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Abstract. Fault diagnosis techniques of electrical motors can prevent unplanned downtime and loss of money, production, and health. Various
parts of the induction motor can be diagnosed: rotor, stator, rolling bearings, fan, insulation damage, and shaft. Acoustic analysis is non-invasive.
Acoustic sensors are low-cost. Changes in the acoustic signal are often observed for faults in induction motors. In this paper, the authors present
a fault diagnosis technique for three-phase induction motors (TPIM) using acoustic analysis. The authors analyzed acoustic signals for three
conditions of the TPIM: healthy TPIM, TPIM with two broken bars, and TPIM with a faulty ring of the squirrel cage. Acoustic analysis was
performed using fast Fourier transform (FFT), a new feature extraction method called MoD-7 (maxima of differences between the conditions),
and deep neural networks: GoogLeNet, and ResNet-50. The results of the analysis of acoustic signals were equal to 100% for the three analyzed
conditions. The proposed technique is excellent for acoustic signals. The described technique can be used for electric motor fault diagnosis
applications.
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1. INTRODUCTION

Electric motors are used in fans, turbines, pumps, power tools,
electrical appliances, trains, trams, automobiles, mining, iron-
works, etc. (Fig. 1). Induction motors are widely used in in-
dustry. They are inexpensive, robust, and reliable under various
environmental conditions.

Induction motor failures can cause unplanned downtime, and
loss of production, health, and money. This is a motivation for
developing new fault detection techniques. Fault diagnosis tech-
niques can prevent downtime and loss of money, production, and
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Fig. 1. Application of electrical motors – trains

health. Various parts of the induction motor can be diagnosed:
rotor, stator (electrical faults), rolling bearings, fan, insulation
damage, and shaft (mechanical faults).
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In this research paper, the authors present a fault diagnosis
method for three-phase induction motors (TPIM) using acoustic
signals. The authors presented an experimental setup. Acous-
tic analysis was performed using fast Fourier transform (FFT),
MoD-7, and deep neural networks: GoogLeNet and ResNet-50.

The article consists of seven sections: 1. Introduction – The
authors introduce the use of induction motors and diagnostic
signals of induction motors. 2. Theoretical background – The
authors discuss a review of work related to induction motor fault
diagnosis. 3. Measurements of TPIM acoustic signals – The
authors present the experimental setup and measurements of the
analyzed faults of TPIM. 4. Proposed technique for analyzing
acoustic signals – Acoustic signals were classified using FFT,
MoD-7, digital filtration, GoogLeNet, and ResNet-50. 5. Results
of acoustic signals analysis – The analysis of acoustic signals
is presented. 6. Discussion – The authors present discussion.
7. Conclusions – The authors present their work in this article.

2. THEORETICAL BACKGROUND
The following diagnostic signals can be used for fault detection:
Stator current [1, 2], vibration signal [1, 2], acoustic signal [2],
magnetic flux [3, 4], and thermal image [5, 6]. Fault diagnosis
based on acoustic signal analysis has been developed in the lit-
erature. Acoustic analysis is non-invasive, and it can be used for
the detection of different faults. Acoustic sensors are low-cost.
However, the limitations of acoustic analysis are the following:
interference from other sources, it does not work in a vacuum,
it cannot localize fault, and it can only detect the fault.

Acceleration signals and acoustic signals were analyzed [7].
A fault diagnosis experiment platform was established. A fault
diagnosis model of axle box bearing was proposed. Chirplet
transform and support vector machine were used for the analy-
sis. The following states were analyzed: normal, inner-race fault,
roller fault, and outer-race fault. Classification accuracy was in
the range of 98.21%–100.00%. In the next paper, acoustic sig-
nals of the CR400 EMU Traction Motor were analyzed using
cross wavelet transform and GoogleNet [8]. Bandpass filtering
was used. The results show that GoogleNet achieves in the range
of 89.66%–98.23% accuracy in fault classification. A fault di-
agnosis system using acoustic emission and machine learning
techniques was presented in the paper [9]. The fault diagnosis of
commercial drill tool CT10128 was presented. FFT, RMS, mean
value, Kurtosis, Skewness, crest factor, margin factor, Variance,
and median measure were used. The accuracy for the proposed
machine learning model was 96.1%. A method of fault diag-
nosis based on acoustic emission signals of thrust ball bearings
was presented [10]. It was based on a wavelet sparse convo-
lutional neural network. Four different sizes of roller and four
different sizes of seat were analyzed. The experimental results
were incredibly good for the proposed approach.

Discriminant analysis using multi-view learning for bearing
fault diagnosis was described in the next paper [11]. FFT, multi-
view features, and KNN were used for the analysis. The results
were good. The proposed approach can detect the bearing fault
correctly. A new methodology for ventilator acoustic fault di-
agnosis was developed [12]. Two states of the ventilator were

analyzed: fault, and no-fault. Spectrograms were computed. The
convolutional neural network classified acoustic data. The ac-
curacy of the proposed methodology was equal to 0.95. Rail-
way track monitoring using acoustic signals is presented in
the paper [13]. The microphone and GPS sensor were used
for the acquisition of acoustic signals. The proposed approach
was based on multilayer perceptron, artificial neural network,
logistic regression, AdaBoost, and random forest. It achieved
accuracy in the range of 96%–98.4%. Acoustic and vibration
signals of a high-voltage circuit breaker were analyzed [14].
The proposed approach was based on an Adaptive neural fuzzy
inference system. Five states of the high-voltage circuit breaker
were analyzed. The accuracy of the proposed approach was in
the range of 75% to 100%. Rolling bearing fault diagnosis using
a Generative adversarial network and acoustic signals was de-
scribed in the paper [15]. Crack sizes 3 mm to 12 mm were
analyzed. The proposed approach was compared with SVM
and CNN. Average classification accuracy was in the range
of 99.79%–100%. Bearing fault detection using vibration and
acoustic signals was developed [16]. Healthy bearing, inner race
fault, outer race fault, and ball fault were analyzed. Multidomain
feature extraction SVM, relative wavelet energy, time-spectral
features extraction, and reduction with linear discriminant anal-
ysis methods were analyzed. The proposed methods achieved
classification results above 96%. A fault diagnosis of diesel en-
gine exhaust valve leakage was presented [17]. The proposed
approach uses analysis of acoustic signals. Three methods mar-
gin disparity discrepancy, domain adversarial neural network,
and deep adaptation network were proposed. The experimen-
tal analysis was exceptionally good. A fault diagnosis method
for automobile power seats was developed [18]. The authors
used a smartphone for the measurement of acoustic signals.
Healthy automobile power seats and automobile power seats
with worn screw states were analyzed. The proposed method
was based on acoustic analysis and retrained SVM. The accuracy
of the proposed method was in the range of 98.04%–99.62%.
Acoustic-based fault diagnosis of induction motors was devel-
oped [19]. The bearing dataset and the gearbox dataset were
analyzed. A multi-input convolutional neural network was used
for the analysis of acoustic signals. Computed accuracy was
in the range of 95.09%–99.95%. The fault diagnosis method
of the flywheel bearing cage using acoustic signals was pre-
sented [20]. The proposed method is based on multi-parameter
clustering. The following states were analyzed: normal, rub-
bing uneven, and lubrication. The accuracy of the method was
equal to 99.33% for three flywheel states. Fault diagnosis of
rolling bearing using acoustic analysis was described [21]. Fea-
ture extraction method AVMD-IMVO-MCKD was proposed.
The proposed AVMD-IMVO-MCKD method extracts features
of acoustic signals correctly. A review of vibration-based wear
monitoring was presented [22]. Techniques of vibration-based
fault diagnosis were also discussed. Convolutional neural net-
works for vibration-based bearing fault diagnosis of rotating
machinery were presented [23]. Fault diagnosis of bearings of
wind turbines was also described [24]. Vibration and acous-
tic signals were analyzed using a convolutional residual net-
work.
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3. MEASUREMENTS OF ACOUSTIC SIGNALS OF TPIM

Three identical TPIMs (550 W) were analyzed. The authors con-
sidered the electrical faults of the TPIMs. The authors analyzed
the acoustic signals for three conditions of the TPIM: healthy
TPIM, TPIM with two broken bars, and TPIM with a defective
ring of the squirrel cage (Fig. 2).

Fig. 2. Three-phase induction motors (550W)

Acoustic signals were recorded using a smartphone. In the
research, the smartphone with a microphone was at 0.1 m from
the motors. The format of the audio file was AAC, Advanced
Audio Coding Format. The sampling frequency was 48 000 Hz.
The spectra of the acoustic signals of the TPIM were presented
(Figs. 3–5).

Fig. 3. Spectrum of the acoustic signal of the healthy TPIM

Fig. 4. Spectrum of the acoustic signal of the TPIM
with two faulty rotor bars

Fig. 5. Spectrum of the acoustic signal of the TPIM
with a faulty ring of the squirrel cage rotor

4. PROPOSED TECHNIQUE FOR ACOUSTIC SIGNAL
ANALYSIS

Acoustic signals were recorded using a smartphone. Subse-
quently, the acoustic data were split (1-second sample). Next,
the FFT method was applied. The first approach of acoustic
analysis is based on FFT, an original feature extraction method
called MoD-7, GoogLeNet, and ResNet-50. FFT spectrum is
computed. Differences between conditions are computed. Then,
the band-pass filter (264–1784 Hz) is formed. The range of
264–1784 Hz was computed using MoD-7. The computed fre-
quency components are converted into a matrix (39× 39 pix-
els). The computed matrix is converted into a grayscale image
(224×224×3). The computed grayscale images were used for
training and testing GoogLeNet and ResNet-50.

The second approach is based on FFT and a low-pass filter
(1–6084 Hz). The range of 1–6084 Hz was determined from
the spectrum of the acoustic signals of the analyzed conditions
visually. The computed frequency components are converted
into a matrix (78× 78 pixels). The computed matrix is con-
verted into a grayscale image (224×224 pixels). The computed
grayscale images were used for training and testing GoogLeNet
and ResNet-50 (Fig. 6). MATLAB was used for the implemen-
tation of acoustic fault diagnosis.
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Fig. 6. The proposed fault diagnosis technique of the TPIM using
acoustic signals

4.1. MoD-7

The MoD-7 method is proposed to extract features of acoustic
signals. The MoD-7 has six steps of processing (Fig. 7):
1. Compute differences between FFT spectra: 𝑥 = |𝑎− 𝑏 |, 𝑦 =

|𝑎−𝑐 |, 𝑧 = |𝑏−𝑐 |, where 𝑎 – FFT spectrum of healthy TPIM,
𝑏 FFT spectrum of TPIM with two broken bars, 𝑐 – FFT
spectrum of TPIM with a faulty ring of the squirrel cage.

2. Compute seven maximal amplitudes of differences: 𝑥1𝑚,
𝑥2𝑚, 𝑥3𝑚, 𝑥4𝑚, 𝑥5𝑚, 𝑥6𝑚, 𝑥7𝑚, 𝑦1𝑚, 𝑦2𝑚, 𝑦3𝑚, 𝑦4𝑚, 𝑦5𝑚, 𝑦6𝑚,
𝑦7𝑚, 𝑧1𝑚, 𝑧2𝑚, 𝑧3𝑚, 𝑧4𝑚, 𝑧5𝑚, 𝑧6𝑚, 𝑧7𝑚.

3. Select the lowest (L 𝑓 𝑟𝑒𝑞) and highest (𝐻freq) frequency of
the computed maxima. For example, we found the following
frequency components for 𝑥 = |𝑎 − 𝑏 |: 549, 650, 997, 998,
1149, 1198, 1199 Hz, and we found the following frequency
components for 𝑥 = |𝑏− 𝑐 |: 301, 601, 650, 998, 1079, 1199,
1572 Hz. The range 301–1572 Hz is selected.

4. Create a range of frequencies 〈𝐿freq − 𝑡, 𝐻freq + 𝑡〉, where 𝑡

is a number to create a square matrix. For example, 𝐿freq =
100 Hz, 𝐻freq = 990 Hz, then 𝑡 = 5 Hz, 〈95 Hz, 995 Hz〉,
because 302 = 900. For example, 𝐿freq = 100 Hz, 𝐻freq =

1021 Hz, then 𝑡 = 20 Hz (80 Hz, 1041 Hz), because 312 =
961.

5. Select all frequency components in the range 〉

𝐿freq −
𝑡, 𝐻freq + 𝑡〉. For example 900 frequency components.

6. Compute a square matrix S, where S has all frequency com-
ponents in the range 〈𝐿freq − 𝑡, 𝐻freq + 𝑡〉. Matrix S is an
image.

Fig. 7. The proposed MoD-7 method

The selection of the frequency range for seven maximal am-
plitudes of differences is presented in Figs. 8–10.

Fig. 8. Selection of the frequency range for seven maximal amplitudes
of differences |𝑏− 𝑐 |

It can be noticed that the frequency range 〈301− 1748 Hz〉
is selected for the analyzed acoustic data (〈𝐿freq, 𝐻freq〉). Next
parameter 𝑡 = 37 Hz was computed (1748−301 = 1447, 1447+
74 = 1521 = 392, 𝑡 = 74/2 = 37). The frequency range 〈𝐿freq −
𝑡, 𝐻freq + 𝑡〉 is equal to 〈264− 1785 Hz〉 for analyzed acoustic
data.
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Fig. 9. Selection of the frequency range for seven maximal amplitudes
of differences |𝑎− 𝑏 |

Fig. 10. Selection of the frequency range for seven maximal amplitudes
of differences |𝑎− 𝑐 |

4.2. Features of the acoustic signal

The computed grayscale images (224× 224× 3, band-pass fil-
ter 264–1784 Hz, MoD-7) for three classes were presented in
Fig. 11. Range of frequency 264–1784 Hz was computed us-
ing MoD-7.

(a) (b) (c)

Fig. 11. a) Image of the acoustic signal (264–1784 Hz, MoD-7) of the
healthy TPIM, b) Image of the acoustic signal of the TPIM with two
faulty rotor bars, c) Image of the acoustic signal of the TPIM with a

faulty ring of the squirrel cage

The computed grayscale images (224×224×3, low-pass filter
1–6084 Hz) for three classes were presented in Fig. 12.

(a) (b) (c)

Fig. 12. (a) Image of the acoustic signal (1–6084 Hz) of the healthy
TPIM; (b) Image of the acoustic signal of the TPIM with two faulty
rotor bars; (c) Image of the acoustic signal of the TPIM with a faulty

ring of the squirrel cage

White spots can be seen in Figs. 11 and 12. The analyzed
images are different. The images in Fig. 11 are better distin-
guishable than those in Fig. 12.

4.3. GoogLeNet
GoogLeNet is a convolutional neural network. It was proposed
in 2014. It has 22 deep layers. GoogLeNet was developed for
image classification. It was trained for 1000 object categories.
GoogLeNet requires input images of 224×224×3 (RGB color).
It also has an inception structure (nine inception modules). The
inception structure processes the input images in parallel. Then
each output result is merged. In the literature, GoogLeNet con-
firms high efficiency for image classification [25–28].

4.4. ResNet-50
ResNet-50 is a convolutional neural network. ResNet-50 was
developed for image classification. It was proposed in 2016.
ResNet-50 has 50 deep layers. ResNet-50 was trained for 1000
object categories. Input images of 224×224×3 are required for
ResNet-50 (RGB color). ResNet-50 has shortcut connections.
Shortcut connections convert a neural network into a residual
network. ResNet-50 has a bottleneck design. It uses three-layer
bottleneck blocks. ResNet-50 stacks convolutional layers. Next,
it skips some layers. After that, it uses the activations of the
previous layer. Skipping some layers causes faster initial training
of the ResNet-50. It is an extremely useful convolutional neural
network [29–31]. There is also a possibility to use YOLO and
other neural networks [32, 33].

5. RESULTS OF ANALYSIS OF ACOUSTIC SIGNALS
The analysis was conducted for three different conditions of
the TPIM: healthy TPIM, TPIM with two broken bars, and
TPIM with a faulty ring of the squirrel cage. Measurements
were conducted for 60 seconds of each class. 60 training 1-
second samples were used for training (20 1-second samples for
each class). 180 test 1-second samples were used for the test (60
1-second samples for each class). The K-fold cross-validation
method was used for the analysis. The efficiency of recognition
– 𝐸𝐴 is defined as (1):

𝐸𝐴 = 100%∗ (𝐶𝑆𝑖)/(𝐴𝑆𝑖) , (1)

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 1, p. e148440, 2024 5



A. Glowacz et al.

where 𝐶𝑆 – correctly recognized test samples for one 𝑖-th con-
dition, 𝐴𝑆 – all test samples for one 𝑖-th condition, 𝑖 = 3, in
particular 𝑖 = 1 for healthy TPIM, 𝑖 = 2 for TPIM with two bro-
ken bars, 𝑖 = 3 for TPIM with a faulty ring in the squirrel cage.

The arithmetic mean of 𝐸𝐴 (𝐴𝐸𝐴) is expressed as (2):

𝐴𝐸𝐴 = (𝐸𝐴1 +𝐸𝐴2 +𝐸𝐴3) /3 , (2)

where: 𝐸𝐴1 – 𝐸𝐴 for healthy TPIM, 𝐸𝐴2 – 𝐸𝐴 for TPIM with
two broken bars, 𝐸𝐴3 – 𝐸𝐴 for TPIM with a faulty ring of the
squirrel cage.

Table 1 shows the results of the proposed technique using
FFT, a band-pass filter (264–1784 Hz), MoD-7, GoogLeNet,
and ResNet-50.

Table 1
Results of the proposed technique using FFT, a band-pass filter

(264–1784 Hz), MoD-7, GoogLeNet, and ResNet-50

Condition of the TPIM
𝐸𝐴 [%]

GoogLeNet ResNet-50
𝐸𝐴1, healthy TPIM 100 95
𝐸𝐴2, TPIM with two broken bars 100 100
𝐸𝐴3, TPIM with a faulty ring of
the squirrel cage 100 100

𝐴𝐸𝐴 [%]
𝐴𝐸𝐴 [%] 100 98.33

Table 2 shows the results of the proposed technique using
FFT, low-pass filter (1–6084 Hz), GoogLeNet, and ResNet-50.

Table 2
Results of the proposed technique using FFT, low-pass filter

(1-6084 Hz), GoogLeNet, and Res-Net-50

Condition of the TPIM
𝐸𝐴 [%]

GoogLeNet ResNet-50
𝐸𝐴1, healthy TPIM 100 100
𝐸𝐴2, TPIM with two broken bars 100 100
𝐸𝐴3, TPIM with a faulty ring of
the squirrel cage 100 100

𝐴𝐸𝐴 [%]
𝐴𝐸𝐴 [%] 100 100

  𝐴𝐸 𝐴 was in the range of 98.33–100% for the analyzed tech- 
nique based on FFT, MoD-7, GoogLeNet, and ResNet-50 (Ta- 
bles 1 and 2). The analyzed images were different. GoogLeNet 
and ResNet-50 work very well.  The authors also analyzed Shuf- 
fleNet and MobileNet-V2. However, the results were not high
for ShuffleNet and MobileNet-V2.

6. DISCUSSION
Acoustic analysis is non-invasive. Acoustic sensors are low- 
cost. Changes in the acoustic signal are often observed for faults 
in induction motors. Sometimes it can be detected using the

6

human ear. Acoustic analysis is appropriate for electrical and 
mechanical faults.

  However, the limitations of acoustic analysis are the follow- 
ing: interference from other sources, it does not work in a vac- 
uum, it cannot localize fault, and it can only detect the fault. 
The proposed method MoD-7 works very well for the analyzed 
acoustic signals. Analyzed classes were limited to three.

  However, the proposed approach can work for more classes. 
It depends on how much the acoustic signals differ from each
other.

7. CONCLUSIONS

In this paper, the authors described the fault diagnosis method 
of three-phase induction motors (TPIM) using acoustic signals. 
The authors analyzed acoustic signals for three conditions of 
the TPIM: healthy TPIM, TPIM with two broken bars, and 
TPIM with a faulty ring of the squirrel cage. Acoustic signals 
of the TPIM were recorded using a smartphone. The position of 
the smartphone should be the same for all measurements. The 
proposed approach should also work for other positions of the 
smartphone. Similar electrical faults of motors can be detected.

  Acoustic analysis was conducted for the Fast Fourier Trans- 
form (FFT), MoD-7, and deep neural networks: GoogLeNet, and 
ResNet-50. The results of recognition were 100%. The proposed 
techniques are excellent for acoustic signals.

  In the future, the authors will develop new techniques of fault 
diagnosis. Future techniques will be based on various measure- 
ments: magnetic, acoustic, thermal, and electrical. More types of 
electrical motors and faults will be diagnosed. More parameters 
of electrical motors will be also analyzed.
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