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Machine learning methods, such as the random 
forests algorithm, have revolutionized how we analyze 

growing volumes of data. The algorithm can be 
usefully applied in studying… real forests.
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M achine learning is now finding more and 
more applications in various scientific 

fields, industries, and services. It represents human-
ity’s dream of creating a learning-machine system 
capable of recognizing patterns, akin to the human 
brain’s sophisticated abilities.

The quest to glean knowledge from data has been 
evident ever since humankind first began to systemat-
ically observe natural phenomena. Around 3,500 years 
ago, the ancient Egyptians identified the rhythm of 
the Nile floods, developing a simplified mathemat-
ical model of the phenomenon to use in planning 

Marcin K. Dyderski, 
PhD, DSc 

is an Associate 
Professor at the 

Institute of Dendrology, 
Polish Academy 

of Sciences. 
His research focuses on 

plant responses to 
human activities, 

including mining, 
forestry, climate 

change, and biological 
invasions, especially 

invasive tree species.
mdyderski@man.poznan.pl

Łukasz Pawlik,  
PhD, DSc 

is a geographer and 
geomorphologist, 
a professor at the 

University of Silesia 
working at the Institute 

of Earth Sciences, 
University of Silesia. 

His research explores 
the impact of biotic 
factors and natural 

disturbances on 
geomorphological 

processes, landforms, 
and the evolution of 

montane soils.
lukasz.pawlik@us.edu.pl

DOI: 10.24425/academiaPAS.2023.147459

planting and harvesting. Over time, the volume of 
data at humanity’s disposal has grown rapidly, and 
conventional statistical methods, often coming with 
stringent assumptions, have often fallen short of pro-
viding the expected solutions. In today’s era of multi- 
dimensional data streams and Big Data, advanced 
algorithms, supercomputing centers, and computing 
clusters assist in “data mining” – sifting through these 
mountains of data.

And yet our struggle to cope with data, it seems, is 
still just beginning, and the tension between the influx 
of new information and users’ growing expectations 
could be a potential flashpoint in the development 
of machine learning. Some have spoken critically of 
these issues, sometimes garnering significant media 
attention. One significant voice in the ongoing discus-
sion about the threats posed by artificial intelligence 
is Cathy O’Neil’s book Weapons of Math Destruction, 
where she asserts: “To create a model, then, we make 
choices about what’s important enough to include, 
simplifying the world into a toy version that can 
be easily understood and from which we can infer 
important facts and actions.” Such simplifications can, 
in certain cases, have negative consequences, such as 
African Americans being discriminated against in 
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mortgage loan applications, or residents of Poland’s 
Podhale region facing discrimination when applying 
for US visas.

The idea of teaching an automatic system to rec-
ognize patterns emerged early on, in connection with 
astronomical observations. A “learning system” was 
defined in 1997 by Tom Mitchell in the book Machine 
Learning as one that improves its performance with 
experience. In biology, the concept of a “perceptron,” 
mimicking the functioning of neurons in the brain, 
was proposed in 1958. In 2001, Leo Breiman’s classic 
publication Random Forests demonstrated how to iso-
late a classification model using “decision trees.” Deci-
sion trees have become a popular method for various 
machine learning tasks; the “random forests” method 
is a way of averaging multiple deep decision trees.

Since most natural phenomena can be seen as bun-
dles of interlinked factors, it is assumed that any par-
ticular phenomenon or environmental property (Y) 
can be explained by a set of predictors (x1, ..., xn) acting 
as independent variables. Not all predictors explain 
the given phenomenon or feature in the same way, and 
their strength is analyzed during the initial modeling 
stage. Historical data is a crucial component of this 
entire process, enabling the learning system to acquire 

knowledge about patterns based on such data. This 
knowledge is then applied in the form of a model to 
unsampled space (e.g., geographical space), a portion 
of the population or of dynamic phenomena, to pre-
dict their future states.

Multidimensional datasets consisting of a depen-
dent variable plus a large number of predictors with 
often non-uniform formats (continuous or categorical 
data) and different probability distributions require 
a special approach. The task of the machine learn-
ing algorithm is to create a model that allows for pre-
diction. In their book Applied Predictive Modeling, 
Max Kuhn and Kjell Johnson define modeling as fol-
lows: “the process of developing a mathematical tool 
or model that generates an accurate prediction.” In 
Hands-On Machine Learning with R, Brad Boehmke 
and Brandon Greenwell emphasize that an essential 
feature of machine learning is that it is an iterative 
process, based on a heuristic approach.

Sometimes we know little about the phenomenon 
we are analyzing, and we tend to base our actions on 
incomplete data. We do not know which machine 
learning method will best reflect the actual pattern of 
the phenomenon under study or the state of the envi-
ronment. Hence the need to apply, evaluate, modify 
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the method or data, and regenerate (train) the model 
on the same data set. In many cases, this approach 
yields the best desired effect – a model with a certain 
degree of generalization (not overfit), applicable to 
many different test datasets.

Data
The great abundance of different types of data makes 
initial data assessment and preparation crucial stages 
in developing any model. In fact, it is estimated that 
about 80% of the time spent on data analysis is actu-
ally dedicated to data preparation. The well-known 
principle of GIGO (garbage in, garbage out) always 
needs to be kept firmly in mind at this stage, as erro-
neous, incomplete, or insufficiently large datasets can 
lead to erroneous conclusions. Observational data col-
lected by conventional methods – using measurement 
instruments – often yielded small-volume datasets 
plagued by errors and inaccuracies due to the mea-
surement methods used (their spatial and temporal 
resolution), insufficient precision, or instrument 
malfunctions. Since not everything can be measured, 
any analysis always involves a certain level of simpli-
fication, which ultimately takes the form of a model. 
Perhaps the simplest analogy is the cartographic defi-
nition of a map – which states that a map is simply 
a model of reality.

With the advent of systematic laboratory measure-
ments, satellite imaging, and automated meteorologi-
cal measurements, the resulting large volumes of data 
presented an opportunity to gain a better understand-
ing of the complexity of the physical and biological 
world. However, extracting information from such 
thick jumbles of data required new computational 
techniques, larger databases, and faster processors. 
Nowadays, Internet users themselves generate data 

(leaving digital footprints), which is then brought to 
bear in a model determining, for example, which ads 
will be displayed on their computer screens. Email 
systems are trained to automatically recognize spam 
messages, and highway toll booths recognize our car’s 
license plates, deciding whether to allow us to drive 
through – or not.

Supervised learning
One of the essential features of a dataset that deter-
mines the applicability of certain machine learning 
methods is whether the observations provide infor-
mation about a dependent variable – in other words, 
about the model’s response (target variable) for a spe-
cific set of predictors. If the dataset contains labels (in 
a classification model, where the dependent variable 
can be binary, this may be yes or no, 0 or 1, destruction 
or no destruction) or specific numerical values (in 
a regression model, e.g. estimating forest biomass), 
supervised learning can be applied, where we provide 
information about the variable Y as input. This way, 
we can “supervise” an expected outcome of the model 
when a specific algorithm is applied – for instance, the 
random forests technique. We should note a certain 
limitation of this method, which may arise from the 
nature of the phenomenon itself. Let’s assume we are 
modeling the growth of real trees in a real forest. If 
we analyze how the rate of tree growth is a depen-
dent on temperature and rainfall based only on data 
from temperate climate zones, that model cannot be 
applied to analyze forests in a different climatic zone. 
It has been trained based on observations within a cer-
tain value range and for certain tree categories that 
do not occur in another zone where the user plans to 
apply the model. This points out an important fea-
ture of regional models. For example, in their 2021 
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article “Predicting into unknown space? Estimating 
the area of applicability of spatial prediction models,” 
Meyer and Pebesma proposed that models can be vali-
dated using the area of applicability (AOA) method. In 
a nutshell, this is the area in which the model can learn 
the relationship between variables based on training 
data and the model quality estimated during cross-val-
idation is maintained at a certain acceptable level.

An essential aspect of supervised model validation 
is that a portion of the data from the main dataset, e.g. 
25% of observations, is set aside to be used as a test 
set, not used for developing the model itself (training). 
This way, we maintain control over the model’s qual-
ity. Note that a model can be overfitted, meaning it 
demonstrates great predictive power for a data subset 
of similar characteristics but becomes useless when 
applied to entirely new data.

Applying algorithms
The random forest algorithm is one of the most 
popular machine learning methods based on mul-
tiple decision or classification trees. When building 
a tree, a random sample of m predictors (indepen-
dent variables) is chosen. If a classification model is 
being developed, this value equals the square root of 
the number of predictors. Using a limited number 
of predictors helps bypass the problem of collinear-
ity (correlation) because they are randomly selected 
when building, for example, 1000 classification trees. 
Thanks to this procedure, the random forest algo-
rithm handles strongly correlated data well because 
the result is averaged for many trees.

The random forests algorithm has found a wide 
variety of applications – including, interestingly 

enough, to modeling real forests, which develop under 
a complex mixture of biotic, abiotic, and anthropo-
genic factors, not easily explained by simpler mod-
els. For instance, the method has been used to model 
the spatial distribution of major tree species and their 
biomass in national parks in southern Poland, as well 
as to model the damage caused by Cyclone Klaus in 
2009 in forests in southwestern France.

To determine the occurrence patterns of individual 
tree species in alpine forests, we used data from forest 
stand descriptions from five national parks and maps 
illustrating the climate and geomorphometric charac-
teristics of these areas. To identify the dominant tree 
species, a classification model was applied, assigning 
each observation (stand) to one of five species. In this 
model, “decision trees” were used to determine, based 
on the data, the probability that a specific tree species 
would dominate in a given location. We demonstrated 
that different factors were decisive for the occurrence 
of different species. For example, the probability of 
spruce occurrence was mainly related to elevation 
above sea level, while pine occurrence was found to 
be linked to exposure and slope. Applying this model 
allowed us to explain which factors are most import-
ant for the occurrence of particular species. Addition-
ally, visualizing the model’s response when assuming 
a constant level for all variables except one enabled 
us to simulate changes in environmental conditions, 
showing how modifying specific factors will affect 
the studied species. Using a regression model, in turn, 
allowed us to infer how a unit change in a specific 
predictor (e.g., exposure) will affect stand biomass. 
Thus, our models can be used to predict how changes 
in climate or topography could influence trees’ ability 
to accumulate carbon and mitigate climate change. ■
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Using training data in an 
iterative modeling and 
evaluation process, until an 
optimal model is developed 
(based on Boehmke and 
Greenwell, 2020)
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