot compute this score due to a 

normalized adjacency matrix and hidden representation 

dimension being more minor than the number of nodes. The 

small size makes it difficult to distinguish the characteristics 

of each neighbourhood after aggregation, preventing GCN 

from detecting overlapping areas. Additionally, the 

normalized adjacency matrix prevents GCN from counting 

multiple neighbourhoods. To address this, the neighbourhood 

overlap-aware aggregation scheme is proposed to determine 

the neighbourhood overlap-aware score. 

The proposed system framework uses heuristic graph 

convolutional networks to predict data transmission links in 

cloud networks. The trust-based hybrid decision matrix 

algorithm then schedules links based on user 

recommendations. Figure 2 illustrates the system framework 

for designing and predicting cloud links. 
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Fig. 2. The link prediction framework of the GCN. 

An adjacency matrix teaches GCNs beneficial structural traits, 

and they estimate similarity scores based on overlapping 

neighbourhoods. (a) First, GCNs use the structural feature 

generator F to create structural feature vector 𝑋𝑠𝑡𝑟𝑢𝑐𝑡 ∈ 𝑅𝑁×1 

from an adjacency matrix 𝐴 ∈ 𝑅𝑁×𝑁. When only features of 

overlapped neighbours between nodes are to be considered, 

GCNs (a) build a diagonal matrix 𝑋𝑠𝑡𝑟𝑢𝑐𝑡 ∈ 𝑅𝑁×𝑁and (b) 

multiply the sum of powers of adjacency matrices to aggregate 

the features of multi-hop neighbourhoods. In order to (d) 

compute similarity scores and adaptively mix them with the 

learnable parameter. 

The purpose of machine learning methods is to obtain an 

approximation, F(x), of objective function F(x), which maps 

instances x to their output values y, given a training dataset 

𝐷 = {𝑥𝑖 , 𝑦𝑖}1
𝑁. The learning process can generally be viewed 

as an optimization problem where the goal is to minimize the 

anticipated value of a particular loss function, 𝐸[𝐿(𝑦, 𝐹(𝑥))]. 

This predicted loss can be roughly estimated using data: 

∑𝑖=1
𝑁  𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)) 

The approach is constructed using the additive expansion in 

eq. (1) in the specific case of gradient boosting.   

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝜌𝑡ℎ𝑡(𝑥),                       (1) 

Where 𝜌𝑡 is the tth function's weight and ℎ𝑡(𝑥). The 

approximation is built in stages, with each step creating a new 

model ht without altering any existing models in 𝐹𝑡−1(𝑥𝑖). 

Initially, eq. (2) initializes the additive model with a constant 

approximation  

𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼∑𝑖=1
𝑁  𝐿(𝑦𝑖 , 𝛼)               (2) 

and to reduce Eq. (3), the following models are created  

(𝜌𝑡 , ℎ𝑡(𝑥)) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌,ℎ∑𝑖=1
𝑁  𝐿(𝑦𝑖 , 𝐹𝑡−1(𝑥𝑖) + 𝜌ℎ𝑡(𝑥𝑖))

                             (3) 

Nevertheless, the problem is divided into two parts rather 

than jointly solving the optimum for ℎ𝑡. Each method is first 

trained to discover the loss-data-based function's gradient 

vector. To do this, each model, ℎ𝑡is trained on a fresh dataset, 

D = {𝑥𝑖 , 𝑟𝑡𝑖}𝑖=1
𝑁 , where rti is the pseudo-residual representing 

the loss function’s negative gradient at 𝐹˙𝑡−1
𝑥𝑖 by eq (4) 

𝑟𝑡𝑖 = −
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
|𝐹(𝑥)=𝐹𝑡−1(𝑥)                   (4) 

For the given data points, which are parallel to the 

gradient of L at 𝐹𝑡−1(𝑥), the function, ht, is anticipated to 

produce values that are close to the pseudo-residuals (x). But 

remember that h's training is typically influenced by square-

error loss, which may differ from the provided objective loss 
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function. But, after solving an optimization issue using line 

search on the provided loss function, the value of t is 

determined. Lasso combines Eq's l1 regularisation and linear 

classification (5), 

𝑚𝑖𝑛𝑤  ∑(𝑥𝑖,𝑦𝑖)  𝑙(𝑥𝑖 , 𝑦𝑖 , 𝑤) + 𝜆|𝑤|1.           (5) 

the element-wise operator Eq. (6) definition of the capped l1 

norm  

𝑞𝑐(𝑤𝑖) = 𝑚𝑖𝑛(|𝑤𝑖|, 𝜖)                      (6) 

By modifying the associated regularisation parameters, 𝜇, 𝜆 ≥

0  by eqn (7, 8), one can regulate trade-off among feature 

extraction and regularisation when capped l1 norm is paired 

with a regular l1 (or l2) norm  

𝑚𝑖𝑛𝑤  ∑(𝑥𝑖,𝑦𝑖)  𝑙(𝑥𝑖 , 𝑦𝑖 , 𝑤) + 𝜆|𝑤|1 + 𝜇𝑞𝜖(𝑤).         (7) 

𝐻𝑒𝑟𝑒 𝑞𝑐(𝑤) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 [𝑞𝑐(𝑤1), … , 𝑞𝑐(𝑤𝑑)]         (8) 

Boosting assumes that limited-depth regression trees are 

utilized to pre-process data. H denotes the group of all 

potential regression trees. Assume |H| to be finite By taking 

into account the restricted precision and identifying trees that 

get the same values across the whole training set as belonging 

to the same tree (albeit possibly large). We suggest learning a 

linear classifier in this transformed space, considering that 

inputs are mapped into R|H| through 𝜙(𝑥) =

[ℎ1(𝑥), … , ℎ|𝐻|(𝑥)]
⊤

. Eq. (9) changes to 

𝑚𝑖𝑛𝛽  ∑(𝜙(𝑥𝑖),𝑦𝑖)  𝑙(𝜙(𝑥𝑖), 𝑦𝑖 , 𝛽) + 𝜆|𝛽|1 + 𝜇𝑞𝜖(𝛽). (9) 

A sparse linear vector that selects trees in this case is β. 

Despite being very high dimensional, optimization in Eq. (10) 

is tractable because β is quite sparse. We derive a final 

classifier by assuming, without sacrificing generality, that 

trees in H are arranged such that the first T entries are non-

zero β.  

 𝐻(𝑥) = ∑𝑡=1
𝑇  𝛽𝑡ℎ𝑡(𝑥).                         (10) 

The revised parameters are given by the equation (11–18): 

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) − 𝜂𝑤𝛥𝑤𝑖𝑗     (11) 

𝛥𝑤𝑖𝑗 =
𝜕𝐿

𝜕𝑤𝑖𝑗
=

𝜕𝐿

𝜕𝑦ˆ

𝜕𝑦ˆ

𝜕𝑤𝑖𝑗
                        (12) 

𝑚𝑖𝑗(𝑡 + 1) = 𝑚𝑖𝑗(𝑡) − 𝜂𝑚𝛥𝑚𝑖𝑗                 (13) 

𝛥𝑚𝑖𝑗 =
𝜕𝐿

𝜕𝑚𝑖𝑗
=

𝜕𝐿

𝜕𝑠𝑖𝑗

𝜕𝑠𝑖𝑗

𝜕𝑚𝑖𝑗
            (14) 

𝜎𝑖𝑗(𝑡 + 1) = 𝜎𝑖𝑗(𝑡) − 𝜂𝜎𝛥𝜎𝑖𝑗             (15) 

𝛥𝜎𝑖𝑗 =
𝜕𝐿

𝜕𝜎𝑖𝑗
=

𝜕𝐿

𝜕𝑠𝑖𝑗

𝜕𝑠𝑖𝑗

𝜕𝜎𝑖𝑗
         (16) 

𝑘𝑓,𝑣(𝑡 + 1) = 𝑘𝑓,𝑣(𝑡) − 𝜂𝑘𝛥𝑘𝑓,𝑣           (17) 

𝛥𝑘𝑓,𝑣 =
𝜕𝐿

𝜕𝑘𝑓,𝑣
=

𝜕𝐿

𝜕𝐶𝑓𝑖

𝜕𝐶𝑓𝑖

𝜕𝑘𝑓,𝑣
                   (18) 

3.2 Link recommendation using trust-based hybrid decision 

matrix algorithm 

When evaluating the trust of a device's identity, it is crucial to 

consider privacy issues. If a device's ID is made public, it 

could be vulnerable to identity fraud, creation of false data, 

and other malicious activities. Public Key Infrastructure (PKI) 

is a secure authentication technique used in edge computing 

that simplifies one-to-one communication in a distributed 

context. Since identity trust is a critical component of overall 

trust evaluation, this study proposes a critical generation 

approach that reduces computational complexity and 

simplifies various PKI elements. During the resource request 

process, Identity Trust VI assesses the reliability of ECU 

identities. We assume that the Elliptic Curve Cryptosystem 

(ECC)-based anonymous verification approach preserves 

ECU identity trust. [11], which is used to generate keys for 

each ECU to compute VI. The following two steps involve 

creating the public and private keys after the ECC produce a 

discrete elliptic curve named E: 

Step 1: Generating Server Keys The neighbourhood edge 

server produces the critical pair (Kp, Ks) presented in 

equations (19, 20): 

𝐾𝑝 = 𝐻(𝐼𝑙 , 𝐼𝑐)                             (19) 

𝐾𝑠 = 𝑀(𝐾𝑝)                               (20) 

The hash function H uses ID Ie of ECUs and ID Il of edge 

server to calculate public key Kp. Encoding function M 

calculates the private key Ks based on Kp. 

Local edge servers transmit identity information D = {Kp, E, 

O} to ECUs after calculating Kp and Ks. 

Step 2: Key Generation of ECUs: ECUs calculate the three 

keys Kvi, Kep, and Kes after receiving D as an equation (21, 

22): 

 𝐾𝑣𝑖 = 𝑅1(𝑂(𝑥, 𝑦))  𝐾𝑒𝑝 = 𝑅2(𝑂(𝑥, 𝑦))   (21) 

𝐾𝑒𝑠 = 𝑅1 (𝑀(𝐾𝑒𝑝))                         (22) 

Virtual key where R1() and R2() are pseudo-random 

number generator (PRNG) functions, Kes and Kep are the 

private and public keys of ECUs, and Kvi is used to secure the 

genuine ID of ECUs. The local edge server receives a message 

F = {IDe, Kv, Kep, a}, a from the ECUs at that point. Edge 

servers and ECUs communicate with one another during the 

later authentication stage using the public key, and the private 

key is utilized to complete the identity matching. Vi is set to 

1 if ECUs successfully authenticate; otherwise, Vi is set to 0. 

The proposed framework uses fuzzy rules to construct 

trust values, with subjective and objective trust values serving 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



as fuzzy inputs and fuzzy outputs as trust values. i) Fuzzy 

inputs have three states: high, medium, and low, with values 

between 0 and 1. (ii) With values between 0 and 1, fuzzy 

outputs have three states: low, medium, and high. The trust 

repository is updated as part of the agent's responsibility to 

update trust values. Uncertainty, mistrust, and trust are the 

three states in the fuzzy rules map that produce a trust value. 

If the gathered trust value is low, the CSPj trust value equates 

to mistrust. If the CSPj trust value is high, it maps to trust; if 

not, it maps to doubtful. 

Behavior Trust  

𝑉𝑏𝑐 = 𝑤1𝜉1 + 𝑤2𝜉2 + ⋯ + 𝑤𝑐𝜉𝑐        (23) 

Here, behavioural constraint is denoted by𝑉𝑏𝑐, behavioural 

experience is denoted by Vbe, and Vbr indicates behavioural 

change rate. Weight coefficients, wbc +wbe+ wbr = 1, can be 

altered to suit specific jobs.  

1) Behavior Constraint: Various ECUs notice a varying 

number of interactions or behaviour limitations that are 

imposed by particular activities according to equation (24): 

𝑉𝑏𝑐 = 𝑤1𝜉1 + 𝑤2𝜉2 + ⋯ + 𝑤𝑐𝜉𝑐         (24) 

Behavior Experience: Since environment for edge computing 

is constantly changing, it is vital to take change of trust into 

account dynamically. ECUs that will be tested are listed as 

ECUc. Behaviour experience Vbh implies interactive 

reliability of the recent past for interactions between several 

ECUs, where little engagement can nonetheless result in 

strong trust-building. Let's say that ECUs have been 

communicating with ECU1, ECU2, and ECUk, which are the 

other k ECUs. Given by eqn (25) 

𝑠𝑗(𝛥𝑡) = {𝜏𝑗
1, 𝜏𝑗

2, … , 𝜏𝑗
𝑠 , … , 𝜏𝑗

𝑡}           (25) 

Define by eq. (26) 

𝐻𝑗
+(𝛥𝑡) = ∑𝑖=1

𝑡  1(𝜏𝑗
𝑖 ≥ 𝛼𝑗)                                                        

(26) 

If condition is true, 1(.) function returns 1, else it returns 0. 

Eq. (27) is utilized to define Vbe  

 𝑉𝑏𝑒 =
1

𝑘
∑𝑗=1

𝑘  
𝐻𝑗

+(𝛥𝑡)

𝑡
                  (27) 

Rate of Behavior Change: Rate of behaviour change, which is 

denoted as 𝑉𝑏𝑟 and reflects the actual change in behaviour 

trust, changes with time. By way of eqn (28) 

𝑉𝑏𝑟 =
1

𝑘
∑𝑗=1

𝑘  (
(1−𝜆)𝑉𝑏𝑒𝛥(𝑡−1)

1+√𝑡−𝐻𝑗
+(𝛥(𝑡−1))

+
𝜆𝑉𝑏𝑒𝛥(𝑡)

1+√𝐻𝑗
+(𝛥𝑡)

)        (28) 

Trusted Capability: Capability trust is the weight given to a 

device's capacity properties, such as response time, available 

bandwidth, accessibility, and so forth. 

In this study, we propose a hybrid approach that combines 

a decision tree and a neural network to enhance the 

performance of classification decisions. A neural network is 

integrated into each decision tree node to achieve improved 

results compared to using each technique individually. Neural 

networks excel at classifying items into smaller categories, 

while their performance improves with an increase in the 

number of categories. Decision trees, on the other hand, can 

handle multiple distinct categories by employing a collection 

of binary options such as 0 or 1 to construct the tree. The 

attribute with the best information gain is selected to obtain 

the same outcome. We use entropy, a widely used information 

theory metric that indicates the (im) purity of any set of 

samples, to calculate information gain. Entropy H(S) 

measures the degree of uncertainty in a given dataset S. 

𝐻(𝑆) = ∑𝑐∈𝐶   − 𝑝(𝑐)𝑙𝑜𝑔2 (𝑝(𝑐)) Where S - dataset that is 

being used to calculate entropy at this time. p(c) is the ratio of 

the number of items in class c to the total number of elements 

in set S. C is the set of classes in S, where C = 0, 1. The set S 

is perfectly categorized if H(S) = 0. 

The difference in entropy between before and after the set 

S is split on a result attribute A, which is known as information 

gain or IG(A). After splitting set S on outcome attribute A by 

eq(29), the amount of uncertainty S was reduced is 

represented by this quantity. 

 𝐼𝐺(𝐴, 𝑆) = 𝐻(𝑆) − ∑𝑡∈𝑇  𝑝(𝑡)𝐻(𝑡)         (29) 

Where H(S) is the set S's entropy. T - The subsets produced 

when set S was divided by the outcome attribute A so that in 

eq (30) 

𝑆 = ⋃𝑡∈𝑇  𝑡.                                     (30) 

The portion of items in set t divided by the total items in 

set S is represented as p(t), while H(t) is the entropy of subset 

t. The remaining properties are evaluated for their information 

gain, and the property with the highest gain is selected to split 

set S at each iteration. Then, a neural network is built using 

the attribute with the highest information gain. A separate 

neural network is constructed for each binary classification 

only when the issue is present. At each decision tree node, the 

neural network consists of all possible outcome attributes that 

could result in a 0 or 1. 

4. PERFORMANCE ANALYSIS 

The effectiveness of the proposed approach is demonstrated 

by comparing it with standard techniques using various real 

benchmark dynamic networks. The experiments are 
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conducted on a server coded in Python with a 16GB RAM and 

tensor flow anaconda environment.  

4.1. Parameter Setup 

The approach employed in this study involves an encoder 

method that combines a convolutional network and a graph 

network. Each dataset is segmented at predetermined 

intervals, resulting in 320 network sequences. The training set 

comprises the first 240 networks, while the remaining 80 

networks form the test set. The model consists of a single 

convolutional network and four GCN networks, with each 

GCN network utilizing a Chebyshev polynomial 

hyperparameter K of 3. The hidden layer dimensions of 

LSTM for the first five datasets are 256, while the last dataset 

uses 512. Similarly, the hidden layer dimension of the GCN 

network for the first five datasets is 512, while the last dataset 

uses 512. The model undergoes 200 iterations during the 

training phase, with the inputs being eleven continuous 

network sequences from the training set. 

4.2. Baseline Methods 

In this study, we compare the effectiveness of the proposed 

technique with various standard methods such as DDNE, 

GTRBM, ctRBM, TNE, and node2vec. Node2vec: This 

method uses a 2nd order biassed random walk algorithm to 

explore a node's neighbourhood, allowing for a balance of 

local and network-wide features. Node2vec is used as a 

starting point for predicting dynamic links. 

4.3. Proposed analysis 

TABLE 2. Parametric analysis for the proposed technique 

No. of 

samples 

Qo

S 

Mean 

average 

precision 

Root 

mean 

square 

error 

Precis

ion 

Normaliz

ation 

square 

error 

sensitiv

ity 

100 88 91 65 79 82 77 

200 89 92 68 81 83 81 

300 91 93 71 82 85 83 

400 93 94 73 84 87 85 

500 97 95 74 85 88 86 

 

Table-2 presents a parametric analysis of the proposed 

technique based on the number of epochs. Figure 3 illustrates 

the results of a parametric analysis of QoS based on the 

number of epochs. The proposed technique achieved a QoS of 

88% after 100 epochs, 89% after 200 epochs, 91% after 300 

epochs, 93% after 400 epochs, and 97% after 500 epochs, 

depending on the number of samples used in the neural 

network training. 

 

 

Fig. 3. Parametric analysis of QoS 

 

Fig. 4. Parametric analysis of mean average precision 

The parametric analysis for mean average is depicted in 

Figure 4. The proposed technique achieved a mean average 

precision of 91% for 100 epochs, 92% for 200 epochs, 93% 

for 300 epochs, 94% for 400 epochs, and 95% for 500 epochs.    

 

Fig. 5. Parametric analysis of Root mean square error 
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The parametric analysis for Root Mean Square Error based on 

the number of epochs is presented in Figure 5 above. The 

proposed technique achieved a Root Mean Square Error of 

65% for 100 epochs, 68% for 200 epochs, 71% for 300 

epochs, 73% for 400 epochs, and 74% for 500 epochs, based 

on the number of samples used in the neural network training. 

 

Fig. 6. parametric analysis of precision 

The results of the parametric analysis for precision based on 

neural network training for different numbers of samples are 

presented in Figure-6. The proposed technique achieved an 

accuracy of 79% for 100 epochs, 81% for 200 epochs, 82% 

for 300 epochs, 84% for 400 epochs, and 85% for 500 epochs.   

 

Fig. 7. parametric analysis of Normalization square error 

The parametric analysis for Normalized Square Error based 

on the number of epochs is depicted in Figure 7 above. 

According to the results, the proposed technique achieved a 

Normalized Square Error of 82% for 100 epochs, 83% for 200 

epochs, 85% for 300 epochs, 87% for 400 epochs, and 88% 

for 500 epochs based on the number of samples in the neural 

network training. 

 

Fig. 8. parametric analysis of sensitivity 

Figure 8 displays the parametric analysis for sensitivity based 

on the number of samples in the neural network training. The 

proposed technique achieved a sensitivity of 77% for 100 

epochs, 81% for 200 epochs, 83% for 300 epochs, 85% for 

400 epochs, and 86% for 500 epochs.    

4.6. Comparative analysis 

TABLE 3. Analysis based on various baseline methods 

Dataset Techniques QoS 

Mean 

average 

precision 

Root 

mean 

square 

error 

Precision 
Normalization 

square error 
sensitivity 

Node2vec 

GCN 55 41 59 61 71 81 

VGAE 59 43 63 63 73 83 

AI_CC_LP_DLA 61 45 65 65 75 85 

TNE 

GCN 59 42 61 62 72 82 

VGAE 63 46 63 66 76 86 

AI_CC_LP_DLA 65 48 66 69 78 88 

ctRBM 

GCN 61 45 62 63 75 83 

VGAE 65 49 65 65 79 88 

AI_CC_LP_DLA 68 52 69 69 83 89 

GTRBM 

GCN 63 46 65 65 77 85 

VGAE 66 49 69 69 82 89 

AI_CC_LP_DLA 69 53 72 72 83 92 
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DDNE 

GCN 65 48 68 69 79 88 

VGAE 71 55 73 74 83 92 

AI_CC_LP_DLA 73 59 75 76 86 93 

  

Table 3 compares the proposed technique's performance with 

existing techniques such as node2vec, TNE, ctRBM, 

GTRBM, and DDNE. The analysis is based on several 

metrics, including QoS, mean average precision, root mean 

square error, precision, normalized square error, and 

sensitivity. 

Figure 9 depicts the analysis of baseline techniques, 

including node2vec, TNE, ctRBM, GTRBM, and DDNE, for 

QoS. The suggested method yielded a QoS of 61%, compared 

to 59% for the current GCN and 59% for VGAE using the 

node2vec baseline approach. The proposed method obtained 

a QoS of 65% for the TNE baseline technique, compared to 

59% for the current GCN and 63% for VGAE. For the ctRBM 

baseline approach, the suggested technique achieved a QoS of 

68%, compared to 61% for the current GCN and 65% for 

VGAE. The proposed technique obtained a QoS of 69% for 

the GTRBM baseline method, compared to 63% for the 

existing GCN and 66% for VGAE. Lastly, the suggested 

technique obtained a QoS of 73% for the DDNE baseline 

technique, compared to 65% for the current GCN and 71% for 

VGAE. 

 

Fig. 9. Comparison of QoS 

 

Fig. 10. Comparison of Mean average precision 

The analysis for Mean Average Precision is shown in Figure 

10. The proposed method outperformed the current GCN with 

a Mean Average Precision of 53% for the GTRBM baseline 

method, compared to 46% for the GCN. For the DDNE 

baseline method, the suggested method yielded a Mean 

Average Precision of 59%, compared to 48% for the current 

GCN and 55% for VGAE. 

 

Fig. 11. Comparison of Root mean square error 

The analysis for baseline methods, which include node2vec, 

is shown in Figure 11. The existing GCN obtained a RMSE of 

59%, whereas the suggested method achieved a value of 65%. 

The proposed technique received an RMSE of 66% for the 

TNE baseline technique, compared to 61% for the existing 

GCN and 63% for VGAE. The suggested method produced an 

RMSE of 69%, compared to the ctRBM baseline method's 

62% and 65% for the existing GCN and VGAE.  

 

Fig. 12. Comparison of precision 
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A precision analysis is shown in Figure 12. The proposed 

method obtained a precision of 65% for the node2vec baseline 

method, whereas the current GCN obtained 61% and VGAE 

obtained 63%. The proposed technique achieved 72% 

precision for the GTRBM baseline technique, compared to 

65% for the existing GCN and 69% for VGAE. 

 

 

Fig. 13. Comparison of Normalization square error 

The analysis for Normalization Square Error for TNE, 

ctRBM, DDNE, node2vec, and GTRBM baseline techniques 

is shown in Figure 13. The proposed technique achieved 83% 

Normalization square error for the GTRBM baseline method, 

compared to 77% for the existing GCN and 82% for VGAE. 

Ultimately, the suggested method produced an 86% 

Normalization square error for the DDNE baseline method.  

A sensitivity analysis of the node2vec, TNE, ctRBM, 

GTRBM, and DDNE baseline techniques is shown in Figure 

14. For the DDNE baseline method, the proposed technique 

achieved a sensitivity of 93%, while existing GCN attained 

88%, and VGAE attained 92%. 

 
Fig. 14. Comparison of sensitivity 

RESULTS OF LINK PREDICTION 

For the model's training, we utilized ten consecutive snapshots 

"Gt10, • • •, Gt1" to predict the subsequent snapshot "Gt." 

There are typically two methods for processing networks: 1) 

Predicting the subsequent snapshot Gt utilizing only the (t-1)th 

snapshot Gt1; 2) Predicting the subsequent snapshot, Gt, by 

combining the previous ten snapshots (Gt10, • • •, Gt1) into a 

single sample. In this research, we used the first option for 

node2vec and the second option for other methods. Each 

indicator was thoroughly examined. It is observed that, for 

both long-term and short-term prediction capabilities, the 

proposed model outperforms all baseline methods, while 

node2vec performs worst in most cases. This implies that 

other dynamic prediction techniques perform significantly 

better because they are capable of capturing dynamic 

characteristics, whereas network embedding techniques, 

which are designed for static networks, may not be as effective 

in capturing temporal changes. 

5. CONCLUSION 

In this study, we proposed a novel link prediction method for 

cloud data transmission that includes secure link 

recommendation. Our approach leverages heuristic graph 

convolutional networks to predict the data transmission link 

and a trust-based hybrid decision matrix algorithm to 

recommend the user link. We achieved accurate link 

classification by integrating learned visualizations of related 

nodes to generate a vector for a link, which we then fed into a 

regression algorithm. We evaluated our method using 3 

metrics and observed that it outperformed all baseline 

methods in terms of short- and long-term prediction 

capabilities. Specifically, our proposed technique achieved a 

QoS of 73%, mean average precision of 59%, root mean 

square error of 73%, precision of 76%, normalized square 

error of 86%, and sensitivity of 93%. These results 

demonstrate the potential of deep learning architectures for 

improving link prediction in cloud data transmission, and 

highlight the value of combining multiple techniques for 

achieving better performance. 
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