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Abstract
The study examines various approaches oriented towards conceptual and numerical reduction of first-
principle models, data-driven methodologies for surrogate (black box) and hybrid (gray box) modeling, and
addresses the prospect of using digital twins in chemical and process engineering. In the case of numerical
reduction of mechanistic models, special attention is paid to methodologies in which simulation data are
used to construct light but robust numerical models while preserving all the physics of the problem, yielding
reduced-order data-driven but still white-box models. In addition to reviewing various methodologies and
identifying their applications in chemical engineering, including industrial process engineering, as well as
fundamental research, the study outlines associated problems and challenges, as well as the risks posed by
the era of big data.
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1. INTRODUCTION

The design, optimization, and control of chemical and pro-
cess engineering systems, as well as the prediction of their
behavior in time or in the operating parameter space, re-
quires the formulation and then numerical implementation
of mathematical models (Aris, 1976; Aris, 1993; McLean
and McAuley, 2012) featuring different levels of complex-
ity. This refers to fundamental phenomena, unit operations,
and complex industrial processes. The use of detailed math-
ematical models based on first principles that incorporate
many constituent physical and chemical phenomena occur-
ring at different scales, and additionally consider the actual
dimension of the system, could be economically justified at
the design stage of new industrial equipment or processes.
High computational effort may be preferable in this case to
time- and cost-consuming experiments that usually need to
be performed at different scales. Nevertheless, the application
of complex mathematical models for optimization or process
control, especially when dealing with multi-scale and multi-
physics problems or complex process installations, becomes
impossible. Consequently, it is necessary to use models with
lumped parameter descriptions involving a range of ideal sim-
plifying assumptions (Biegler et al., 2014).

The computational burden associated with numerical simu-
lations of detailed mechanistic models can be decreased by
using a variety of model reduction techniques or by replacing
the entire model or just some of its elements with a data-
driven model/submodel (Chakrabarty et al., 2016; Hou and
Behdinan, 2022; Wang and Shan, 2007) (Fig. 1a).

Model reduction methodologies can be generally divided into
those based on conceptual approach and those relying on
mathematical and numerical techniques (Chakrabarty et al.,
2016), whereby numerical dimensionality reduction of the
model can also involve techniques based on data exploration,
while preserving the underlying physics. The alternative of
mechanistic models and their somehow reduced, i.e., con-
ceptually, or mathematically/numerically, versions are the so-
called surrogate models known also as emulators or meta-
models (Bradley et al., 2022; Wang and Shan, 2007). Surro-
gate models generally have the form of a data-driven black-
box input-output model, in which the physics of the problem
is included only indirectly, since their structure does not in-
corporate the governing equations (von Stosch et al., 2014).
Their use therefore raises many controversies and concerns in
the scientific community (von Stosch et al., 2014; Coveney et
al., 2016; Bradley et al., 2022). A compromise in the contest
between traditional mechanistic modeling and data-driven
surrogate approaches is offered in the form of hybrid mod-
els (or so-called gray-box models), which incorporate both
physics and submodels based on data derived from the real
object, and in effect are considered more dependable (von
Stosch et al., 2014).

The extremely rapid development of hardware and computing
power in recent years has not only contributed to the explo-
sion of various types of modeling methodologies (Fig. 1b),
based to a great extent on machine learning techniques or,
more generally, data mining, but has also brought about
the birth of a novel versatile tool: the so-called digital twin
(Bárkányi et al., 2021; Wright and Davidson, 2020). Unlike
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Figure 1. Illustration of the general classification of reduced and data-driven models (a) and the number of publications (in Scopus
indexed journals on 5th May 2023) over the years, on dimensionality reduction, hybrid and surrogate models, and digital
twins, addressing issues in chemical engineering, chemistry, material and environmental science, and energy (b).

the classical surrogate or hybrid model, a digital twin com-
bines numerical models of different nature with their con-
stant updating and real-time interaction with the simulated
real-world asset (Fig. 1a).

The study examines various approaches to mechanistic model
reduction, surrogacy, and hybridization, and additionally dis-
cusses the perspective of using digital twins in chemical and
process engineering. Due to the extremely broad scope of the
topic in the case of mathematics-based reduction of mecha-
nistic models, special attention is paid to methodologies in
which data of both simulation and experimental origin are
used to construct light yet robust numerical models while
preserving all the physics of the problem (white-box data-
driven reduced-order or super-reduced models). In addition to
reviewing various methodologies and applications in chemi-
cal engineering, including industrial process engineering (with
particular emphasis on emerging technologies) as well as fun-
damental research, the related problems and challenges are
outlined that are likely to boost future research.

2. DIMENSIONALITY REDUCTION –
FROM CONCEPTUAL
TO NUMERICAL APPROACHES

Back in the mid-70s, Rutherford Aris, a world-renowned
mathematician by background, with a great academic record
in the field of chemical engineering and a major influence
on the development of the field in the second half of the
20th century, in an article published in the journal Chemical
Engineering Education (Aris, 1976), came up with a list of

principles for mathematical modeling. He termed these prin-
ciples as the “maxims.” Among the 13 maxims formulated by
Aris, several of them deserve particular attention:
• “Think geometrically. See when you can reduce the num-

ber of variables (. . . ), but keep in mind the needs of the
general case.”
• “Use crude approximations, e.g., 1-point collocation.”
• “Neglect small terms but distinguish between regular and

singular perturbations.”
• “These maxims will self-destruct. Make your own!” (Aris,

1976)

These more than half century old maxims are the quint-
essence of the conceptual and mathematical (numerical) re-
duction of mathematical models, with the final one that can
be treated as a potential for all other alternatives. Such alter-
natives of today, for example, are data-driven (meta-)models.
In this context, it is also worth quoting the words of another
world-renowned chemical engineering specialist, Gilbert F.
Froment, dating back to the same period (Froment, 1974):
“Owing to the increasing possibilities of computers the mod-
elling of fixed bed catalytic reactors has been a rapidly de-
veloping field in the last decade. Models with more and more
complexity have been set up and compared with more ele-
mentary ones (. . . ). This has now paved the way to judicious
model reduction (. . . ). Finally, it is hoped that model studies
and analysis of phenomena in reactors will be based on real
data and real reactor configurations (. . . ).”

The conceptual methods of model reduction, that is,
straightforwardly speaking, simplifying them both in terms
of dimensionality (usually treating a real three-dimensional
system as a one- or zero-dimensional one) and the phenom-
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Figure 2. General classification of conventional model reduction approaches used in chemical engineering;
based on Chakrabarty et al. (2016).

ena considered (Fig. 2), until about 50 years ago were the
only of a very few practicable options. Other approaches in-
cluded several types of mathematical methods, such as lin-
earization, or numerical methods, like classical discretization
methods based on finite differences or orthogonal collocation.
The application of the latter, however, was largely limited to
at most one-dimensional systems.

It should be emphasized that the classical and still widely
used numerical approaches nowadays, such as the method
of lines, finite difference, finite volume methods (Kurtz et
al., 1978; Vinokur, 1989), collocation and spectral methods
(Hesthaven et al., 2007; Villadsen and Michelsen, 1978), for-
mally belong to the group of reduction methods (Bizon and
Continillo, 2012). This is evident from the fact that math-
ematical models of distributed-parameter systems encoun-
tered in chemical engineering take typically the form of partial
differential equations (PDEs). For practical computational
purposes, such original infinite-dimensional PDEs must be
reduced to finite-dimensional systems of algebraic or ordinary
differential equations (ODEs). The aforementioned classical
methods of discretization of governing equations lead to their
transformation into a large system of algebraic equations or
ODEs. Building efficient, in terms of computational time,
and yet still faithful numerical models requires further reduc-
tion of such high-dimensional discretized models. Therefore,
in the modern sense, the term model reduction, or more pre-
cisely, model-order reduction, is commonly used rather to
describe the latter stage, and refers to a broad class of tech-
niques for obtaining low-dimensional approximations (Swis-
chuk et al., 2018).

Systematic model reduction based on conceptual, i.e., phys-
ical approach (Chakrabarty et al., 2016) involves simplifying
the problem via lumping or averaging, ignoring/neglecting
terms in the equations, and introducing (quasi-)steady-state
or symmetry assumptions (Fig. 2). Lumping is particularly
attractive for formulating and then solving models of cat-
alytic fixed-bed reactors (Froment, 1974) as well as cat-

alytic fluidized-bed reactors (Bizon, 2016; Bizon, 2021), in
which fluid-solid processes are conducted. Two-scale reactor
(fluid)-particle (solid) models are usually simplified by ignor-
ing the intra-particle distribution of state variables. It should
be, however, recognized that while this approach significantly
reduces the complexity of the model, it may also lead to its
oversimplification, which in turn can produce erroneous pre-
dictions of apparatus performance.

To visualize the problem, Fig. 3 shows the results of numerical
simulations obtained from four different models of a catalytic
bubbling fluidized-bed reactor (BFBR) described in detail in
(Bizon, 2021). In all cases, ideal mixing and plug flow of
the gas were assumed in the dense and bubbling phases of
the bed, respectively. However, the models differ in the de-
scription of the mass and heat transport phenomena at the
gas-solid interface and within the catalyst particle:

• Model P, pseudo-homogeneous model: mass and heat
transport resistances between interstitial gas in the dense
phase and the catalyst particles are neglected, the same
applies to intra-particle transport resistances.
• Model H1, with distributed-parameter catalyst submodel:

both external and intra-particle mass and heat transport
resistances are accounted for.
• Model H2, with lumped-thermal catalyst submodel: sim-

ilar to H1, but with uniform intra-particle temperature
distribution.
• Model H3, with lumped-particle catalyst submodel: sim-

ilar to H2, but additionally with uniform intra-particle
concentration distribution.

The results shown in Fig. 3 represent the start-up stage of
catalytic BFBR, presuming that a single irreversible exother-
mic reaction A → B takes place in the reactor. As can be
clearly observed, the two simplest models employed (i.e., P
and H3) fail completely to predict ignition. The erroneous
prediction obtained from the P and H3 models is due to
the existence of multiple steady states, which are typical
of exothermic catalytic processes (Bizon, 2016; Sun et al.,
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Figure 3. Evolution of dimensionless concentration of reactant A (a) and gas temperature in the dense phase of catalytic BFBR
during reactor start-up. Results obtained for a single first-order irreversible catalytic exothermic reaction with lf = 5:06,
k0 = 5 · 106 1=s and ∆H = −6 · 105 kJ/kmol using models of different complexity; based on Bizon (2021).

2019). This confirms the notion that the practical applica-
tion of models simplified with the conceptual approach must
be preceded by a detailed comparative analysis with more
complex models, in order to determine the extent of their
applicability (Bizon, 2021; Fernandes and Lona, 2002; Fro-
ment, 1974; Rout and Jakobsen, 2015).

Despite the well-established knowledge regarding the mod-
eling and simulation of catalytic reactors, given the emerg-
ing nowadays technologies associated with the power-to-gas
or more generally power-to-X concept (Oztruk and Dincer,
2021; Palys and Daoutidis, 2022), the development of more
and more computationally efficient numerical models of such
apparatuses is still of particular interest. The core of power-
to-X concept is hydrogen production via electrolysis using
surplus electric energy from renewable sources. Hydrogen,
often referred as to “green,” can then be utilized directly
as a fuel or further converted, for example, into other fuels
(Oztruk and Dincer, 2021), including methane, methanol,
or dimethyl ether (DME) via hydrogenation of carbon diox-
ide. The latter can be obtained from a variety of sources,
including facilities to capture carbon dioxide from industrial
waste gases (Palys and Daoutidis, 2022). Such reutilization
of carbon dioxide in a wide spectrum of power-to-X processes
renders it no longer seen as waste, but as a valuable chemical
compound (Styring et al., 2021). The aforementioned chem-
ical processes are typically conducted in catalytic fixed-bed,
moving-bed, or fluidized-bed reactors. In addition, very often,
due to the increasing need for process integration and inten-
sification (Moioli, 2022), they are conducted in special types
of these apparatuses: multifunctional (e.g., direct synthesis
of DME, also known as one-pot synthesis) or adsorptive reac-
tors (e.g., sorption-enhanced methanation or methanol syn-
thesis) (Dhoke et al., 2021; Kurzina et al., 2017). A char-
acteristic feature of both solutions is their potential to in-
tegrate individual functionalities, i.e., two different catalysts

in the case of direct DME synthesis or a catalyst and adsor-
bent in the case of sorption-assisted processes, both at the
apparatus level and at the level of a single particle. In the
first scenario, the reactor packing is composed of a physical
mixture of different particles, while in the second scenario
one deals with so-called multifunctional or hybrid particles,
which may have a core-shell structure (Bizon et al., 2019).
Thus, the distribution of diverse types of active centers can
then be an additional design parameter (Sánchez-Contador
et al., 2019; Bizon et al., 2019). As a result, when optimiz-
ing the distributions of active centers in the particle, it is not
possible to ignore the intra-particle distributions of state vari-
ables. Another problem that arises in sorption-enhanced pro-
cesses conducted in fixed-bed reactors independently on the
mode of integration of catalyst and sorbent (i.e., reactor- or
particle-level) is the dynamic nature of the operation of such
apparatuses and the need for periodic regeneration of the
bed. This not only requires more time-consuming dynamic
simulations, but also optimization at the level of the entire
installation consisting usually of several reactors operating in
parallel, that is in reaction and regeneration mode (Bermejo-
López et al., 2022). While in industrial practice, steady-state
operation of the plant is usually desired, and most appara-
tuses are designed in relation to this most economical and
safe mode of operation, in certain applications, the dynamic
operation may be more advantageous or even inevitable (Fis-
cher and Freund, 2020). The latter case is also closely related
to power-to-X technologies, as large fluctuations in the re-
newable power supply are transferred to chemical reactors.
This inevitably results in the need to simulate the dynamics
and dynamic optimization – both being computationally ex-
pensive – of systems that have so far been analyzed only in
terms of steady state.

Distributed parameter and multi-scale character, frequently
dynamic behavior, and the almost always nonlinear nature of
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the models of chemical processes, make it still challenging
to solve them using classical discretization methods (Bremer
et al., 2017). Thus, it is desirable to directly transform the
original infinite-dimensional problem into its low-dimensional
approximation or to reduce a large set (i.e., a finite yet
high-dimensional model) of algebraic equations or ODEs, re-
sulting, for example, from the approximation of spatial dif-
ferential operators by finite difference schemes, to its low-
dimensional truncated form. There are a variety of methods
for performing both, but the discussion that follows focuses
on one of the most widely used, namely the combination of
proper orthogonal decomposition (POD) and Galërkin pro-
jection method (Hesthaven et al., 2007; Holmes and Lum-
ley, 1996). This choice is dictated by the fact that POD is
closely related to data mining, as it is classified along with
machine learning-based techniques in the group of feature ex-
traction methodologies. In fact the so-called basis functions
used in the POD-Galërkin method to transform a full-order
model (FOM), i.e. the finite yet high-dimensional model, into
a reduced-order model (ROM) are often referred to as em-
pirical functions or modes.

The POD method offers the ability to determine a set of
optimal empirical basis functions from a set of observations,
derived from a numerical simulation or experiment, represen-
tative of the spatio-temporal or spatio-parametric complexity
of the system under study (Holmes and Lumley, 1996). The
method originated from the works of Pearson (1901) and
was proposed independently by several researchers, specifi-
cally Kosambi (1943), Loève (1945) and Karhunen (1947).
The empirical POD functions are optimal in the sense of the
L2 norm, which makes them perform much better in com-
bination with the Galërkin projection method than classical
orthonormal bases such as Legendre or Chebyshev polyno-
mials. Among other things, they allow to alleviate the Gibbs
effect typical of approximations with polynomial functions
(Hesthaven et al., 2007).

To provide a synthesized description of the POD-Galërkin
technique, let us directly consider a large system, i.e., FOM,
of nonlinear algebraic equations or ODEs resulting from the
discretization of a parameter-dependent steady-state bound-
ary value problem (BVP) or PDE describing the dynamics of
a distributed-parameter system, both in one spatial variable.
These systems can be written in a matrix form, respectively,
as (Bizon and Continillo, 2021; Cutillo et al., 2023):

Ay(—) + F (y(—)) = 0 (1)
d

dt
y(t) = Ay(t) + F (y(t)) ; y(0) = yinit (2)

where y = [y1; y2; : : : ; yN ]T is a state variable vector and N is
the number of discrete nodes employed for the discretization.
The orthonormal POD basis Φ = [’1; ’2; : : : ; ’N ]T can be
determined by solving the following eigenvalue problem:

CΦ = Λ Φ where C = 〈Y · YT 〉 (3)

where Y is a matrix constructed of M observations of the
variable y in the parameter space — or over time t, C is
an autocorrelation matrix with the angular brackets denot-
ing parameter- or time-averaging. These observations, often
referred to as “snapshots,” are usually derived from numer-
ical simulations performed using the FOM, much less often
from experiments (Ma et al., 2002). When the number of
snapshots M is smaller than the number of discrete nodes
N it is more convenient to use a modification of the Eq. (3)
proposed by Sirovich (1987).

Using the determined POD basis, the state variable vector
y can then be represented in truncated form as ỹ ≈ ΦKcK
where K � N is an approximation order. Substitution of ỹ,
respectively, into Eq. (1) and Eq. (2) followed by the Galërkin
projection onto the basis yields the following systems of equa-
tions, referred to as reduced-order models (ROMs):

ΦT
KAΦKcK + ΦT

KF (ΦKcK) = 0 (4)

d

dt
cK = ΦT

KAΦKcK + ΦT
KF (ΦKcK) ;

cKy(0) = ΦKyinit

(5)

More details concerning how to select the truncation order K,
and how to collect snapshots can be found in earlier works
(Bizon and Continillo, 2021; Bizon et al., 2012; Cutillo et
al., 2023). Nevertheless, it is worth signaling here that, sim-
ilarly to typical data-driven models, (e.g., black-box models
based on neural networks) POD-based ROMs generally do
not accurately predict the solution, or even completely fail
also qualitatively, when used far from the conditions under
which snapshots were collected. In recent decades, various
sampling policies have been proposed, ranging from sam-
pling of chaotic trajectories (Bizon et al., 2012; Kerschen et
al., 2003), using randomly collected snapshots (Segala and
Naseradinmousavi, 2017) or – in reference to dynamic sys-
tems – combining solutions obtained using different model
parameters and initial conditions (Bizon et al., 2008; Gra-
ham and Kevrekidis, 1996).

The optimal nature of the POD-Galërkin method coming
from the fact that it is based on data containing information
about the behavior of the system resulted in its widespread
use for ROM construction. Although the method originated
in the 1940s, increased interest in it only began in the 1990s
because of the widespread use of computers. The technique
found its application in many areas, including chemical reac-
tor engineering (Park and Cho, 1996), including their control
(Padhi and Balakrishnan, 2003), fluid dynamics (Sirisup and
Karniadakis, 2005) or chemical kinetics (Danby and Echekki,
2005). POD was also widely used to extract features from
massive experimental data, including velocity fields (Druault
et al., 2005; Fogleman et al., 2004) or luminosity fields (Bi-
zon et al., 2010), in particular regarding internal combustion
engine processes.

Describing all possible modifications of the POD-Galërkin
method and its applications developed over the years is vir-
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Table 1. A selection of some recent applications of the POD-Galërkin method for model-order reduction in chemical engineering and
processing, and related areas.

Reference Problem under study Applied variant of POD Objective

Bremer et al.
(2017)

Two-dimensional dynamic model of
a catalytic wall reactor for carbon
dioxide methanation.

POD with discrete empirical interpo-
lation method (DEIM) for treatment
of nonlinearities.

Super-reduction of the model nonlin-
earities and reactor start-up simula-
tion.

Yang and
Armaou (2018)

Reaction-diffusion process taking
place along the surface of a catalytic
rod, and Kuramoto-Sivashinsky
equation.

Adaptive POD (APOD) and discrete
adaptive POD (DAPOD), i.e. incre-
mental method with snapshots and
modes updating.

System control with the feedback lin-
earization.

Jo et al. (2019)
Steam reformer for polymer
electrolyte membrane fuel cell
(PEMFC).

Gappy POD, i.e., method managing
incomplete data sets.

Determination of optimal sensor
placement on steam reformers for
PEMFC.

Li et al. (2020)
Fracture-dominated flow in two-
dimensional porous media.

POD based on Sirovich (1987) ap-
proach.

Steady-state simulation of flow in
complex fracture using ROM.

Siddiqui et al.
(2020)

Wake dynamics behind 5-MW off-
shore reference wind turbine of Na-
tional Renewable Energy Laboratory
(NREL).

POD based on Sirovich (1987) ap-
proach.

Evaluation of the prediction capabil-
ities of POD-based ROM applied to
the dynamics of a full-scale wind tur-
bine.

Sun et al. (2020)
Steady-state and transient neutron
transport in a nuclear reactor system.

POD based on Sirovich (1987) ap-
proach.

Development of a fast and accurate
technique for resolution of the neu-
tron transport equation.

Masoudi and
McPhee (2021)

Electrochemistry-based lithium-ion
battery model.

Standard POD approach, which ac-
counts for the sampling appropriate
for control tasks.

Physics-based reduction of battery
model for control-oriented problems
used in real-time applications.

Li et al., (2022a)
Non-reactive gas-solid flow in flu-
idized bed described by Eulerian-
Lagrangian approach.

Lanczos POD (LPOD) that permits
to deal with extremely large correla-
tion matrices (Eq. (3)).

Reduction of computational cost of
simulation of industrial-scale powder
processes.

Cutillo et al.
(2023)

Two-dimensional reaction-diffusion
system describing self-ignition of
a stockpile of solid fuel.

POD-DEIM with innovative sam-
pling based on k-means clustering.

Determination of global POD basis
for parametric studies.

Pergam and
Briesen (2023)

Compressible filter-aid cake filtration
processes.

Global POD involving the use of
a combination of snapshots obtained
for more values of the parameter of
interest.

Increasing the computational effi-
ciency of a complex mathematical
model.

tually impossible; yet it is worth examining the publications of
recent years. A selection of relevant model reduction studies
is summarized in Table 1. Their topics (here limited to chem-
ical engineering and processing, and related issues), as well
as the problems addressed, confirm the enormous versatil-
ity of the method. Moreover, as mentioned earlier, the POD
method itself, as a feature extraction technique, has also
found application in the analysis of experimental or numeri-
cal data. While this issue goes beyond the topic of this study,
it is worth mentioning that new applications are constantly
emerging in this area as well. Some examples include recent
works on the characterization of flow dynamics of two-phase
pipe flow via identification of coherent structures (Viggiano
et al., 2018), analysis of the acoustic near field of a ducted
axial fan (Moghadam et al., 2020) or identification of domi-
nating mechanisms in powder mixing (Li et al., 2022b).

To illustrate the performance of the POD-Galërkin method
both in terms of the savings in computation time and

its high approximation accuracy, the results obtained for
a non-isothermal fixed-bed catalytic reactor operating under
steady-state conditions are provided in Fig. 4. Further details
on the problem presented here can be found in (Bizon and
Continillo, 2021). The examined process involves a gas-solid
catalyzed chemical process consisting of two exothermic re-
versible chemical reactions A ↔ B ↔ C, with C being the
desired product. Each of the two steps is catalyzed by a differ-
ent type of active centers, integrated in bifunctional catalyst
particle. The objective of the study was to optimize the frac-
tions of each type of catalyst (f1, f2) within the particle, with
the yield of product C with respect to reactant A, YCA;r , cho-
sen as the objective function. The problem was solved using
a two-scale approach, involving a one-dimensional model of
a spherically symmetric catalyst particle coupled with a one-
dimensional model of gas flowing through a packed bed. To
build the POD basis in the first step, the so-called FOM was
built using the finite difference method, and then resolved for
various values of f1 and f2 to collect snapshots. The number
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(a) (b)

Figure 4. Performance of POD-based ROM in terms of computational time (a) and absolute error in the optimal solution
approximation (b). Results concern a catalytic fixed-bed reactor integrating two types of active centers, with f1 (design
variable) being the particle fraction occupied by the active sites catalyzing first step of the process and YCA;r (cost function)
– the yield of product C with respect to reactant A; based on Bizon and Continillo (2021).

of nodes used for the particle and reactor model discretiza-
tion was, respectively, Np = 101 and Nr = 1001, resulting
in the final Ntot = 408000 of algebraic equations. Since in
case of multi-scale model it is convenient to apply the re-
duction methodology to the smaller scale, here the catalyst
particle model, in the second step the latter was reduced via
POD-Galërkin approach.

The resulting simulation time of the ROM was, depending
on the adopted truncation order, K, from several to several
dozen times shorter than the simulation time of the FOM
(Fig. 4a). This reduction was possible while maintaining
the accuracy of the computations, as confirmed by the
error values (Fig. 4b) in the approximation of the optimal
solution, reported here both for the design variable and the
objective function. It should be mentioned at this point
that the problem studied here was one-dimensional, hence
the time savings obtained may not be very impressive.
For problems in a two- or three-dimensional space, the
performance of the method is far more remarkable: for
example, for the problem studied in (Cutillo et al., 2023)
and concerning a two-dimensional reaction-diffusion system
describing self-ignition of a stockpile of solid fuel, the
speed-up of ROM with respect of FOM was of the order
of 1000. Nevertheless, to obtain such performance the
POD-Galërkin methodology was additionally combined with
an discrete empirical interpolation method (DEIM).

The analysis of Eq. (4) and Eq. (5) shows that despite the
decrease of the number of equations from N to K, the nonlin-
ear terms are evaluated in the original N-dimensional space.
This, in turn, implies that for highly nonlinear systems such
as those generally encountered in chemical and process engi-

neering, the time savings from using POD-Galërkin are not
such as would be desirable. This problem can be addressed
by implementing the aforementioned DEIM, developed by
Chaturantabut and Sorensen (2010). It allows to determine
a relatively small number of grid nodes, on which the non-
linearities of the model are then evaluated. The DEIM tech-
nique consists of two steps: deriving an extra POD basis
from spatio-temporal or spatio-parametric representations of
the nonlinear term and then determining, based on a dedi-
cated algorithm (Bizon, 2017; Chaturantabut and Sorensen,
2010; Cutillo et al., 2023), a small number of the grid nodes,
referred to as interpolation indices, at which the value of
this term is evaluated in the reduced model. Because of the
adoption of two POD bases for the construction of the ROM
within POD-DEIM-Galërkin methodology, the technique is
sometimes called super-reduction.

Let us assume that Φ = [ 1;  2; : : :  N ]T is such a POD
basis determined by solving Eq. (3) and using as snapshot
set of representations of nonlinear term which is present in
the generic FOMs given by Eq. (1) and Eq. (2). Then the
nonlinear function, F, can be approximated using J � N
basis functions as F(y) ≈ ΦJqJ where:

qJ =
“
PT ΦJ

”−1

PTF(y) (6)

where P ∈ RN×J is a matrix of interpolation indices iden-
tified following the algorithm proposed in (Chaturantabut
and Sorensen, 2010). Introduction of the above formula in
Eq. (4) and Eq. (5) yields, respectively, POD-DEIM-Galërkin
reduced ROMs:

ΦT
KAΦKcK + ΦT

KΦJ

“
PT ΦJ

”−1

F
“
PT ΦKcK

”
= 0 (7)
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d

dt
cK = ΦT

KAΦKcK

+ ΦT
KΦJ

“
PT ΦJ

”−1

F
“
PT ΦKcK

”
cKy(0) = ΦKyinit

(8)

where PT ΦKcK ∈ RJ (note that in Eq. (4) and Eq. (5)
ΦKcK ∈ RN , and J � N).

The DEIM algorithm selects interpolation indexes such that
the nonlinear term approximation error is minimized. Figure 5
shows its outcome using as an example a dynamic model of
a single non-isothermal catalyst particle, being and exten-
sion of the problem examined in (Bizon, 2017). If a single
irreversible chemical reaction A→ B takes place in the cata-
lyst, the following nonlinear expression emerges in the model
equations:

rA (CA; T ) = k0 exp (−E=RT )CA (9)

which, after the introduction of classically defined dimension-
less variables and the Thiele modulus, Φ, takes the form:

rA(˛; „) = Φ2 exp(−‚=„)˛

exp(−‚)
(10)

where ˛, „ and ‚ are, respectively, dimensionless concentra-
tion, dimensionless temperature and dimensionless activation
energy. A set of spatio-temporal representations of the non-
linear term obtained from FOM simulation is presented in
Fig. 5a (negative values result from the minus sign in the
equation preceding the source term), while Fig. 5b shows
the first four POD bases determined using as snapshots these
representations. In addition, the locations of first 10 interpo-
lation indices determined using DEIM are marked with circles
in Fig. 5b, where larger symbols refer to the first 5 of them,
additionally numbered in order of relevance. It can be ob-
served that more interpolation indices are located nearby the

catalyst surface, where the values of nonlinear function are
characterized by larger gradients (Fig. 5a).

Based on the above, it can be stated that projection-based
techniques combined with POD methodology provide un-
doubtedly an extremely attractive solution for building fast
yet faithful models. The variety of modifications of this
methodology that have emerged over the years, the different
problems that can be solved using them – from steady-state
and transient simulations, optimization or determination of
sensor locations – make the data-enhanced but still consti-
tutive equation-based ROMs a powerful simulation tool. In
addition to computational efficiency and accuracy, the ad-
vantage of ROMs based on the POD-Galërkin approach is
the relatively easy numerical implementation, as evidenced by
the rather simple matrix notations presented in this section.
Nevertheless, in situations when a first-principle model is not
available, or is simply too complex, or when even greater
computational efficiency is needed, yet another type of tool
is required, namely surrogate or hybrid models, sometimes
also referred to as equation-free models.

3. SURROGATE AND HYBRID MODELS
– BLACK-BOX AND GRAY-BOX
MODELS

Although the concepts of surrogate models, also known as
metamodels, emulators, substitute or black-box models, and
of hybrid models, also known as gray-box models (Sansana et
al., 2021; Williams and Cremaschi, 2021) have gained popu-
larity in the scientific literature relatively recently, in essence
they are not entirely new tools. In fact, both are based on
more or less sophisticated input-output data-approximation
techniques, which have been present in the field of chemical
and process engineering modeling for many decades. How-

(a) (b)

Figure 5. Spatiotemporal set of evaluations of the nonlinearity of the single catalyst particle model (a) and corresponding POD modes
with the first 10 interpolation indices (•) determined using DEIM (b) for ‚ = 20, ‹ = 0:2, Φ = 2, Le = 0:1 and k0 = 1/s;
based on Bizon (2017) and extended here to non-isothermal case.
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ever, a growing interest in the last two decades in approxima-
tion and approximation-based optimization methods accom-
panied by development of new metamodeling techniques has
only contributed to the emergence and widespread adoption
of these concepts (Wang and Shan, 2007). This has resulted,
in the first step, into advancement and dissemination of tech-
niques based on machine learning, such as neural networks.
The development of a data-driven framework for knowledge
extraction and model construction has been further triggered
by the increasing capabilities to collect, store and process
massive sets of data. Finally, the fourth industrial revolu-
tion, widespread digitalization and the smart manufacturing
paradigm have brought surrogate and hybrid models to the
forefront of many practical industrial applications (Sansana
et al., 2021; Yang et al., 2020).

It is difficult to provide a precise definition of both the surro-
gate model and the hybrid model; the definitions given by dif-
ferent authors vary significantly, and sometimes these terms
are used even interchangeably (Sansana et al., 2021). Likely,
the most common definition of a surrogate model is that it
is a substitute model allowing input data to be mapped into
output data if the actual relationship between them is either
unknown or computationally expensive to evaluate (Williams
and Cremaschi, 2021). The latter case indicates that surro-
gate models, which are basically simpler representations of
more complex models, do not necessarily need to be derived
using experimental data. In fact, according to some reports,
one way to design a surrogate model is by generating data
points through numerical simulations of a complex mecha-
nistic model based on first principles, e.g. with the aid of
computational fluid dynamics (CFD), and then employ them
to built a data-driven substitute (Sansana et al., 2021). At
the same time, according to the commonly accepted clas-
sification of hybrid models, the latter approach is basically
equivalent to a hybrid model, generally consisting of a combi-
nation of first-principle model (FPM) and data-driven model
(DDM), in this case having a serial arrangement (Fig. 6b,
Sansana et al., 2021; Yang et al., 2020).

In hybrid gray-box modeling, DDMs are usually complemen-
tary to FPMs, used to deal with mechanisms that are difficult
to describe using first-principles knowledge, or that are un-

feasible to include into a mechanistic model due to the high
computational effort required. Examples of such mechanisms
include not fully understood complex (bio-)chemical reaction
kinetics (Rogers et., 2023), or the evolution of particle size
distributions (PSD) in systems described by population bal-
ance equations, such as the crystallization process (Makry-
giorgos et al., 2020), which is generally characterized by nu-
merous uncertain parameters. More examples are provided
further in Table 2.

Depending on the balance maintained in the final hybrid
model between mechanistic (white-box model) and data-
driven (black-box model) components, there exists a broad
spectrum of shades of gray of such models (Rogers et., 2023).
The white and black box components can also be assem-
bled in different manners; the basic arrangements are shown
in Fig. 6. A serial arrangement in which a black-box model
(Fig. 6a) is followed by a white-box model (S-BW) is typically
used when there is sufficient input-output data that can be
incorporated into a nonparametric black-box model, but the
detailed knowledge of the process mechanism is not avail-
able, for instance, when the kinetics of a chemical reaction
or transport properties (e.g. diffusion coefficients) are un-
known (Zendehboudi et al., 2018). The output of the black-
box model is then fed to the mechanistic white-box model,
making the whole hybrid model more reliable. The reverse ar-
rangement, i.e., first a white-box model and then a black-box
model (S-WB, Fig. 6b), is primarily applicable when some
but yet limited data are available from a mechanistic model,
which is very time-consuming to simulate. In such a case, the
results obtained from the mechanistic model can be used to
train the black-box model (Zendehboudi et al., 2018). The
parallel structure (P, Fig. 6c) is primarily used when a mech-
anistic model is provided, but its predictive capabilities are
restricted due to the limited description of certain effects
(Sansana et al., 2021) or when some elements present in the
model reduce computational efficiency, such as nonlinearities
(Zendehboudi et al., 2018). In both cases, the model per-
formance can be improved by embedding a properly trained
data-driven submodel. In addition to the basic arrangements
outlined here, there exist other mixed structures; more details
can be found among others in (Zendehboudi et al., 2018).

Figure 6. Basic structures of hybrid models; based on Yang et al. (2020) and Sansana et al., (2021): (a) S-BW – serial structure with
black- followed by white-box model; (b) S-WB – serial structure with white- followed by black-box model; (c) P – parallel
structure.
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Table 2. A selection of some recent applications of surrogate and hybrid modeling in chemical engineering and processing, and related
areas.

Reference Problem under study Applied data-driven methodology Objective

Ali et al. (2018)
Single mixed refrigerant pro-
cess of natural gas liquefaction.

Surrogate model; approximation via ra-
dial basis functions (RBF) involving
thin slab splines trained on data gener-
ated with Aspen HYSYS (AspenTech).

Addressing the computational burden
associated with the modeling and op-
timization of the process under study.

Babanezhad
et al. (2020)

Thermal and hydrodynamic be-
havior of co-current bubble col-
umn gas-liquid reactor.

Hybrid model; differential evolution
fuzzy interference system (DEFIS) ap-
plied to learn flow patterns based on
data determined using CFD.

Understanding and prediction of the
flow patterns in bubble column reac-
tors.

Carranza-Abaid
et al. (2020)

Vapor-liquid equilibrium (VLE)
behavior of a mixture con-
taining CO2, H2O and mo-
noethanolamine (MEA).

Surrogate model; feedforward artificial
neural network (ANN) with a single hid-
den layer, trained using data generated
with a semi-empirical model.

Development of a technique integrating
computational efficiency with the ro-
bustness of rigorous models; validated
against the eNRTL method with the
Peng-Robinson equation.

Makrygiorgos
et al. (2020)

Two-dimensional population
balance equation (PBE) of
batch cooling crystallization of
ibuprofen.

Surrogate model; sparse polynomial
chaos and kriging methods applied to
numerical results obtained from PBE
solved by finite volume method.

Quantification of uncertainty in prob-
lems with a large number of uncer-
tain inputs; probabilistic uncertainty
characterized in the study 20 parame-
ters related to growth, dissolution and
physico-chemical properties.

Krippl et al.
(2021)

Single-pass tangential flow fil-
tration (SPTFF) for continu-
ous biomanufacturing.

Hybrid model; ANN trained using ex-
perimental data from a membrane op-
erating in TFF mode using bovine
serum albumin (BSA) as a model pro-
tein.

Performance prediction of serial and
parallel SPTFF with up to three mem-
brane cassettes oriented at efficient pro-
cess development and model predictive
control (MPC).

Jayaweera
et al. (2022)

Heat and mass transfer in
a full-scale hybrid-draft cool-
ing tower and an induced draft
cooling tower.

Hybrid model; single layer feedforward
ANN featuring RBF activation func-
tions used to estimate volumetric mass
transfer coefficient.

Development of a model with high pre-
dictive accuracy capable of being im-
plemented in real time to optimize fan-
generated air flow rates and to monitor
the thermal performance of a full-scale
cooling tower.

McKay et al.
(2022)

Fed-batch acid crystallization
process.

Hybrid model; submodel based on sub-
space identification (SID) derived from
simulated data batches using singular
value decomposition (SVD).

Using a potentially challenging first-
principles model in a way suited to MPC
implementation.

Pinto et al.
(2022)

Stirred fed-batch tank biore-
actors for Escherichia coli re-
combination and Pichia pas-
toris cultivation.

Hybrid model; shallow and deep feed-
forward ANNs with tanh and rec-
tified linear unit (ReLU) activation
functions trained with synthetic (Es-
cherichia coli) and pilot (Pichia pas-
toris) data sets.

Systematic enhancement of the gener-
alization of deep hybrid models versus
their shallow equivalents combined with
exploration of different learning tech-
niques.

Matsunami et al.
(2023)

Dissolution of paracetamol
tablets produced through dry
and wet granulation methods.

Surrogate model; Weibull model fitted
to input-output data generated using
a mechanistic model implemented in
gPROMS (Siemens PSE) with Latin
hypercube sampling (LHS).

Identification of critical input param-
eters in the tablet fabrication process
that affect dissolution behavior, tar-
geted towards efficient design of tablet
manufacturing.

Xing et al. (2023)
Trickle bed (TB) and packed
bubble column (PBC) reactors
for CO2 capture.

Surrogate model; response surface
methodology (RSM) and extended
adaptive hybrid functions (E-AHF)
trained using data generated from
mechanistic model.

Rapid design and optimization of TB
and PBC reactors oriented at improved
CO2 capture and reduced energy and
water consumption.
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There is a wide selection of techniques for constructing data-
driven models; very broadly, they can be divided into in-
terpolation (e.g., kriging) or non-interpolation (e.g., neural
networks) methods. Among the most popular data-driven
methodologies used to construct both surrogate models and
black-box components of hybrid models are (Bárkányi et al.,
2021; Bhosekar and Ierapetritou, 2018; Bradley et al., 2022;
Sansana et al., 2021; Williams and Cremaschi, 2021; Yang
et al., 2020; Zendehboudi et al., 2018):
• Artificial neural networks (ANN) consisting of an input

and output layer and a number of information processing
units, referred to as neurons, embedded in the so-called
hidden layer, connected by information flows; ANNs are
considered universal approximators as they do not require
any structural knowledge regarding the modeled system
(Sansana et al., 2021).

• Support vector machines (SVM) that is, supervised learn-
ing techniques that can be used for classification, regres-
sion and outlier detection; SVM methodology involves
mapping the input data into a high-dimensional space fol-
lowed by determination of the optimal hyperplane, which
divides the data into classes (Sansana et al., 2021; Zen-
dehboudi et al., 2018).

• Fuzzy logic (FL), allowing to implement infinite-value
logic to deal with systems characterized by so-called
“non-crisp” boundaries; FL applies primarily to control,
decision-making and classification (Zendehboudi et al.,
2018).

• Radial basis functions (RBF) generating interpolation
surrogate in the form of a linear combination of local uni-
variate functions using selected distance measures from
a point to determined centers (Bárkányi et al., 2021);
RBF functions are also very often used as activation func-
tions in hidden layers of ANNs, known as RBF networks
(RBFN) (Williams and Cremaschi, 2021).

• Kriging, originating from geostatistics and involving the
interpolation of discrete data points based on a statisti-
cal approach utilizing a weighted variance that minimizes
the error between actual and estimated values to deter-
mine a so-called response surface model (Bárkányi et al.,
2021).

• Polynomial functions, which are the simplest and most
commonly used substitute models in engineering calcula-
tions, although they are only suitable for describing simple
relationships among variables (Bárkányi et al., 2021).

Perhaps the most extensively used surrogate models nowa-
days are ANNs. They can feature a variety of architecture and
employ different activation functions; a summary of the most
common designs, along with their advantages and disadvan-
tages, and potential engineering applications, can be found
among others in (Zendehboudi et al., 2018). A summary of
the advantages and disadvantages of the other metamodel-
ing techniques mentioned above can be found in (Williams
and Cremaschi, 2021). More details on the theory behind the
techniques used for surrogate and hybrid modeling, along

with applications in the field of chemical and process en-
gineering, can be found in numerous extensive review pa-
pers (Bárkányi et al., 2021; Bhosekar and Ierapetritou, 2018;
Sansana et al., 2021; Williams and Cremaschi, 2021; Yang et
al., 2020; Zendehboudi et al., 2018). To emphasize the ver-
satile nature of these techniques and the different scales of
problems to which they are applied, illustrative examples of
some recent applications involving both surrogate and hybrid
modeling are listed in Table 2.

The brief summary of applications provided in Table 2 con-
firms that one of the most popular metamodeling techniques
are ANNs, particularly those incorporating RBFs as hidden
layer activation functions, i.e. RBFN. For a shallow feedfor-
ward RBFN consisting of an input layer, a single hidden layer,
and an output layer, the output of the network, y , for a given
input x can be written as (Bizon et al., 2014; Broomhead and
Lowe, 1988):

y =
NX
i=1

!iRi (x) + !0 (11)

where !i are the weights associated with connections be-
tween neurons, !0 is the bias term, Ri are the RBF activa-
tion functions, whereas N is the number of neurons within
the hidden layer. The radial basis function can be further
expressed as:

Ri (x) = ’ (‖x − ci‖) (12)

with ’ denoting the radial function that substantiates the
nonlinear nature of the model, while ci is the so-called center.
There exists a variety of radial functions, but the most widely
used is the so-called Gaussian function defined as follows:

’(r) = exp
`
−r2=ff2

´
(13)

Symbol r in Eq. (13) denotes the Euclidian distance between
vector x and center ci , and ff is the spread parameter.

To illustrate the operation of RBFNs, representative results
demonstrating their performance in converting input signals
into output signals are shown in Fig. 7. Figure 7a shows the
outcome of using a neural network as a soft sensor. The soft
sensor is a variation of the surrogate model developed to
measure required, for instance, for diagnostic reasons, sig-
nal using a low-cost alternative to the actual real sensor.
Soft sensors are also used when certain variables cannot be
measured directly, or the measurement is performed only at
a low sampling rate or offline (Ferreira et al., 2022). The re-
sults shown in Fig. 7a concern the implementation of RBFN
as a soft sensor for the diagnosis of a three-cylinder real
compression-ignition engine; further details can be found in
(Bizon et al., 2014; Bizon et al., 2015). Due to the observed
correlation between in-cylinder pressure and engine block vi-
bration, an ANN was constructed using an acceleration sig-
nal measured with a low-cost accelerometer and in-cylinder
pressure measured with a piezoelectric pressure transducer as
input and output, respectively. A shallow feedforward RBFN
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(a) (b)

Figure 7. Performance of RBFN implemented as a soft sensor to monitor the in-cylinder pressure in the internal combustion
engine (a) and as a submodel to predict the temperature in the splashing zone of the fluidized-bed combustor (b); based,
respectively, on Bizon et al. (2014) and Marra et al. (2015).

with 25 neurons in the hidden layer proved to approximate
the in-cylinder pressure evolution very well, despite the large
noise inherent to the acceleration signal (Fig. 7a). It is worth
adding that due to the simple structure consisting of radial
functions and weights, that can be generally collected into
an array, such a network can be very easily implemented for
real-time online operation. In particular, in the case presented
here, the network trained in the Matlab (MathWorks) envi-
ronment using the newrb function was exported to the CON-
CERTO environment, which is an integral part of AVL Indi-
Com platform (AVL List GmbH), i.e. advanced combustion
analysis and data acquisition software for internal combus-
tion engines. As a result, the performance of the designed
soft sensor was also validated successfully online.

Another example, shown in Fig. 7b, involves using RBFN as
a surrogate submodel embedded in a mechanistic model of
a biomass-fueled combined heat and power (CHP) system
developed within the project MEGARIS: Micro Electric Gen-
erator from Alternative Renewable energy Innovative Stir-
ling engine (Angrisani et al., 2013; Marra et al., 2015). The
system consisted of a fluidized-bed combustor (FBC) with
a Stirling engine heat transfer head immersed in the bed. To
keep the model relatively simple, the CHP system was rep-
resented by a series of interconnected blocks described us-
ing lumped-parameter models. To describe the dense phase
of the fluidized bed operating in bubbling regime, an ide-
ally mixed reactor model was employed; the same approach
was adopted to describe the freeboard zone above the bed.
However, the intermediate zone, the so-called splashing zone,
cannot be described using the ideal reactor model. It also
cannot be neglected in the entire system model, as the tem-
perature within the splashing zone is crucial for the correct
assessment of energy fluxes to and from the bed. To ad-
dress this problem, the RBFN was designed and trained us-
ing experimental data collected during start-up (the stage of

electrical heating of the bed and subsequent ignition of the
biomass) and during steady-state operation of the appara-
tus. Given the large number of different variables measured
during the experimental study, the construction of the final
network was preceded by a sensitivity analysis. It provides
an opportunity to evaluate input variables in regard to the
significance of their contribution to the output variable and
to identify irrelevant variables. In the final network design,
the temperature of the dense phase of the bed, Tbed, and
the temperature of the freeboard zone, Tfreeboard, were used
as input variables. The results shown in Fig. 7b confirm that
RBFN having only 3 neurons in the hidden layer is able to
describe the temperature in the splashing zone, Tsplash, quite
accurately.

Interest in data-driven models has undoubtedly increased
over the past few years. This is confirmed by the constant
emergence of new metamodeling methods as well as new ap-
plications, often non-trivial, as briefly characterized here. In
the field of chemical and process engineering, as well as in re-
lated fields, these big data-based approaches are now offering
the possibility of novel, improved solutions to old problems
and tackling problems that were previously unsolvable. Even
more, these techniques, sometimes developed years ago and
already well-established, are now increasingly being coupled
with real objects, in the form of so-called digital twins. The
latter are undoubtedly a tool that will soon transform the
industry into a more adaptive, resilient, and intelligent one.

4. DIGITAL TWINS – A NOVEL USE
OF COMMON TOOLS

According to most literature sources (Singh et al., 2021), the
concept of the digital twin (DT) emerged in 2002 at the Uni-
versity of Michigan in relation to product lifecycle manage-
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ment (PLM). The model developed there by Michael Grieves,
initially referred to as the “mirrored spaces model” involved
three elements, namely real space, virtual space and the flow
of information between them. It is precisely this bidirectional
transfer of information between the digital twin, i.e. the nu-
merical model, and the simulated real world asset, i.e. the
physical twin, that distinguishes this design from the classi-
cal numerical model (Fig. 8). Nowadays, in the era of the
pursuit towards widespread digitalization and smart indus-
try, the concept of the digital twin has gained a prominent
presence in the scientific literature. This is confirmed by the
number of publications in this area, which has recently been
growing each year much faster than, for example, the num-
ber of publications on surrogate or hybrid modeling (Fig. 1b).
This is to some extent the result of overusing the DT term
and also employing it to refer to models that do not meet
the exact definition of a digital twin.

What makes a model to be a digital twin is essentially the
following (Wright and Davidson, 2020):
• it is the model of an existing real object;
• there is an evolving set of data concerning the object,

transferred to the model;
• the model is dynamically updated/improved based on the

transferred data.

As a result, a digital version of a physical asset can analyze
its performance, simulate its behavior under certain condi-
tions, helping, for instance, to improve the process or prevent
its failure. Thus, the primary difference between the conven-
tional data-driven model and DT is the tight coupling and
real-time interaction with its real physical twin. Thanks to
these features, DTs can be used for real-time monitoring,
maintenance, optimization, design or remote access. (Singh
et al., 2021).

Digital twins may basically rely on various types of models
and submodels that are able to reflect the behavior of the
physical object being twinned. Despite the coupling between
twins, it is desirable to use mechanistic models at least locally
because of their greater reliability and ability to extrapolate.
The contribution of data-driven elements in DT is largely de-
pendent on the time-scale of the process and the associated

time that might be devoted to simulating the model, but
also to its measurement-based update. In short: the entire
DT should be sufficiently physics-based, accurate and fast
for its intended applications (Singh et al., 2021).

In addition to utilizing various metamodeling techniques de-
veloped over the past few decades, the operation of dig-
ital twins benefits greatly on a range of other tools and
techniques relatively well established in the field of chem-
ical engineering, and more generally in industrial practice,
including among others advanced control strategies (Kester-
ing et al., 2023). Worth mentioning are also operator train-
ing simulators (OTS), whose origins date back to the late
1970s (Bose et al., 2023). OTS systems, that is, virtual
plants used to develop the capabilities of plant personnel,
including handling plant abnormalities and failures, are in-
deed sometimes referred to as “early stage” DTs (Appl et
al., 2020). The latter is due to the fact that, in general,
OTSs are used for practical training of plant operators with-
out the need to perform the actual process, so there is no
online pairing of the virtual replica with the real process,
thus no risk on impairment of equipment components. The
considerable success of OTSs in industrial practice, which
has resulted in a number of applications (mainly in petro-
chemical and energy sectors) over the years and the rapid
development of commercial software (Patle et al., 2014) for
developing such training systems, makes them an attractive
starting point for the construction of actual DTs. In fact,
according to de Beer and Depew (2021), OTS represents
one of the last phases of the DT design lifecycle, which es-
sentially consists of conceptual engineering, front-end engi-
neering and design, detailed engineering, commissioning and
start-up, and ultimately DT operation. In the penultimate
phase of the commissioning of the digital twin, a tool is pro-
vided that can be used for operator training. Therefore, DTs
not only rely on a variety of already existing methodologies,
but also supply a tool that eliminates the investment in a sep-
arate OTS.

Once the DT is available, another important aspect is to keep
it up to date by performing proper maintenance throughout
its operational lifecycle. This is essential to ensure correct

Figure 8. Constituent elements and information flow between physical and digital twin.
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predictions of the digital replica. One of the challenges to be
faced in this regard is the proper management of data origi-
nating from the physical twin. A systematic literature review
concerning this issue can be found, among others, in the work
of Correia et al. (2023). A data management system that is
an integral part of a digital twin (Fig. 8) must, first and fore-
most, deal with data of a heterogeneous character. This het-
erogeneity, i.e. diversity of sources that are generating data
within physical twin, renders it crucial to properly transform,
integrate and match them so that they can be utilized to up-
date, with suitable machine learning algorithms, data-driven
submodels of DTs (Correia et al., 2023). Another aspect that
is closely related to DT maintenance during its whole oper-
ational lifecycle is the quality of the data itself (Chen et al.,
2023). The raw sensor streams should be cleaned using statis-
tical methods or deviation/anomaly detection methods prior
to being used as an input to simulation tools that consti-
tute the elements of the DT (Correia et al., 2023). It is also

important to be aware of the degradation of the hardware,
such as the sensors on which the simulation, prediction, ac-
tion and maintenance activities of the DT are based (Studer
et al., 2021). Since the topic is really vast, it is difficult to ad-
dress all aspects here, and the aforementioned concerns are
intended to underline that the development of efficient and
reliable DTs still involves many challenges, including those of
a scientific nature.

Although the concept of DT is usually associated with the
prediction of operation and control of entire plants, e.g. brew-
ery (Koulouris et al., 2021), or processes, e.g. food supply
chain (Shoji et al., 2022), the tool can also be applied to
smaller parts of engineering problems. This is confirmed by
a compilation of some recent applications, summarized in
Table 3.

The overview presented in Table 3 indicates not only the vari-
ety of DT applications but also identifies some tools that can

Table 3. A selection of some recent applications of digital twin (DT) in chemical engineering and processing, and related areas.

Reference Problem under study Models used and measurements performed Objective of the study

Koulouris et al.
(2021)

Brewery process consisting of
brewhouse, fermentation and
bottling sections.

Block model developed in SuperPro De-
signer (Intelligen, Inc.) for multi-product
batch and semi-continuous manufacturing
facilities combined with simulated data.

Calculation of process cycle time and
improvement of plant efficiency by
identifying and eliminating bottle-
necks, and carrying out an economic
analysis.

Wang et al.
(2021)

Particle breakage during milling
using impact pin mill.

Population balance model developed and
customized using gPROMS (Siemens PSE)
platform integrated with nano- and particle
scale data.

Development of alternative measures
of model-based design for the milling
process by integrating complementary
information at different scales.

Lunev et al.
(2022)

Thermal performance of
AlSi7Mg open-cell metal
foams.

Finite element analysis (FEA) based on dig-
italized with the aid of laser flash analy-
sis (LFA) and X-ray computed tomography
(CT) samples.

Elucidation of the nature of heat con-
duction in metallic foams and the fea-
sibility of using LFA for characteriza-
tion of such materials.

Shoji et al.
(2022)

Temperature-based monitoring
of postharvest fruits within
supply chain.

Two-dimensional axisymmetric energy
equations of fruits developed in COMSOL
Multiphysics (COMSOL Inc.) combined
with air temperature datasets.

Optimization of the cold supply chain
with the aid of DT oriented at max-
imization of shelf life and uniform
product quality.

van Rooij et al.
(2021)

Degradation of membrane in
a reverse osmosis (RO) pres-
sure vessel due to biofouling.

Mathematical model of RO vessel with
eight membrane elements with real
measurement-based parameter estimation.

Development of a decision support
system (DSS) for membrane restora-
tion strategies.

Yu et al.
(2022)

Thermal system of 660 MW
ultra-supercritical double re-
heat power plant.

Gray-box model combining basic mass and
energy balances with historical operation
data.

Development of a new thermal sys-
tem simulation concept and method
to support the advancement of DT for
thermal power plants.

Galeazzi et al.
(2023)

Industrial amine scrubbing pro-
cess from the exhausted oil re-
finery.

Steady-state model developed in Aspen
HYSYS (AspenTech) relying on design of
experiment (DoE) concept and validated
against real plant data.

Proposal of a framework for auto-
mated surrogate model development
to overcome numerical limitations in
conventional industrial process simu-
lations.

McLaughlin
et al. (2023)

Hierarchical CO2 electrolyzer
gas diffusion electrode.

Simulations with GeoDict (Math2Market
GmbH) combined with focused ion beam
(FIB), scanning electron microscopy (SEM)
and X-ray imaging.

Optimization of the electrode struc-
ture oriented at higher conversion ef-
ficiencies and lifetime, and lower cost.
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Table 3 continued.

Reference Problem under study Models used and measurements performed Objective of the study

Procacci et al.
(2023)

Semi-industrial moderate or
intense low oxygen dilution
(MILD) combust-ion furnace
operating under varying con-
ditions and fuel charges (from
pure H2 to pure CH4).

POD-based ROM built using data from
three-dimensional CFD simulations with
real time temperature update towards the
experimental measurements.

Use of a sparse sensing framework to
develop DT able to determine optimal
sensor placement and predict three-
dimensional temperature field using
few measurements.

Wang et al.
(2023)

Scheduling of laminar cooling
water supply system for hot
rolling mills.

Fast neural model of water consumption
based on online sequential extreme learning
machine (OS-ELM) trained using historical
production data.

Prediction of water consumption
trends, reduction of water and power
consumption, and improvement of
safety and reliability of the pump sta-
tion operation.

be employed for practical implementation of digital twins, e.g.
gPROMS (Siemens PSE) or Aspen HYSYS (Aspen Tech).
However, it should be noted that as of today, the capabili-
ties of available engineering software are still rather limited
as the flow of information they provide is usually unidirec-
tional. Therefore, digital transformation of industry definitely
requires also improved, next generation process simulators
(de Beer and Depew, 2021).

5. SUMMARY

The modern times can undoubtedly be described as the times
of big data. The methodology outlined in this study, which
is, naturally, much more extensive, shows that over the past
decades in chemical and process engineering, as in virtually
any field, there has been a gradual shift from mechanistic to
semi- or fully data-driven models. The former, obviously, are
continuously utilized and further developed, and thanks to
ever-increasing computational power, numerical solutions for
more and more complex multi-scale and multi-physics mod-
els are now available. Approaches based on big data today
make it possible to solve many problems that were previously
impossible to address. In this context, in addition to complex
problems with uncertain parameters and unknown mecha-
nisms, surrogate and hybrid models that enable real-time
computation, which are essential mainly for process control,
deserve special attention. Their close coupling and real-time
upgrading based on measurement data, which contributed to
the development of digital twins, is also a necessary step on
the road to smart manufacturing and to the digitalization of
the chemical industry, and beyond. However, in this era of
big data, big theory must not be ignored or even forgotten.

While Aris and Froment, quoted at the very beginning, looked
forward to further advancement of science, the development
that is now taking place is becoming somewhat hazardous.
Particularly noteworthy here is the criticism presented sev-
eral years ago in the journal Philosophical Transactions A by
Peter Coveney (Coveney et al., 2016), a professor of physi-
cal chemistry and honorary professor of computer science, in

the paper entitled “Big data need big theory too”. Referring
to philosopher Francis Bacon, whose works influenced the
scientific revolution that took place in the 16th and 17th cen-
turies, Coveney emphasizes that modern science emerged in
the 17th century as a combination of observation and reason,
and he argues that the often blind collection of (sometimes
unreliable!) data makes the era of big data a modern version
of pre-17th century thinking. Moreover, many proponents of
big data believe that soon there will be no need for theory
to understand many phenomena, and, according to Coveney,
even in relatively simple scientific disciplines, machine learn-
ing and big data are “intoxicating” to many researchers.

Therefore, in this journey from mechanistic to data-driven
models, it is important to keep in mind that the extremely
versatile tools available nowadays should first and foremost
complement and enrich existing theory and make it more
powerful, rather than replace what is well-known and well-
established. In developing data-driven models, more empha-
sis should be placed now on the reliability and curation of
the data. In addition, it should be remembered that the pre-
dictive capabilities of such models are limited due to the
difficulty of extrapolation. Eventually, it has be recognized
that not all correlations between data provide evidence of re-
lationships that exist between them, in terms of underlying
physical phenomena.

SYMBOLS

A constant coefficient matrix arising from discretization of
the infinite-dimensional model equation, A ∈ RN×N

ci i th center of RBFN
CA concentration of reactant A, kmol/m3

cK vector of POD coefficients, cK ∈ RK

C POD autocorrelation matrix, C ∈ RN×N

Deff effective diffusion coefficient in porous particle, m2/s
E activation energy of chemical reaction, kJ/kmol
f1; f2 volume fraction of particle occupied by active sites cat-

alyzing, respectively, first and second step of a generic
process A↔ B↔ C
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F vector of nonlinear functions, F : RN→ RN

∆H enthalpy of chemical reaction, kJ/kmol
J truncation order of a nonlinear term within POD-DEIM

procedure
k0 frequency coefficient in the Arrhenius equation, 1/s
km mass transfer coefficient, m/s
lf fluidization ratio, lf = u=umf where u and umf denote,

respectively, gas velocity and minimum fluidization veloc-
ity

Le Lewis number, Le = –eff= (pcpDeff ), where p and cp
denote, respectively, density of the catalyst particle and
its specific heat

K POD truncation order of a state variable
M number of solutions (snapshots) used to construct the

POD basis
N number of grid points utilized in the construction of FOM
P pressure, bar
P matrix of interpolation indices within POD-DEIM proce-

dure, P ∈ RN×J

qJ vector of POD coefficients of the nonlinear term, qJ ∈ RJ

r Euclidian distance between input x to RBFN and center ci
rA chemical reaction rate with respect to reactant A,

kmol/(m3·s)
rp particle radius, m
R universal gas constant, kJ/(kmol·K)
Ri radial basis function
t time, s
T temperature, K or ◦C
y arbitrary state variable or arbitrary output of RFBN
y arbitrary vector state variable, y ∈ RN

ỹ truncated state variable vector, ỹ ∈ RN

YCA;r yield of product C with respect to reactant A for generic
system of chemical reactions A ↔ B ↔ C evaluated at
the reactor level

Y matrix of solutions (snapshots) used to construct the
POD basis, Y ∈ RN×M

x arbitrary input to RFBN
XA dimensionless concentration of reactant A,

XA = CA=CA;ref

Greek symbols

¸q heat transfer coefficient, kW/(m2·K)
˛ dimensionless concentration within the catalyst particle,

˛ = C=Cref

‚ dimensionless activation energy, ‚ = E= (RTref )

‹ dimensionless parameter related to heat of chemical re-
action, ‹ = CA;ref (−∆H)Deff= (–effTref )

"K;opt relative absolute error of the Kth order approximation of
the optimal solution

“ dimensionless coordinate in the catalyst pellet, “ = x=rp
where x and rp denote, respectively, radial coordinate and
particle radius

„ dimensionless temperature within the catalyst particle,
„ = T=Tref

–eff effective heat transfer coefficient in the catalyst particle,
kW/(m·K)

Λ diagonal matrix containing eigenvalues of the POD
modes, Λ ∈ RN×N

— arbitrary parameter of the model equation
ff spread parameter of RBFN
fi dimensionless time
’ Thiele modulus of the first-order irreversible reaction,

Φ = rp
√
k=Deff where k = k0 exp (−E=RT )

Φ POD basis, Φ ∈ RN×N

ΦK truncated POD basis, ΦK ∈ RN×K

 POD basis function of the nonlinear term
Ψ POD basis of the nonlinear term, Ψ ∈ RN×N

ΨJ truncated POD basis of the nonlinear term, ΨJ ∈ RN×J

!0 bias of RBFN
!i weight associated with the i th connection between neu-

rons within RBFN

Subscripts

g gas phase
init initial conditions
p particle
r reactor
ref reference value
tot total

Abbreviations

ANN artificial neural network
CAD crank angle degree
DEIM discrete empirical interpolation method
FOM full-order model
ODE ordinary differential equation
OTS operator training simulator
PDE partial differential equation
POD proper orthogonal decomposition
RBF radial basis function
RBFN radial basis function network
ROM reduced-order model
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