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Analysis of pandemic with game methodology
and numerical approximation

Radosław MATUSIKo and Andrzej NOWAKOWSKIo

We build a mathematical game model of pandemic transmission, including vaccinations
of population and budget costs of different acting to eliminate pandemic. We assume the inter-
actions among different groups: vaccinated, susceptible, exposed, infectious, super-spreaders,
hospitalized and fatality, defining a system of ordinary differential equations, which describes
compartment model of disease and costs of the treatment. The goal of the game is to describe
the development disease under different types of treatment, but including costs of them and
social restrictions, during the shortest time period. To this effect we construct a dual dynamic
programming method to describe open-loop Nash equilibrium for treatment, a group of people
having antibodies and budget costs. Next, we calculate numerically an approximate open-loop
Nash equilibrium.

Key words: COVID-19, game model of pandemic, approximate dual dynamic program-
ming, sufficient approximate optimality conditions for Nash equilibrium, numerical algorithm.

1. Introduction

Since coronavirus (COVID-19) pandemic outbreak (in 2019, inWuhan) a huge
number of articles devoted to different aspects of COVID-19 pandemic have been
written (see e.g. [1,7–9,12,14–16,18,21–23,26–28,30–32] and literature therein).
In these papers we find mathematical models of infectious disease transmission
dynamics. These models are slightly different in each of that paper, depending on
aims it treats, e.g., in [9] themodel extends the existing epidemiologicalmodels by
specifying how a vaccine and its arrival are included in the optimization process.
The understanding of development of the diseases is done by analysis and simulat-
ing of dynamics of the mathematical models depending on parameters, which the
model contains. The parameters aremostly constant, i.e., independent on time and
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chosen suitably, accordingly to the case study e.g. when the system is related to the
class of super-spreaders (see e.g. [23]). However, we canmeet, lastly, some articles
with parameters, which are functions (see e.g. [1,26,28]). In some of these papers
the authors consider the vaccination problem (see e.g. [8, 12, 23, 26, 28]), also as
evolutionary game (see e.g. [2, 9, 16]). Earlier, mainly control and mitigation ef-
forts against COVID-19 are focused on the implementation of non-pharmaceutical
interventions, such as lockdown of community, maintaining social distancing,
using face masks in public, quarantine, isolation and hospitalization of the con-
firmed cases, surveillance and serology testing and contact tracing. All papers
mentioned above give a good insight into the transmission dynamics and control
of COVID-19 infectious. It should be noticed that in most of papers mentioned
above the main rate in analysis of the transmission dynamics is so called the basic
reproduction number 𝑅0, depending on the parameters of the system. In the case
of autonomous systems, 𝑅0 describes stability of the system (see e.g. [29]). If the
basic reproduction number is less than 1, then the (system) transmission is stable,
if it is greater than 1, then the system can be unstable. However, we should stress
that “control” in these papers does not mean that we have at our disposal a set
of the control functions and we have some rules to choose the best one and then
steer the rules for population to deliberate a goal. Instead, some simulations are
done and suitable parameters are selected (see e.g. in [7, 9, 14, 15, 28, 30–32]).
Our approach to investigate the problems related to COVID-19 is different.

We do not concentrate on 𝑅0. Instead, we firstly replace most of parameters (con-
stants) by functions (controls) and secondly, we add new variables and controls
related to vaccinations and costs of the pandemic, defining also a cost functional,
which takes into account costs of the pandemic, basic reproduction number 𝑅0
and number of vaccinated persons. A different cost functional is considered in
e.g. [26]. It captures the healthcare costs, which are proportional to the sum of
the squares of the number of hospitalized 𝐻 (𝑡) and the socio-economic costs
associated with the implementation of NPIs. As a next step, we observe that
not all our controls cooperate, i.e. some of them should cause minimization of
our functional, while the other should maximize them. This observation suggests
considering COVID-19 problems not as standard optimal control problem (see
e.g. [26]), but rather as a kind of a game (compare also [9]). Let us notice that
this game is non-cooperative differential game. Therefore, we separate our strate-
gies into two players. The first one wants to minimize costs of the pandemic, as
well the basic reproduction number 𝑅0, while the second one wants to maximize
number of vaccinated persons plus these, which have antibodies. Thus, the main
goal of this paper is to construct a new approach to the treatment coronavirus
disease COVID-19 allowing to take into account in making decision the costs of
the pandemic as well the number of population having antibodies.
The game method to investigate pandemic problems is known in the literature

(see e.g. [2,4–6,15,27]). These papers use the evolutionary games with strategies
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do not depending on time. The solutions of the games – a kind ofNash equilibrium
– are found by discussing the parameters. In [21] closed-loop Nash equilibrium
approach is presented.
We assume the vaccination of the population and we are mainly interested

in finding the parameters (functions) in system ensuring maximum of the pop-
ulation having antibodies. As the time of duration of the pandemic is essential
in making suitable decisions as well relates to different costs of community, we
consider as parameter – strategy the time and want to minimize it. The approach
described above cause that we construct a new mathematical model of COVID-
19. It is a differential game with suitable distinguished players and opponents’
players in which we want to find an approximate open-loop Nash equilibrium,
in fact, approximate dual open-loop Nash equilibrium. This type of the approach
to the pandemic (in general) allows, by choosing suitable strategies, to be more
conscious in making decisions. In order to solve mathematical model, we de-
velop a dual dynamic programming methodology for such a game and formulate
sufficient conditions for approximate open-loop Nash equilibrium in the form of
the verification theorem. It allows to assert that the calculated solution is really
𝜀-Nash equilibrium, accordingly to our mathematical model. Our method can
help to find approximate open-loop Nash equilibrium without experiments.
We show in the example a quality of the game theoretic approach. It differs

significantly from standard approach to pandemic problems. The cost functional
is neither maximal with respect to controls, nor minimal with respect to them.
Our game approach is more realistic, because it allows to calculate strategies
which are against insight: for strategies of the open-loop Nash equilibrium the
value of costs is higher and the number of population having antibodies is lower
than using standard approach. The reason is that we have the game with two
players, of which the first one using his four strategies wants to maximize our
functional, while the second one using his own eight strategies wants to minimize
the functional. Thus the one player can not only to maximize the functional as
opponent player wants to minimize the functional at the same time.
We would like to stress that we do not concentrate in this paper on analysis

of mathematical model and disease transmission. The main aim is to develop a
new tools to study such a mathematical model. This is also a reason, why we
use so many strategies (controls) in our model. We want to show a richness of
possibilities to deal with these new tools, but we can always assume that some
strategies are identically zero. Then the model will be simplified, and the theory
is still working.

1.1. Model of the infectious disease transmission

In epidemiology the most popular model is the so-called Susceptible-
Exposed-Infected-Recovered (SEIR) model. It belongs to the class of compart-
mental models [10] (compare [11]). In that model the main assumption is: the
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total population 𝑁 can be divided into four classes of individuals that are sus-
ceptible 𝑆, exposed 𝐸 , infected 𝐼, and recovered or dead 𝑅 (assumed to be not
susceptible to reinfection). Moreover, it is assumed:

1. The total population does not vary in time,

2. Susceptible individuals become infected that then can only recover or die,

3. Exposed individuals encountered an infected person but are not yet them-
selves infectious,

4. Recovered or died individuals are forever immune.

However, the longevity of the antibody response is still unknown, but it is known
that antibodies wane over time. Assumption 3 is not well recognized when we
apply vaccination to population. Assumption 2 is to strong as we can observe
that many infected people suffer long time consequence of infection and require
medical care. It is difficult to expect that during the period of half or one year the
total population does not vary. The population is not living in hermetic box. The
(SEIR) model is presented as:

𝑑𝑆

𝑑𝑡
= −𝜆𝑆(𝑡)𝐼 (𝑡), 𝑑𝐸

𝑑𝑡
= −𝜆𝑆(𝑡)𝐼 (𝑡)−𝛼𝐸 (𝑡), 𝑑𝐼

𝑑𝑡
= 𝛼𝐸 (𝑡)−𝛾𝐼 (𝑡), 𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (𝑡).

To deal with uncertainties in long-term extrapolations and with the time-
dependency of control parameters in [11] the authors introduce a stochastic
approach into modeling epidemic making parameters depending on time and
adding three more equations.
The different extension of mathematical model of infectious disease transmis-

sion dynamics we find in the paper [23] (compare also [13, 21, 28]). We modify
further this model to consider vaccination a part of the population and costs of
the pandemic, but we continue the ideas of [11] to deal with uncertainties in
long-term extrapolations and with the time-dependency of control parameters.
We remove recovery class from the model in [23] by adding it just to vaccinated
class, assuming that individuals, which are recovered have antibodies similarly as
vaccinated individuals have them. The meaning two of them is a little different.
We also add a new differential equation, which includes costs of the pandemic
(see (9)). Following [11] we change constant parameters to functions to control
behavior of the model along time to consider some uncertainties which appear
during the time evolution of pandemic. We include into our consideration a goal
functional, which depend on costs of pandemic, the basic reproduction number
and the number of population having antibodies in final time. It is obvious that
we want to have maximum of population with antibodies while the reproduction
number should have values less than 1 by minimal budged. This is why we should
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the goal functional maximize with respect to the strategies (controls) responsible
for developing antibodies in population and minimize with respect to strategies
generating costs and causing minimizing the reproduction number. That means
we want to formulate a mathematical model of infectious disease transmission
suitable for a game theoretic approach to control infectious disease by vaccination
a part of the population as well as considering the costs of the pandemic. We use
the following states and strategies:

States:
𝑁 total population size,
𝑉 (𝑡) a part of the population having antibodies,
𝑆(𝑡) susceptible class,
𝐸 (𝑡) exposed class,
𝐼 (𝑡) symptomatic and infectious class,
𝑃(𝑡) super-spreaders class,
𝐴(𝑡) infectious but asymptomatic class,
𝐻 (𝑡) hospitalized class,
𝐹 (𝑡) fatality class,
𝐶 (𝑡) costs of the pandemic.
Strategies:
𝑣1(𝑡) control of patients having antibodies,
𝑣2(𝑡) control of vaccinating the population 𝑁 ,
𝑠(𝑡) control of the human-to-human transmission,
𝑠1(𝑡) control of susceptible individuals entering the exposed,
𝑠2(𝑡) control of treated individuals entering the exposed,
𝜅(𝑡) control of an individual leaving the exposed,
𝛾𝑖 (𝑡) recovery control without being hospitalized,
𝛾𝑟 (𝑡) recovery control of hospitalized,
𝑐(𝑡) costs of lockdown,
𝑐1(𝑡) costs of maintaining social distancing, using face masks in public,
𝑐2(𝑡) costs of quarantine and isolation of confirmed cases,
𝑐3(𝑡) costs of hospitalization of confirmed cases,

where 𝑡 ∈ [0, 𝑇], 𝑇 > 0.
The fraction of population 𝑁 having antibodies is described as

𝑑𝑉 (𝑡)
𝑑𝑡

= 𝑣2(𝑡) (𝑁 −𝑉 (𝑡) + 𝐶 (𝑡)) + 𝛾𝑖 (𝑡) (𝐼 (𝑡) + 𝑃(𝑡) + 𝐴(𝑡))

+ 𝛾𝑟 (𝑡)𝐻 (𝑡), 𝑡 ∈ [0, 𝑇] . (1)

The equation for susceptible class 𝑆 takes a form:

𝑑𝑆(𝑡)
𝑑𝑡

=
𝑆(𝑡)
𝑁

− Λ − 𝑠(𝑡) (𝐼 (𝑡) + 𝑃(𝑡) + 𝐻 (𝑡))𝑆(𝑡)

− 𝑙 (𝑡)𝑣1(𝑡)𝑉 (𝑡)𝑆(𝑡), 𝑡 ∈ [0, 𝑇], (2)
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where Λ is some constant and 𝑙 (𝑡), 𝑡 ∈ [0, 𝑇], quantifies the relative transmissi-
bility of patients having antibodies.
The equation for exposed class 𝐸 takes a form:

𝑑𝐸 (𝑡)
𝑑𝑡

= 𝑠1(𝑡) (𝐼 (𝑡) + 𝑃(𝑡))𝑆(𝑡) + 𝑠2(𝑡)𝐻 (𝑡)𝑆(𝑡) + 𝑙 (𝑡)𝑣1(𝑡)𝑉 (𝑡)𝑆(𝑡)

− 𝜅(𝑡)𝐸 (𝑡), 𝑡 ∈ [0, 𝑇] . (3)

The equation for infectious class 𝐼 takes a form:

𝑑𝐼 (𝑡)
𝑑𝑡

= 𝜅(𝑡)𝜌1(𝑡)𝐸 (𝑡) − (𝛾𝑎 (𝑡) + 𝛾𝑖 (𝑡))𝐼 (𝑡) − 𝛿𝑖 (𝑡)𝐼 (𝑡), 𝑡 ∈ [0, 𝑇], (4)

where 𝜌1(𝑡), 𝑡 ∈ [0, 𝑇], is a proportion of progression from exposed class 𝐸 to
symptomatic infectious class 𝐼, 𝛾𝑎 (𝑡), 𝑡 ∈ [0, 𝑇], is the average rate at which
symptomatic and super-spreaders individuals become hospitalized and 𝛿𝑖 (𝑡), 𝑡 ∈
[0, 𝑇] is the disease induced death rates due to infected.
The equation for super-spreaders class 𝑃 takes a form:

𝑑𝑃(𝑡)
𝑑𝑡

= 𝜅(𝑡)𝜌2𝐸 (𝑡) − (𝛾𝑎 (𝑡) + 𝛾𝑖 (𝑡))𝑃(𝑡) − 𝛿𝑝𝑃(𝑡), 𝑡 ∈ [0, 𝑇], (5)

where 𝜌2 is a relative very low rate at which exposed individuals become super-
spreaders and 𝛿𝑝 is the disease induced death rates due to super-spreaders.
The equation for infectious but asymptomatic class 𝐴 takes a form:

𝑑𝐴(𝑡)
𝑑𝑡

= 𝜅(𝑡) (1 − 𝜌1(𝑡) − 𝜌2)𝐸 (𝑡), 𝑡 ∈ [0, 𝑇], (6)

where 1 − 𝜌1(𝑡) − 𝜌2, 𝑡 ∈ [0, 𝑇] is a progression from exposed to asymptomatic
class.
The equation for hospitalized class 𝐻 takes a form:

𝑑𝐻 (𝑡)
𝑑𝑡

= 𝛾𝑎 (𝑡) (𝐼 (𝑡) + 𝑃(𝑡)) − 𝛾𝑟 (𝑡)𝐻 (𝑡) − 𝛿ℎ𝐻 (𝑡), 𝑡 ∈ [0, 𝑇], (7)

where 𝛿ℎ is the disease induced death rates due to hospitalized individuals.
The equation for fatality class 𝐹 takes a form:

𝑑𝐹 (𝑡)
𝑑𝑡

= 𝛿𝑖 (𝑡)𝐼 (𝑡) + 𝛿𝑝𝑃(𝑡) + 𝛿ℎ𝐻 (𝑡), 𝑡 ∈ [0, 𝑇] . (8)

The equation related to acting influenced costs of government such as: lock-
down of community, maintaining social distancing, using face masks in public,
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quarantine, isolation and hospitalization of confirmed cases, surveillance and
serology testing and contact tracing takes a form:

𝑑𝐶 (𝑡)
𝑑𝑡

= 𝑐(𝑡) (𝑁 −𝑉 (𝑡)) + 𝑐1(𝑡)𝑆(𝑡) + 𝑐2(𝑡) (𝐼 (𝑡) + 𝑃(𝑡))

+ 𝑐3(𝑡)𝐻 (𝑡), 𝑡 ∈ [0, 𝑇] . (9)

Flow diagram of the model represented by system (1)–(9) is shown in Figure 1
and Figure 2.

Figure 1: Flow diagram of the model described by (1)–(8)

Figure 2: Flow diagram of the model described by (9)

We assume, that all our controls have values in bounded sets of R, i.e. 𝑣2(𝑡) ∈
V2, 𝑣1(𝑡) ∈ V1, 𝛾𝑖 (𝑡) ∈ G𝑖, 𝛾𝑟 (𝑡) ∈ G𝑟 , 𝑠(𝑡) ∈ S, 𝑠1(𝑡) ∈ S1, 𝑠2(𝑡) ∈ S2,
𝜅(𝑡) ∈ K, 𝑐(𝑡) ∈ C, 𝑐1(𝑡) ∈ C1, 𝑐2(𝑡) ∈ C2, 𝑐3(𝑡) ∈ C3, 𝑡 ∈ [0, 𝑇].
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Some parameters (not depending on time) in equations (1)–(8) appear. They
are not controls, they relate to the disease and particular place it appears. We have
to determine them or take from the literature related to the disease. The other
parameters are controls (unknown), which we want to determine, considering
a suitable cost functional (12) and determined by this game. As a result we
calculate a set of twelve strategies, which can help the policymakers to instigate
suitable acts.
Simulations made with different parameters (functions) (see Appendix) ac-

knowledge that all mentioned strategies have influence on behavior of all states.
Hence the choice of large numbers of strategies as well as proposed system of
equations describe more exactly the behavior of the pandemic. However, simu-
lations are not sufficient to study them, we need mathematical tools which help
us to infer more correct corollaries. To this effect we develop game theoretic
methodology in Sections 1.2 and 2.
One of the ways to control an ongoing outbreak is basic reproduction number.

It measures of a disease spread in a population. It can be understood as the average
number of cases, in which one infected individual infects healthy individuals.
The basic reproduction number 𝑅0 for system (1)–(9) is given by (see in [21]

for the method of its calculation)

𝑅0(𝑡) =
(𝜌1𝑠1(𝑡)𝑣2(𝑡) + 𝛾𝑖 (𝑡)𝑙𝜌1𝑣1(𝑡))�̄�ℎ + 𝛾𝑎𝜌1𝑠2(𝑡)𝑣2(𝑡) + 𝛾𝑎𝛾𝑟 (𝑡)𝑙𝜌1𝑣1(𝑡)

𝑣2(𝑡)�̄�ℎ�̄�𝑖
+ (𝜌2𝑠1(𝑡)𝑣2(𝑡) + 𝛾𝑖 (𝑡)𝑙𝜌2𝑣1(𝑡))�̄�ℎ + 𝛾𝑎𝜌2𝑠2(𝑡)𝑣2(𝑡) + 𝛾𝑎𝛾𝑟 (𝑡)𝑙𝜌2𝑣1(𝑡)

𝑣2(𝑡)�̄�ℎ�̄�𝑝
,

(10)

where �̄�𝑖 = 𝛾𝑎 + 𝛾𝑖 + 𝛿𝑖, �̄�𝑝 = 𝛾𝑎 + 𝛾𝑖 + 𝛿𝑝 and �̄�ℎ = 𝛾𝑟 + 𝛿ℎ.
In the case of parameters, when they do not depend on time, the basic repro-

duction number 𝑅0 > 1 means that epidemic (or pandemic) will persist and on
the other hand 𝑅0 < 1 means that virus transmission dies out.
Denote by 𝑥 = (𝑉, 𝑆, 𝐸, 𝐼, 𝑃, 𝐴, 𝐻, 𝐹, 𝐶) and 𝑢 = (𝑣2, 𝑣1, 𝛾𝑖, 𝛾𝑟 , 𝑠, 𝑠1, 𝑠2,

𝜅, 𝑐, 𝑐1, 𝑐2, 𝑐3). In order to be near control theory let us denote the right-hand
sides of (1)–(9) by:

𝑓1(𝑡, 𝑉, 𝐼, 𝑃, 𝐴, 𝐻, 𝐶, 𝑣2, 𝛾𝑖, 𝛾𝑟) = 𝑣2(𝑁 −𝑉 + 𝐶) + 𝛾𝑖 (𝐼 + 𝑃 + 𝐴) + 𝛾𝑟𝐻,

𝑓2(𝑡, 𝑉, 𝑆, 𝐼, 𝑃, 𝐻, 𝑠, 𝑣1) =
𝑆

𝑁
− Λ − 𝑠(𝐼 + 𝑃 + 𝐻)𝑆 − 𝑙𝑣1𝑉𝑆,

𝑓3(𝑡, 𝑉, 𝑆, 𝐸, 𝐼, 𝑃, 𝐻, 𝑠1, 𝑠2, 𝑣1, 𝜅) = 𝑠1(𝐼 + 𝑃)𝑆 + 𝑠2𝐻𝑆 + 𝑙𝑣1𝑉𝑆 − 𝜅𝐸,
𝑓4(𝑡, 𝐸, 𝐼, 𝛾𝑖, 𝜅) = 𝜅𝜌1𝐸 − (𝛾𝑎 + 𝛾𝑖)𝐼 − 𝛿𝑖 𝐼,
𝑓5(𝑡, 𝐸, 𝑃, 𝛾𝑖, 𝜅) = 𝜅𝜌2𝐸 − (𝛾𝑎 + 𝛾𝑖)𝑃 − 𝛿𝑝𝑃,

𝑓6(𝑡, 𝐸, 𝜅) = 𝜅(1 − 𝜌1 − 𝜌2)𝐸,
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𝑓7(𝑡, 𝐼, 𝑃, 𝐻, 𝛾𝑟) = 𝛾𝑎 (𝐼 + 𝑃) − 𝛾𝑟𝐻 − 𝛿ℎ𝐻,
𝑓8(𝑡, 𝐼, 𝑃, 𝐻) = 𝛿𝑖 𝐼 + 𝛿𝑝𝑃 + 𝛿ℎ𝐻,

𝑓9(𝑡, 𝑉, 𝑆, 𝐼, 𝑃, 𝐻, 𝑐, 𝑐1, 𝑐2, 𝑐3) = 𝑐(𝑁 −𝑉) + 𝑐1𝑆 + 𝑐2(𝐼 + 𝑃) + 𝑐3𝐻

and put:

𝑓 (𝑡, 𝑥, 𝑢) = ( 𝑓1(𝑡, 𝑉, 𝐼, 𝑃, 𝐴, 𝐻, 𝐶, 𝑣2, 𝛾𝑖, 𝛾𝑟),
𝑓2(𝑡, 𝑉, 𝑆, 𝐼, 𝑃, 𝐻, 𝑠, 𝑣1),
𝑓3(𝑡, 𝑉, 𝑆, 𝐸, 𝐼, 𝑃, 𝐻, 𝑠1, 𝑠2, 𝑣1, 𝜅),
𝑓4(𝑡, 𝐸, 𝐼, 𝛾𝑖, 𝜅),
𝑓5(𝑡, 𝐸, 𝑃, 𝛾𝑖, 𝜅),
𝑓6(𝑡, 𝐸, 𝜅),
𝑓7(𝑡, 𝐼, 𝑃, 𝐻, 𝛾𝑟),
𝑓8(𝑡, 𝐼, 𝑃, 𝐻),
𝑓9(𝑡, 𝑉, 𝑆, 𝐼, 𝑃, 𝐻, 𝑐, 𝑐1, 𝑐2, 𝑐3)).

Then, we can rewrite system of (1)–(9) equations as

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥, 𝑢). (11)

1.2. Formulation of a game for COVID-19 problem

The cost functional for our control problem should minimize the government
costs of the pandemic𝐶 (𝑡) during the whole time and the time of its continuation,
the value of basic reproduction number 𝑅0 at final time and maximize the fraction
of population 𝑁 having antibodies 𝑉 (𝑡) at final time. Thus our goal functional
takes the form:

𝐽 (𝑥, 𝑢, 𝑇) =
𝑇∫
0

(𝐶 (𝑡) + 1)d𝑡 + (𝑎𝑅0(𝑇))𝑛 +𝑉 (𝑇), (12)

where 𝑎 and 𝑛 are suitable chosen (sufficiently large) for concrete problem. The
values 𝑎 and 𝑛 relate to the fact that we minimize 𝐽 also with respect to 𝑇 ,
therefore if there is not a power function then minimum of 𝐽 could be for some
cases with 𝑇 = 0.
We consider a 9-dimensional dynamical system controlled by twelve strategies

over a time. The dynamical system consists of a state variable 𝑥 : [0, 𝑇] → R9+
with nine coordinates (𝑉, 𝑆, 𝐸, 𝐼, 𝑃, 𝐴, 𝐻, 𝐹, 𝐶) and a profile of strategies

𝑢 = (𝑣2, 𝑣1, 𝛾𝑖, 𝛾𝑟 , 𝑠, 𝑠1, 𝑠2, 𝜅, 𝑐, 𝑐1, 𝑐2, 𝑐3),
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where 𝑣2(𝑡) ∈ V2, . . . , 𝑐3(𝑡) ∈ C3, 𝑡 ∈ [0, 𝑇], 𝑈 = V2 × . . . × C3, and all these
strategies are measurable functions and state equations are formulated in vector
form: 

¤𝑥(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡)) , 𝑡 ∈ [0, 𝑇],
𝑥(0) = 𝑥0 ,
𝑢(𝑡) ∈ 𝑈, 𝑡 ∈ [0, 𝑇],

(13)

with 𝑓 : [0, 𝑇] ×R9 ×R12 → R9 being a measurable function in 𝑡 and continuous
with respect to (𝑥, 𝑢). The initial state of the game is denoted by the vector
𝑥0 ∈ R9+. We are looking for solutions to (13) in space𝐻1(0, 𝑇 ;R9), i.e. absolutely
continuous functions with square integrable ¤𝑥(𝑡).
We want to maximize the value 𝑉 (𝑇) in the functional (12) and to minimize

the costs of the pandemic
𝑇∫
0
(𝐶 (𝑡) + 1)𝑑𝑡, the time 𝑇 of the last of pandemic as

well as the basic reproduction number 𝑅0(𝑇) at final time.
The point of view of developing a disease as a game has some history nn

epidemiology, see e.g. [29] where it is considered an evolutionary game. We
should have inmind that behavior of people related to vaccinations against disease
produces interest in game approaches (evolution games) – see e.g. [4–7, 16].
However, consideration of quarantine and isolation policy or a risk infection
took some attention (see e.g. [2, 16]). Evolutionary game theory arose from
the game theory by applying the basic concept of Darwinism to compensate
for the idea of time evolution, which in the original game theory has not been
appeared (as it mainly deals with equilibrium). This enables game players in
such models to behave more intelligently and realistically, however, in which
the theory predicts that game players should act defectively. In game theory, a
non-cooperative game is a game with competition between individual players.
Non-cooperative game tries to predict players’ individual strategies and payoffs,
and to find Nash equilibria. It is also more general, than cooperative games, which
can be analyzed using the terms of non-cooperative game theory. Then it is enough
to state sufficient assumptions to encompass all the possible strategies playersmay
adopt, in relation to arbitration. We want to consider a non-cooperative game for
the problem (12)–(13), in which strategies evaluate in time (are functions) and
the payoff is the functional defined on the set of these strategies (functions),
in contrary to the articles mentioned earlier, except partially in [16]. The game
considered by us in such approach is more general than those investigate in
[2, 4–7, 9] or [16].
In our approach to treat pandemic as a game we group our 12 strategies

into two players 𝜈 = (𝑣2, 𝑣1, 𝛾𝑖, 𝛾𝑟) and 𝜎 = (𝑠, 𝑠1, 𝑠2, 𝜅, 𝑐, 𝑐1, 𝑐2, 𝑐3). Therefore,
player 𝜈 wants to use the strategies 𝑣2, 𝑣1, 𝛾𝑖, 𝛾𝑟 to maximize (12) and player 𝜎
uses the strategies 𝑠, 𝑠1, 𝑠2, 𝜅, 𝑐, 𝑐1, 𝑐2, 𝑐3 to minimize (12). We assume that our
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game is non-cooperative. Thus, to stress dependence of the state variable 𝑥 for
the given player 𝜈, we have on the opponent 𝜎 profile of strategies

𝑢∼𝜎 = 𝑢𝜈 (𝑣2, 𝑣1, 𝛾𝑖, 𝛾𝑟) (14)

or for the given player 𝜎

𝑢∼𝜈 = 𝑢𝜎 (𝑠, 𝑠1, 𝑠2, 𝜅, 𝑐, 𝑐1, 𝑐2, 𝑐3). (15)

We write 𝑥𝑢∼𝜈 for the state variable satisfying (13) for player 𝜈 and for the given
opponents’ strategy 𝑢∼𝜈, i.e. 𝑥𝑢∼𝜈 satisfies:

¤𝑥𝑢∼𝜈 (𝑡) = 𝑓

(
𝑡, 𝑥𝑢

∼𝜈 (𝑡), (𝑢𝜈 (𝑡), 𝑢∼𝜈 (𝑡))
)
, 𝑡 ∈ [0, 𝑇],

𝑥𝑢
∼𝜈 (0) = 𝑥0 ,

𝑢𝜈 (𝑡) ∈ 𝑈𝜈 = V2 ×V1 × G𝑖 × G𝑟 , 𝑡 ∈ [0, 𝑇],
𝑢∼𝜈 (𝑡) ∈ 𝑈𝜎 = S × S1 × S2 × K × C × C1 × C2 × C3, 𝑡 ∈ [0, 𝑇] .

(16)

Similarly we write 𝑥𝑢∼𝜎 for the state variable satisfying (13) for player 𝜎 and for
the given opponents’ strategy 𝑢∼𝜎, i.e. 𝑥𝑢∼𝜎 satisfies

¤𝑥𝑢∼𝜎 (𝑡) = 𝑓

(
𝑡, 𝑥𝑢

∼𝜎 (𝑡), (𝑢𝜎 (𝑡), 𝑢∼𝜎 (𝑡))
)
, 𝑡 ∈ [0, 𝑇],

𝑥𝑢
∼𝜎 (0) = 𝑥0 ,

𝑢∼𝜎 (𝑡) ∈ 𝑈𝜈 = V2 ×V1 × G𝑖 × G𝑟 , 𝑡 ∈ [0, 𝑇],
𝑢𝜎 (𝑡) ∈ 𝑈𝜎 = S × S1 × S2 × K × C × C1 × C2 × C3, 𝑡 ∈ [0, 𝑇] .

(17)

An admissible process for the game (12) subject to (13) with the strategies of the
player 𝜈 and the given opponent 𝜎 is a trio (𝑢𝜈, 𝑥𝑢

∼𝜈
, 𝑇), which belongs to the set

𝐴𝑑𝜈 (𝑢∼𝜈) =
{
(𝑢𝜈, 𝑥𝑢

∼𝜈
, 𝑇) : (𝑢𝜈, 𝑥𝑢

∼𝜈
, 𝑇) satisfies (16)

}
.

An admissible process for the game (12) subject to (13) with the strategies of the
player 𝜎 and given opponent 𝜈 is a trio (𝑢𝜎, 𝑥𝑢

∼𝜎
, 𝑇) which belongs to the set

𝐴𝑑𝜎 (𝑢∼𝜎) =
{
(𝑢𝜎, 𝑥𝑢

∼𝜎
, 𝑇) : (𝑢𝜎, 𝑥𝑢

∼𝜎
, 𝑇) satisfies (17)

}
.

For the given opponents’ strategies 𝑢∼𝜈 we constitute a differential game in which
the goal functional (12) takes the form:

𝐽 (𝑥𝑢∼𝜈 , 𝑢𝜈, 𝑇) =
𝑇∫
0

(𝐶 (𝑡) + 1)d𝑡 + (𝑎𝑅0(𝑇))𝑛 +𝑉 (𝑇), (18)
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which we maximize in the set 𝐴𝑑𝜈 (𝑢∼𝜈) and for the given opponents’ strategies
𝑢∼𝜎 the goal functional takes the form:

𝐽 (𝑥𝑢∼𝜎 , 𝑢𝜎, 𝑇) =
𝑇∫
0

(𝐶 (𝑡) + 1)d𝑡 + (𝑎𝑅0(𝑇))𝑛 +𝑉 (𝑇), (19)

which we minimize in the set 𝐴𝑑𝜎 (𝑢∼𝜎).
We name a pair of strategies (�̄�𝜈, �̄�𝜎) an open-loopNash equilibrium if process

(𝑥�̄�∼𝜈 , �̄�𝜈, 𝑇) ∈ 𝐴𝑑𝜈 (�̄�∼𝜈) corresponding to �̄�𝜈 and for all trio (𝑥�̄�∼𝜈 , 𝑢𝜈, 𝑇) ∈
𝐴𝑑𝜈 (�̄�∼𝜈), 𝑇 ¬ 𝑇 , satisfies the inequality

𝐽

(
𝑥�̄�

∼𝜈
, �̄�𝜈, 𝑇

)
­ 𝐽

(
𝑥�̄�

∼𝜈
, 𝑢𝜈, 𝑇

)
(20)

and process (𝑥�̄�∼𝜎 , �̄�𝜎, 𝑇) ∈ 𝐴𝑑𝜎 (�̄�∼𝜎) corresponding to �̄�𝜎 and for all trio
(𝑥�̄�∼𝜎 , 𝑢𝜎, 𝑇) ∈ 𝐴𝑑𝜎 (�̄�∼𝜎), 𝑇 ­ 𝑇 , satisfies the inequality

𝐽

(
𝑥�̄�

∼𝜎
, �̄�𝜎, 𝑇

)
¬ 𝐽

(
𝑥�̄�

∼𝜎
, 𝑢𝜎, 𝑇

)
. (21)

The state variable 𝑥�̄�∼𝜈 , corresponding to the strategy �̄�𝜈, the state variable
𝑥�̄�

∼𝜎 , corresponding to the strategy �̄�𝜎 and time 𝑇 we call the Nash equilibrium
trajectory. Note, we assume the same 𝑇 in both inequalities (20) and (21).

2. Dual open-loop game

We propose a dual dynamic programming approach to the open-loop game
(18) and (19), because classical tools of game theory for our game (18) and
(19) are difficult to be applied (see e.g. [3, 16, 29]). We extend dual approach
for dynamic programming from [17] and [25]. The method presented here also
extends that developed in [20, 24]. The dual approach means that we do not deal
directly with a value function, but with some auxiliary function 𝑊 , defined in
a dual set 𝑃, satisfying a dual dynamic inequality and then we derive a kind of
verification conditions for primal value function. New challenge in this approach
to (18) and (19) is that we want to deal with approximate open-loop strategies.
Thus, let us start with the definition of a dual set. Let 𝑃𝜈, 𝑃𝜎 ⊂ R10 be sets

of the variables (𝑡, 𝑝), 𝑝 ∈ R9, 𝑡 ∈ [0, 𝑇]. Denote by 𝑷𝜈, 𝑷𝜎 their projections
on the space of variable 𝑝. In practice they can be any sets which simplify
our computations. Denote by𝑊1(𝑃𝜈) and𝑊1(𝑃𝜎) the specific Sobolev spaces of
functions of the variables (𝑡, 𝑝) having the first order weak derivative with respect
to 𝑡 and continuous with respect to the variable 𝑝. We need notions of auxiliaries
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trajectories. However, first we have to introduce a kind of dual Hamilton-Jacobi
inequality with an auxiliary pair of functions 𝑦0𝜈 (𝑡),𝑊𝜈 (𝑡, 𝑝), 𝑡 ∈ [0, 𝑇], 𝑝 ∈ 𝑷𝜈,
𝑦0𝜈 ∈ 𝐿1(0, 𝑇),𝑊𝜈 ∈ 𝑊1(𝑃𝜈). Thus let the opponents’ strategy 𝑢∼𝜈 and 𝜀 > 0 be
given. We assume that the pair 𝑦0𝜈 (𝑡), 𝑊𝜈 (𝑡, 𝑝), 𝑡 ∈ [0, 𝑇], 𝑝 ∈ 𝑷𝜈 satisfies, for
some 𝑇 > 0, in [0, 𝑇] ×𝑷𝜈, the following dual dynamic programming differential
inequality:

𝑦0𝜈 (𝑡) ­ sup
{
𝑝(𝑝𝑊𝜈,𝑡 (𝑡, 𝑝)) + 𝑝 𝑓 (𝑡,−𝑝𝑊𝜈 (𝑡, 𝑝), 𝑢𝜈, 𝑢∼𝜈 (𝑡))

− 𝑝9𝑊𝜈 (𝑡, 𝑝) : 𝑢𝜈 ∈ 𝑈𝜈
}

(22)

with the initial condition

𝑝𝑊𝜈 (0, 𝑝) = 𝑥0, 𝑝 ∈ 𝑷𝜈, 𝑝 = (𝑝1, . . . , 𝑝9).

Then we require that, for some 𝑦𝜈 (·) ∈ 𝐿1(0, 𝑇), auxiliaries trajectories 𝑝(𝑡),
𝑡 ∈ [0, 𝑇], corresponding to the player 𝜈 satisfy for strategies 𝑢𝜈 (𝑡) ∈ 𝑈𝜈

𝑝(𝑡) (𝑝(𝑡)𝑊𝜈,𝑡 (𝑡, 𝑝(𝑡))) + 𝑝(𝑡) 𝑓 (𝑡,−𝑝(𝑡)𝑊𝜈 (𝑡, 𝑝(𝑡)), 𝑢𝜈 (𝑡), 𝑢∼𝜈 (𝑡))

− 1
𝑇

(
𝑝1(𝑇)𝑊𝜈 (𝑇, 𝑝(𝑇)) + (𝑎𝑅𝜈0 (𝑇))

𝑛
)
­ 𝑦𝜈 (𝑡) − 𝜀, (23)

where 𝑅𝜈0 is 𝑅0 from (10) calculated along strategy 𝑢
𝜈 and opponents’ strategy 𝑢𝜎.

We assume that auxiliaries trajectories 𝑝(𝑡), 𝑡 ∈ [0, 𝑇], and the function𝑊𝜈 (𝑡, 𝑝)
along it, define our original trajectory for player 𝜈, i.e. 𝑥(𝑡) = −𝑝(𝑡)𝑊𝜈 (𝑡, 𝑝(𝑡)).
Thus, for a given opponents’ strategy 𝑢∼𝜈 and fixed 𝑝𝜈0 ∈ 𝑷𝜈 we define the set:

P𝜈 (𝑢∼𝜈) =
{
𝑝 : [0, 𝑇] → 𝑷𝜈 : 𝑝(0) = 𝑝𝜈0, exists 𝑢𝜈 (𝑡) ∈ 𝑈𝜈,

such that the pair (𝑢𝜈 (·), 𝑝(·)) satisfies (23)} .

Similarly we follow for player 𝜎, i.e. we introduce a dual Hamilton-Jacobi in-
equality with an auxiliary pair of functions 𝑦0𝜎 (𝑡),𝑊𝜎 (𝑡, 𝑝), 𝑡 ∈ [0, 𝑇], 𝑝 ∈ 𝑷𝜎,
𝑦0𝜎 ∈ 𝐿1(0, 𝑇), 𝑊𝜎 ∈ 𝑊1(𝑃𝜎). Then for the given opponents’ strategy 𝑢∼𝜎 and
𝜀 > 0 we assume that the pair 𝑦0𝜎 (𝑡), 𝑊𝜎 (𝑡, 𝑝), 𝑡 ∈ [0, 𝑇], 𝑝 ∈ 𝑷𝜎 satisfies, for
some 𝑇 > 0, in [0, 𝑇] × 𝑷𝜎 the following dual dynamic programming differential
inequality:

−𝜀 + 𝑦0𝜎 (𝑡) ¬ inf
{
𝑝(𝑝𝑊𝜎,𝑡 (𝑡, 𝑝)) + 𝑝 𝑓 (𝑡,−𝑝𝑊𝜎 (𝑡, 𝑝), 𝑢𝜎, 𝑢∼𝜎 (𝑡))

− 𝑝9𝑊𝜎 (𝑡, 𝑝) : 𝑢𝜎 ∈ 𝑈𝜎
}

(24)

with the initial condition

𝑝𝑊𝜎 (0, 𝑝) = 𝑥0, 𝑝 ∈ 𝑷𝜎, 𝑝 = (𝑝1, . . . , 𝑝9).
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Then we require that, for some 𝑦𝜎 (·) ∈ 𝐿1(0, 𝑇), auxiliaries trajectories 𝑝(𝑡),
𝑡 ∈ [0, 𝑇] corresponding to the player 𝜎 satisfy for strategies 𝑢𝜎 (𝑡) ∈ 𝑈𝜎

𝑝(𝑡) (𝑝(𝑡)𝑊𝜎,𝑡 (𝑡, 𝑝(𝑡))) + 𝑝(𝑡) 𝑓 (𝑡,−𝑝(𝑡)𝑊𝜎 (𝑡, 𝑝(𝑡)), 𝑢𝜎 (𝑡), 𝑢∼𝜎 (𝑡))

− 1
𝑇

(
𝑝1(𝑇)𝑊𝜎 (𝑇, 𝑝(𝑇)) + (𝑎𝑅𝜎0 (𝑇))

𝑛
)
¬ 𝑦𝜎 (𝑡), (25)

where 𝑅𝜎0 is 𝑅0 from (10) calculated along strategy 𝑢
𝜎 and opponents’ strategy 𝑢𝜈.

We assume that auxiliaries trajectories 𝑝(𝑡), 𝑡 ∈ [0, 𝑇] and the function𝑊𝜎 (𝑡, 𝑝)
along it, define our original trajectory for player 𝜎, i.e. 𝑥(𝑡) = 𝑝(𝑡)𝑊𝜎 (𝑡, 𝑝(𝑡)).
Thus for a given opponents’ strategy 𝑢∼𝜎 and fixed 𝑝𝜎0 ∈ 𝑷𝜎 we define the set:

P𝜎 (𝑢∼𝜎) =
{
𝑝 : [0, 𝑇] → 𝑷𝜎 : 𝑝(0) = 𝑝𝜎0 , exists 𝑢𝜎 (𝑡) ∈ 𝑈𝜎,

such that the pair (𝑢𝜎 (·), 𝑝(·)) satisfies (25)} .
It is clear that not for all strategies 𝑢𝜈 (𝑡) ∈ 𝑈𝜈 there exists 𝑝(·) such that the pair
(𝑢𝜈 (·), 𝑝(·)) satisfies (23). Therefore, we reduce the set 𝐴𝑑𝜈 (𝑢∼𝜈) to the set

𝐴𝑑𝜈 (𝑢∼𝜈, 𝑷𝜈) =
{
(𝑥𝑢∼𝜈 , 𝑢𝜈, 𝑇) : (𝑢𝜈, 𝑝) satisfies (23)

}
.

An admissible process for the game (19) with the strategies of the player 𝜎 and
given opponent 𝜈 is a trio (𝑥𝑢∼𝜎 , 𝑢𝜎, 𝑇) which belongs to the set

𝐴𝑑𝜎 (𝑢∼𝜎, 𝑷𝜎) = {(𝑥𝑢∼𝜎 , 𝑢𝜎, 𝑇) : (𝑢𝜎, 𝑝) satisfies (25)}.
Hence, we must reformulate our definition of the Nash equilibrium: a pair

of strategies (�̄�𝜈, �̄�𝜎) is the open-loop Nash equilibrium if process (𝑥�̄�
∼𝜈
, �̄�𝜈, 𝑇)

belongs to 𝐴𝑑𝜈 (�̄�∼𝜈, 𝑷𝜈) for corresponding �̄�𝜈 and for all trio (𝑥�̄�∼𝜈 , 𝑢𝜈, 𝑇) ∈
𝐴𝑑𝜈 (�̄�∼𝜈, 𝑷𝜈) with 𝑇 ¬ 𝑇 satisfies the inequality

𝐽 (𝑥�̄�∼𝜈 , �̄�𝜈, 𝑇) ­ 𝐽 (𝑥�̄�
∼𝜈
, 𝑢𝜈, 𝑇) (26)

and process (𝑥�̄�∼𝜎 , �̄�𝜎, 𝑇) ∈ 𝐴𝑑𝜎 (�̄�∼𝜎, 𝑷𝜎) corresponding to �̄�𝜎 and for all trio
(𝑥�̄�∼𝜎 , 𝑢𝜎, 𝑇) ∈ 𝐴𝑑𝜎 (�̄�∼𝜎, 𝑷𝜎) with 𝑇 ­ 𝑇 satisfies

𝐽 (𝑥�̄�∼𝜎 , �̄�𝜎, 𝑇) ¬ 𝐽 (𝑥�̄�
∼𝜎
, 𝑢𝜎, 𝑇). (27)

As we are looking for approximate solutions to our game, we introduce a notion
of 𝜀-Nash equilibrium for given 𝜀. Each pair of strategies (�̄�𝜀𝜈, �̄�𝜀𝜎) we call an 𝜀-
open-loop Nash equilibrium if process (𝑥�̄�𝜀∼𝜈𝜀 , �̄�𝜀𝜈, 𝑇

𝜀) belongs to 𝐴𝑑𝜈 (�̄�𝜀∼𝜈, 𝑷𝜈)
for corresponding �̄�𝜀𝜈 and for all trio (𝑥�̄�

𝜀∼𝜈
, 𝑢𝜈, 𝑇) ∈ 𝐴𝑑𝜈 (𝑢∼𝜈, 𝑷𝜈) with 𝑇 ¬ 𝑇𝜀

satisfies the inequality

𝐽 (𝑥�̄�𝜀∼𝜈𝜀 , �̄�𝜀𝜈, 𝑇
𝜀) ­ 𝐽 (𝑥�̄�𝜀∼𝜈 , 𝑢𝜈, 𝑇) − 2𝜀 (28)

and process (𝑥�̄�𝜀∼𝜎𝜀 , �̄�𝜀𝜎, 𝑇
𝜀) ∈ 𝐴𝑑𝜎 (�̄�𝜀∼𝜎, 𝑷𝜎) corresponding to �̄�𝜀𝜎 and for all

trio (𝑥�̄�𝜀∼𝜎 , 𝑢𝜎, 𝑇) ∈ 𝐴𝑑𝜎 (�̄�𝜀∼𝜎, 𝑷𝜎) with 𝑇 ­ 𝑇𝜀 satisfies
𝐽 (𝑥�̄�𝜀∼𝜎𝜀 , �̄�𝜀𝜎, 𝑇

𝜀) ¬ 𝐽 (𝑥�̄�𝜀∼𝜎 , 𝑢𝜎, 𝑇) + 2𝜀. (29)
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3. Verification theorem for approximate dual open-loop Nash equilibrium

Having the notions and notations introduced in the former section we are
ready to formulate and prove a kind of a verification theorem allowing to check
whether a dual open-loop strategy is candidate to be 𝜀-Nash equilibrium for the
game (28)–(29).

Theorem 1 Assume that there exists a trio 𝑦0𝜈 (𝑡), 𝑦𝜈 (𝑡), 𝑊𝜈 (𝑡, 𝑝) and 𝑇𝜀 > 0,
𝑦0𝜈 (𝑡)−𝑦𝜈 (𝑡) ­ 0, 𝑡 ∈ [0, 𝑇], 𝑝 ∈ 𝑷𝜈 satisfying in [0, 𝑇𝜀]×𝑷𝜈 (22) with opponents’
strategy �̄�𝜀∼𝜈. Let auxiliary trajectories 𝑝𝜀𝜈 ∈ P𝜈 (�̄�𝜀∼𝜈) together with strategy �̄�𝜀𝜈
satisfy

𝑦0𝜈 (𝑡) − 𝜀 ¬ 𝑝𝜀𝜈 (𝑡) (𝑝𝜀𝜈 (𝑡)𝑊𝜈,𝑡 (𝑡, 𝑝𝜀𝜈 (𝑡)))
+ 𝑝𝜀𝜈 (𝑡) 𝑓 (𝑡,−𝑝𝜀𝜈 (𝑡)𝑊𝜈 (𝑡, 𝑝𝜀𝜈 (𝑡)), �̄�𝜀𝜈 (𝑡), �̄�𝜀∼𝜈 (𝑡))
− 𝑝𝜀9,𝜈 (𝑡)𝑊𝜈 (𝑡, 𝑝𝜀𝜈 (𝑡)), (30)

𝑦𝜈 (𝑡) ­ 𝑝𝜀𝜈 (𝑡) (𝑝𝜀𝜈 (𝑡)𝑊𝜈,𝑡 (𝑡, 𝑝𝜀𝜈 (𝑡)))
+ 𝑝𝜀𝜈 (𝑡) 𝑓 (𝑡,−𝑝𝜀𝜈 (𝑡)𝑊𝜈 (𝑡, 𝑝𝜀𝜈 (𝑡)), �̄�𝜀𝜈 (𝑡), �̄�𝜀∼𝜈 (𝑡))

− 1
𝑇𝜀

(
𝑝𝜀1,𝜈 (𝑇

𝜀)𝑊𝜈 (𝑇𝜀, 𝑝𝜀𝜈 (𝑇𝜀)) + (𝑎𝑅𝜈0 (𝑇
𝜀))𝑛

)
. (31)

Assume that there exists a trio 𝑦0𝜎 (𝑡), 𝑦𝜎 (𝑡), 𝑊𝜎 (𝑡, 𝑝), 𝑦0𝜎 (𝑡) − 𝑦𝜎 (𝑡) ­ 0, 𝑡 ∈
[0, 𝑇1], 𝑇1 > 𝑇𝜀, 𝑝 ∈ 𝑷𝜎 satisfying in [0, 𝑇1] × 𝑷𝜎 (24) with opponents’ strategy
�̄�𝜀∼𝜎. Let auxiliary trajectories 𝑝𝜀𝜎 ∈ P𝜎 (�̄�𝜀∼𝜎) together with strategy �̄�𝜀𝜎 satisfy
in [0, 𝑇𝜀]

𝑦0𝜎 (𝑡) ­ 𝑝𝜀𝜎 (𝑡) (𝑝𝜀𝜎 (𝑡)𝑊𝜎,𝑡 (𝑡, 𝑝𝜀𝜎 (𝑡)))
+ 𝑝𝜀𝜎 (𝑡) 𝑓 (𝑡,−𝑝𝜀𝜎 (𝑡)𝑊𝜎 (𝑡, 𝑝𝜀𝜎 (𝑡)), �̄�𝜀𝜎 (𝑡), �̄�𝜀∼𝜎 (𝑡))
− 𝑝𝜀9,𝜎 (𝑡)𝑊𝜎 (𝑡, 𝑝𝜀𝜎 (𝑡), (32)

−𝜀 + 𝑦𝜎 (𝑡) ¬ 𝑝𝜀𝜎 (𝑡) (𝑝𝜀𝜎 (𝑡)𝑊𝜎,𝑡 (𝑡, 𝑝𝜀𝜎 (𝑡)))
+ 𝑝𝜀𝜎 (𝑡) 𝑓 (𝑡,−𝑝𝜀𝜎 (𝑡)𝑊𝜎 (𝑡, 𝑝𝜀𝜎 (𝑡)), �̄�𝜀𝜎 (𝑡)�̄�𝜀∼𝜎 (𝑡))

− 1
𝑇𝜀

(
𝑝𝜀1,𝜎 (𝑇

𝜀)𝑊𝜎 (𝑇𝜀, 𝑝𝜀𝜎 (𝑇𝜀)) + (𝑎𝑅𝜎0 (𝑇
𝜀))𝑛

)
. (33)

Then, the dual open-loop strategies (�̄�𝜀𝜈, �̄�𝜀𝜎) are Nash equilibrium for the game
(28)–(29).

Proof. We have to prove that for strategy �̄�𝜀𝜈 (·) and strategy �̄�𝜀𝜎 (·) with cor-
responding their processes, the inequalities (28), (29) hold for all processes
from 𝐴𝑑𝜈 (�̄�𝜀∼𝜈, 𝑷𝜈) and 𝐴𝑑𝜎 (�̄�𝜀∼𝜎, 𝑷𝜎), respectively. Thus let us take any
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𝑝(·) ∈ P𝜈 (�̄�𝜀∼𝜈) with 𝑇 ¬ 𝑇𝜀 and put it in (22) in place of 𝑝 assuming the
pair 𝑦𝜈 (𝑡),𝑊𝜈 (𝑡, 𝑝) and 𝑇 . Then we get, for 𝑡 ∈ [0, 𝑇]

𝑦0𝜈 (𝑡) ­ 𝑝(𝑡) (𝑝(𝑡)𝑊𝜈,𝑡 (𝑡, 𝑝(𝑡))) + 𝑝(𝑡) 𝑓 (𝑡,−𝑝(𝑡)𝑊𝜈 (𝑡, 𝑝(𝑡)), 𝑢𝜈 (𝑡), �̄�𝜀∼𝜈 (𝑡))
− 𝑝9(𝑡)𝑊𝜈 (𝑡, 𝑝(𝑡)). (34)

Since 𝑝(·) ∈ P𝜈 (�̄�𝜀∼𝜈) then it satisfies (23) and we can transform (34) to

𝜀 + 𝑦0𝜈 (𝑡) − 𝑦𝜈 (𝑡) ­ −𝑝9(𝑡)𝑊𝜈 (𝑡, 𝑝(𝑡))

− 1
𝑇
(𝑝1(𝑇)𝑊𝜈 (𝑇, 𝑝(𝑇)) + (𝑎𝑅𝜈0 (𝑇))

𝑛). (35)

Integrating (35) in the interval [0, 𝑇] we come to

𝑇∫
0

(𝑦0𝜈 (𝑡) − 𝑦𝜈 (𝑡))d𝑡 ­ −
𝑇∫
0

𝑝9(𝑡)𝑊𝜈 (𝑡, 𝑝(𝑡))d𝑡

− 𝑝1(𝑇)𝑊𝜈 (𝑇, 𝑝(𝑇)) + (𝑎𝑅𝜈0 (𝑇))
𝑛 − 𝜀. (36)

Following similarly as above, but now taking the auxiliary trajectories 𝑝𝜀𝜈 ∈
P𝜈 (�̄�𝜀∼𝜈) togetherwith strategy �̄�𝜀𝜈 and inequalities (30), (31)we get the inequality

𝑇 𝜀∫
0

(𝑦0𝜈 (𝑡) − 𝑦𝜈 (𝑡))d𝑡 ¬ −
𝑇 𝜀∫
0

𝑝𝜀9,𝜈 (𝑡)𝑊𝜈 (𝑡, 𝑝𝜀𝜈 (𝑡))d𝑡

− 𝑝𝜀1,𝜈 (𝑇
𝜀)𝑊𝜈 (𝑇𝜀, 𝑝𝜀𝜈 (𝑇𝜀)) + (𝑎𝑅𝜈0 (𝑇

𝜀))𝑛 − 𝜀. (37)

Comparing (36), (37) and taking into account that 𝑥(𝑡) = −𝑝(𝑡)𝑊𝜈 (𝑡, 𝑝(𝑡)),
𝑇 ¬ 𝑇𝜀 and 𝑦0𝜈 (𝑡) − 𝑦𝜈 (𝑡) ­ 0, 𝑡 ∈ [0, 𝑇] we get

𝐽 (𝑥�̄�𝜀∼𝜈𝜀 , �̄�𝜀𝜈, 𝑇
𝜀) ­ 𝐽 (𝑥�̄�𝜀∼𝜈 , 𝑢𝜈, 𝑇) − 2𝜀

i.e. the first inequality in the definition of the 𝜀-dual open-loop Nash equilibrium
for our game.
In order to receive the second one we follow analogously, thus we only sketch

the proof of it. Let 𝑝(·) ∈ P𝜎 (�̄�𝜀∼𝜎) and put it in (24) assuming the pair 𝑦𝜎 (𝑡),
𝑊𝜎 (𝑡, 𝑝) and 𝑇1 ­ 𝑇 ­ 𝑇𝜀. Then for 𝑡 ∈ [0, 𝑇]

− 𝜀 + 𝑦0𝜎 (𝑡) ¬ 𝑝(𝑡) (𝑝(𝑡)𝑊𝜎,𝑡 (𝑡, 𝑝(𝑡)))
+ 𝑝(𝑡) 𝑓 (𝑡,−𝑝(𝑡)𝑊𝜎 (𝑡, 𝑝(𝑡)), 𝑢𝜎 (𝑡), �̄�𝜀∼𝜎 (𝑡)) − 𝑝9(𝑡)𝑊𝜎 (𝑡, 𝑝(𝑡)). (38)
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Since 𝑝(·) ∈ P𝜎 (�̄�𝜀∼𝜎) then we transform (38) to

−𝜀 + 𝑦0𝜎 (𝑡) − 𝑦𝜎 (𝑡) ¬ −𝑝9(𝑡)𝑊𝜎 (𝑡, 𝑝(𝑡)) −
1
𝑇

(
𝑝1(𝑇)𝑊𝜎 (𝑇, 𝑝(𝑇))

+ (𝑎𝑅𝜎0 (𝑇))
𝑛
)
. (39)

Integrating (39) we come to

𝑇∫
0

(𝑦0𝜎 (𝑡) − 𝑦𝜎 (𝑡))d𝑡 ¬ −
𝑇∫
0

𝑝9(𝑡)𝑊𝜎 (𝑡, 𝑝(𝑡))d𝑡

− 𝑝1(𝑇)𝑊𝜎 (𝑇, 𝑝(𝑇)) + (𝑎𝑅𝜎0 (𝑇))
𝑛 + 𝜀. (40)

Next now taking the auxiliary trajectories 𝑝𝜀𝜎 ∈ P𝜎 (�̄�𝜀∼𝜎) together with strategy
�̄�𝜀𝜎 and suitably adapted inequalities (32), (33) we get the inequality

𝑇 𝜀∫
0

(𝑦0𝜎 (𝑡) − 𝑦𝜎 (𝑡))d𝑡 ¬ −
𝑇 𝜀∫
0

𝑝𝜀9,𝜎 (𝑡)𝑊𝜎 (𝑡, 𝑝𝜀𝜎 (𝑡))d𝑡

− 𝑝𝜀1,𝜎 (𝑇
𝜀)𝑊𝜎 (𝑇𝜀, 𝑝𝜀𝜎 (𝑇𝜀)) + (𝑎𝑅𝜎0 (𝑇

𝜀))𝑛 + 𝜀. (41)

Thus (40) and (41) imply

𝐽 (𝑥�̄�𝜀∼𝜎𝜀 , �̄�𝜀𝜎, 𝑇
𝜀) ¬ 𝐽 (𝑥�̄�∼𝜎 , 𝑢𝜎, 𝑇) + 2𝜀, (42)

i.e. the second inequality of 𝜀-Nash equilibrium (29). 2

4. Algorithm

In this section we give numerical algorithm.

1. Let 𝜀 > 0 and fix an initial condition 𝑥(0) = 𝑥0, where 𝑥0 ∈ R9.

2.1. Fix 𝑀 × 𝐿 of the fours strategies 𝑢𝜈 𝑗 = {𝑣2 𝑗 (𝑡), 𝑣1 𝑗 (𝑡), 𝛾𝑖 𝑗 (𝑡), 𝛾𝑟 𝑗 (𝑡)}, 𝑡 ∈
[0, 𝑇𝑘 ], 𝑗 = 1, . . . , 𝑀 , 𝑘 = 1, . . . , 𝐿 for player 𝑢𝜈 and fix 1×𝐿 of the eight op-
ponents’ strategies 𝑢∼𝜈 = {𝑠(𝑡), 𝑠1(𝑡), 𝑠2(𝑡), 𝜅(𝑡), 𝑐(𝑡), 𝑐1(𝑡), 𝑐2(𝑡), 𝑐3(𝑡)},
𝑡 ∈ [0, 𝑇𝑘 ], 𝑘 = 1, . . . , 𝐿. For each of the 𝑀 × 𝐿 fours strategies 𝑢𝜈 and
1× 𝐿 of the eights opponents’ strategies 𝑢∼𝜈, solve 𝑀 × 𝐿-times differential
equation (11) in [0, 𝑇𝑘 ], 𝑘 = 1, . . . , 𝐿, finding 𝐶𝜈

𝑗
and 𝑉 𝜈

𝑗
, 𝑗 = 1, . . . , 𝑀 ,

which describe system (1)–(9).
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2.2. Fix 𝑀 × 𝐿 of the eights strategies
𝑢𝜎 𝑗 = {𝑠 𝑗 (𝑡), 𝑠1 𝑗 (𝑡), 𝑠2 𝑗 (𝑡), 𝜅 𝑗 (𝑡), 𝑐 𝑗 (𝑡), 𝑐1 𝑗 (𝑡), 𝑐2 𝑗 (𝑡), 𝑐3 𝑗 (𝑡)}, 𝑡 ∈ [0, 𝑇𝑘 ],
𝑗 = 1, . . . , 𝑀 , 𝑘 = 1, . . . , 𝐿 for player 𝑢𝜎 and fix 1×𝐿 of the four opponents’
strategies 𝑢∼𝜎 = {𝑣2(𝑡), 𝑣1(𝑡), 𝛾𝑖 (𝑡), 𝛾𝑟 (𝑡)}, 𝑡 ∈ [0, 𝑇𝑘 ], 𝑘 = 1, . . . , 𝐿. For
each of the 𝑀 × 𝐿 eights strategies 𝑢𝜎 and 1 × 𝐿 of the fours opponents’
strategies 𝑢∼𝜎, solve 𝑀 × 𝐿-times differential equation (11) in [0, 𝑇𝑘 ],
𝑘 = 1, . . . , 𝐿, finding 𝐶𝜎

𝑗
and 𝑉𝜎

𝑗
, 𝑗 = 1, . . . , 𝑀 , which describe system

(1)–(9).

3.1. For each of the 𝑀 × 𝐿 fours strategies 𝑢𝜈 and 1× 𝐿 of the eights opponents’
strategies 𝑢∼𝜈 calculate 𝑅𝜈0 𝑗 (𝑇𝑘 ) from (10), 𝑗 = 1, . . . , 𝑀 , 𝑘 = 1, . . . , 𝐿.

3.2. For each of the 𝑀 × 𝐿 eights strategies 𝑢𝜎 and 1× 𝐿 of the fours opponents’
strategies 𝑢∼𝜎 calculate 𝑅𝜎0 𝑗 (𝑇𝑘 ) from (10), 𝑗 = 1, . . . , 𝑀 , 𝑘 = 1, . . . , 𝐿.

4.1. For each of the 𝑀 × 𝐿 fours strategies 𝑢𝜈, 1 × 𝐿 of the eights opponents’

strategies 𝑢∼𝜈 and for𝑀×𝐿 functions𝐶𝜈
𝑗
, 𝑗 = 1, . . . , 𝑀 , calculate

𝑇𝑘∫
0
(𝐶𝜈

𝑗
(𝑡)+

1)𝑑𝑡, 𝑗 = 1, . . . , 𝑀 , 𝑘 = 1, . . . , 𝐿. For so found𝑀×𝐿 integrals, for 𝑅𝜈0 𝑗 (𝑇𝑘 ),
𝑉 𝜈
𝑗
(𝑇𝑘 ), 𝑗 = 1, . . . , 𝑀 , 𝑘 = 1, . . . , 𝐿 and for 𝑎 and 𝑛 suitable chosen for

a concrete problem, find from (18) 𝑀 × 𝐿 values of the functional 𝐽. We
choose values 𝑎 and 𝑛 in such a way that maximal 𝑇𝑘 , 𝑘 = 1, . . . , 𝐿 could
not decide only on the value of the functional 𝐽.

4.2. For each of the 𝑀 × 𝐿 eights strategies 𝑢𝜎, 1 × 𝐿 of the fours oppo-
nents’ strategies 𝑢∼𝜎 and for 𝑀 × 𝐿 functions 𝐶𝜎

𝑗
, 𝑗 = 1, . . . , 𝑀 , calculate

𝑇𝑘∫
0
(𝐶𝜎

𝑗
(𝑡) + 1)𝑑𝑡, 𝑗 = 1, . . . , 𝑀 , 𝑘 = 1, . . . , 𝐿. For so found 𝑀 × 𝐿 integrals,

for 𝑅𝜎0 𝑗 (𝑇𝑘 ), 𝑉
𝜎
𝑗
(𝑇𝑘 ), 𝑗 = 1, . . . , 𝑀 , 𝑘 = 1, . . . , 𝐿 and for 𝑎 and 𝑛 found in

step 4.1 and such that minimum of the functional 𝐽 could not be at 𝑇𝑘 = 0,
𝑘 = 1, . . . , 𝐿, find from (19) 𝑀 × 𝐿 values of the functional 𝐽.

5.1. From among of the 𝑀 × 𝐿 values of the functionals (18), choose the
one with maximal value and denote suitable strategies, time, class of
the vaccinated and costs, which correspond to this value as follows 𝑢𝑠𝜈 =

(𝑣𝑠2(𝑡), 𝑣
𝑠
1(𝑡), 𝛾

𝑠
𝑖
(𝑡), 𝛾𝑠𝑟 (𝑡)) and 𝑢∼𝜈𝑠 = (𝑠𝑠 (𝑡), 𝑠𝑠1(𝑡), 𝑠

𝑠
2(𝑡), 𝜅

𝑠 (𝑡), 𝑐𝑠 (𝑡), 𝑐𝑠1(𝑡),
𝑐𝑠2(𝑡), 𝑐

𝑠
3(𝑡)), 𝑡 ∈ [0, 𝑇𝜀], 𝑉𝜀𝜈 and 𝐶𝜀𝜈 . We name these strategies and time 𝑇𝜀

suspected optimal.

5.2. From among of the 𝑀 × 𝐿 values of the functionals (19), choose
the one with minimal value and denote suitable strategies, time, class
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of the vaccinated and costs, which correspond to this value as fol-
lows 𝑢𝑠𝜎 = (𝑠𝑠 (𝑡), 𝑠𝑠1(𝑡), 𝑠

𝑠
2(𝑡), 𝜅

𝑠 (𝑡), 𝑐𝑠 (𝑡), 𝑐𝑠1(𝑡), 𝑐
𝑠
2(𝑡), 𝑐

𝑠
3(𝑡)) and 𝑢

∼𝜎
𝑠 =

(𝑣𝑠2(𝑡), 𝑣
𝑠
1(𝑡), 𝛾

𝑠
𝑖
(𝑡), 𝛾𝑠𝑟 (𝑡)), 𝑡 ∈ [0, 𝑇𝜀], 𝑉𝜀𝜎 and 𝐶𝜀𝜎. Among 𝑀 × 𝐿 strate-

gies there must be 𝑢𝜎 = 𝑢∼𝜈𝑠 . If values of the functionals found in steps 5.1
and 5.2 are different, we repeat steps 2.1–4.2. Otherwise, we name these
strategies, time 𝑇𝜀 and 𝑉𝜀𝜎 and 𝐶𝜀𝜎 suspected optimal.

6.1. Choose a discrete set 𝑷𝝂 composed of the points 𝑝𝑖 ∈ 𝑷𝝂, 𝑖 = 1, . . . , 𝐾
and choose dual open-loop functions 𝑢𝜈 (𝑡, 𝑝𝑖) and 𝑢∼𝜈 (𝑡, 𝑝𝑖), (𝑡, 𝑝𝑖) ∈
[0, 𝑇𝜀] × 𝑷𝝂, 𝑖 = 1, . . . , 𝐾 .

6.2. Choose a discrete set 𝑷𝝈 composed of the points 𝑝𝑖 ∈ 𝑷𝝈, 𝑖 = 1, . . . , 𝐾
and choose dual open-loop functions 𝑢𝜎 (𝑡, 𝑝𝑖) and 𝑢∼𝜎 (𝑡, 𝑝𝑖), (𝑡, 𝑝𝑖) ∈
[0, 𝑇𝜀] × 𝑷𝝈, 𝑖 = 1, . . . , 𝐾 .

7.1. For all 𝑝𝑖 ∈ 𝑷𝝂, 𝑖 = 1, . . . , 𝐾 solve differential inequality (22) in [0, 𝑇𝜀]
and find𝑊𝜈 (𝑡, 𝑝𝑖) and 𝑦0𝜈 (𝑡).

7.2. For all 𝑝𝑖 ∈ 𝑷𝝈, 𝑖 = 1, . . . , 𝐾 solve differential inequality (24) in [0, 𝑇𝜀]
and find𝑊𝜎 (𝑡, 𝑝𝑖) and 𝑦0𝜎.

8.1. For dual open-loop strategies 𝑢𝜈 (𝑡, 𝑝𝑖) and 𝑢∼𝜈 (𝑡, 𝑝𝑖), for 𝑅𝜀0𝜈, fixed 𝑦𝜈, for
𝑊𝜈 (𝑡, 𝑝𝑖), 𝑖 = 1, . . . , 𝐾 found in step 7.1, 𝜀, 𝑎, 𝑛 and 𝑇𝜀, choose 𝑝𝑙 ∈ 𝑷𝝂,
𝑙 = 1, . . . , 𝑆, 𝑆 ¬ 𝐾 , which satisfy inequality (23).

8.2. For dual open-loop strategies 𝑢𝜎 (𝑡, 𝑝𝑖) and 𝑢∼𝜎 (𝑡, 𝑝𝑖), for 𝑅𝜀0𝜎, fixed 𝑦𝜎,
for𝑊𝜎 (𝑡, 𝑝𝑖), 𝑖 = 1, . . . , 𝐾 found in step 7.2, 𝑎, 𝑛 and 𝑇𝜀, choose 𝑝𝑙 ∈ 𝑷𝝈,
𝑙 = 1, . . . , 𝑆, 𝑆 ¬ 𝐾 , which satisfy inequality (25).

9.1. For dual open-loop strategies 𝑢𝜈 (𝑡, 𝑝𝑙) and 𝑢∼𝜈 (𝑡, 𝑝𝑙), 𝑝𝑙 ∈ 𝑷𝝂, 𝑙 = 1, . . . , 𝑆,
for 𝑦𝜈, 𝑊𝜈, 𝐶𝜀𝜈 , 𝑅𝜀0𝜈, for fixed 𝑦

0
𝜈, for 𝑇𝜀, 𝑎 and 𝑛, find auxiliary trajectory

among discrete points and on its basis construct continuous trajectory 𝑝𝜀𝜈
so as to (30) and (31) are satisfied.

9.2. For dual open-loop strategies 𝑢𝜎 (𝑡, 𝑝𝑙) and 𝑢∼𝜎 (𝑡, 𝑝𝑙), 𝑝𝑙 ∈ 𝑷𝝈, 𝑙 =

1, . . . , 𝑆, for 𝑦𝜎,𝑊𝜎, 𝐶𝜀𝜎, 𝑅𝜀0𝜎, for fixed 𝑦
0
𝜎, for 𝑇𝜀, 𝑎, 𝑛 and 𝜀, find auxil-

iary trajectory among discrete points and on its basis construct continuous
trajectory 𝑝𝜀𝜎 so as to (32) and (33) are satisfied.

10. If inequalities (30)–(31) and (32)–(33) are satisfied then Verification Theorem
guarantees that the dual open-loop strategies (�̄�𝜀𝜈, �̄�𝜀𝜎) are 𝜀-Nash equilibrium
for the game (28)–(29). Otherwise we repeat steps 2–9.2.

Now we give a numerical example which allow us check whether optimal
strategies chosen in some way cause that inequalities (30), (31), (32) and (33)
hold.
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4.1. The practical example realizing numerical algorithm

We use in this numerical example real data from Poland in May 8, 2021. Total
population size 𝑁 = 38000000, which means 𝑁 = 100% = 1 and

𝑉 (0) = 3579910 + 2563079 (which constitutes 16.16% of the population) –
vaccinated plus healers

𝐼 (0) = 2829196 (which constitutes 7% of the population) – symptomatic and
infectious (taking also super-spreaders)

𝐻 (0) = 17155 (which constitutes 0.04% of the population) – hospitalized
𝐹 (0) = 69866 (which constitutes 0.18% of the population) – fatality
We assume the following percentages: 76% for susceptible, 0.18% for ex-

posed, 0.34% for super-spreaders and 0.1% for infectious but asymptomatic.
The other coefficients 𝑙, 𝜌1, 𝜌2, 𝛾𝑎, 𝛿𝑖, 𝛿𝑝 and 𝛿ℎ correspond to the situation

in Wuhan (see e.g. [23]), because we were unable to calculate them.
We take percentages only for the acceleration of the numerical calculations.

Hence we assume the following initial conditions: 𝑉 (0) = 0.1616, 𝑆(0) = 0.76,
𝐸 (0) = 0.0018, 𝐼 (0) = 0.07, 𝑃(0) = 0.0034, 𝐴(0) = 0.001, 𝐻 (0) = 0.0004,
𝐹 (0) = 0.0018 and 𝐶 (0) = 0, where 𝑉 (0) + 𝑆(0) + 𝐸 (0) + 𝐼 (0) + 𝑃(0) + 𝐴(0) +
𝐻 (0) + 𝐹 (0) + 𝐶 (0) = 𝑁 = 1.
After several sets of calculation, for simplicity, we decided that our time 𝑇

is fixed and approximately 𝑇𝜀 = 0.5. We assumed that the interval with the
length 0.1 corresponds to one month and so the interval on which we study our
example [0, 0.5] corresponds to five months. That implies also that we do not use
any units for these parameters. They are simply constant during one month and
dimensionless.
1. Take 𝜀 = 0.1, 𝑁 = 1, Λ = 1, 𝑙 = 1.56, 𝜌1 = 0.58, 𝜌2 = 0.001,
𝛾𝑎 = 0.94, 𝛿𝑖 = 3.5, 𝛿𝑝 = 1, 𝛿ℎ = 0.3 and fix initial condition 𝑥0 =

(𝑉 (0), 𝑆(0), 𝐸 (0), 𝐼 (0), 𝑃(0), 𝐴(0), 𝐻 (0), 𝐹 (0), 𝐶 (0)).
2.1. Fix 𝑀 × 𝐿 = 6 fours strategies 𝑢𝜈 and 𝐿 = 1 of the eight opponents’

strategies 𝑢∼𝜈 (see Appendix).
2.2. Fix 𝑀 × 𝐿 = 6 eights strategies 𝑢𝜎 and 𝐿 = 1 of the four opponents’s

strategies 𝑢∼𝜎 (see Appendix).
3.1. Calculate 𝑅𝜈0 𝑗 (𝑇𝑘 ) from (10), 𝑗 = 1, . . . , 6, 𝑘 = 1, . . . , 5 (see Appendix).

3.2. Calculate 𝑅𝜎0 𝑗 (𝑇𝑘 ) from (10), 𝑗 = 1, . . . , 6, 𝑘 = 1, . . . , 5 (see Appendix).
4.1. For 6 integrals calculated from (12), for 𝑅𝜈0 𝑗 (𝑇𝑘 ), 𝑉

𝜈
𝑗
(𝑇𝑘 ), 𝑗 = 1, . . . , 6,

𝑘 = 1, . . . , 5 and for 𝑎 = 1 and 𝑛 = 1, find from (18) 𝑀 × 𝐿 = 6 values of
the functional 𝐽 (see Appendix).

4.2. For 6 integrals calculated from (12), for 𝑅𝜎0 𝑗 (𝑇𝑘 ), 𝑉
𝜎
𝑗
(𝑇𝑘 ), 𝑗 = 1, . . . , 6,

𝑘 = 1, . . . , 5 and for 𝑎 = 1 and 𝑛 = 1, find from (19) 𝑀 × 𝐿 = 6 values of
the functional 𝐽 (see Appendix).
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5.1. From among of the 𝑀 × 𝐿 = 6 values of the functionals (18), the one with
maximal value is 𝐽 = 2.5979. For this functional denote suitable strategies
and time (𝑡 ∈ [0, 𝑇𝜀], 𝑇𝜀 = 0.5 – see Table 1), which correspond to this
value as follows (see all the tested strategies in Appendix):

Table 1: Suspected strategies for player 𝜈

Intervals
Strategies [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5]
𝑣𝑠1 (𝑡) 1.9000 1.9500 2.0000 2.0500 2.1000
𝑣𝑠2 (𝑡) 0.7000 0.7250 0.7500 0.7750 0.8000
𝛾𝑠
𝑖
(𝑡) 0.4000 0.4250 0.4500 0.4750 0.5000

𝛾𝑠𝑟 (𝑡) 0.8000 0.8250 0.8500 0.8750 0.9000
𝑠𝑠 (𝑡) 0.0200 0.0175 0.0150 0.0125 0.0100
𝑠𝑠1 (𝑡) 0.0300 0.0275 0.0250 0.0225 0.0200
𝑠𝑠2 (𝑡) 0.0200 0.0175 0.0150 0.0125 0.0100
𝜅𝑠 (𝑡) 0.1000 0.0950 0.0900 0.0850 0.0800
𝑐𝑠 (𝑡) 3.0000 2.8000 2.6000 2.4000 2.2000
𝑐𝑠1 (𝑡) 0.0500 0.0475 0.0450 0.0425 0.0400
𝑐𝑠2 (𝑡) 0.5000 0.4800 0.4600 0.4400 0.4200
𝑐𝑠3 (𝑡) 1.0000 0.9750 0.9500 0.9250 0.9000

These strategies and time 𝑇𝜀 are suspected optimal.

5.2. From among of the 𝑀 × 𝐿 = 6 values of the functionals (19), the one with
minimal value is 𝐽 = 2.5979. For this functional denote suitable strategies
and time (𝑡 ∈ [0, 𝑇𝜀], 𝑇𝜀 = 0.5 – see Table 2), which correspond to this
value as follows (see all the tested strategies in Appendix):

Table 2: Suspected strategies for player 𝜎

Intervals
Strategies [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5]
𝑣𝑠1 (𝑡) 1.9000 1.9500 2.0000 2.0500 2.1000
𝑣𝑠2 (𝑡) 0.7000 0.7250 0.7500 0.7750 0.8000
𝛾𝑠
𝑖
(𝑡) 0.4000 0.4250 0.4500 0.4750 0.5000

𝛾𝑠𝑟 (𝑡) 0.8000 0.8250 0.8500 0.8750 0.9000
𝑠𝑠 (𝑡) 0.0200 0.0175 0.0150 0.0125 0.0100
𝑠𝑠1 (𝑡) 0.0300 0.0275 0.0250 0.0225 0.0200
𝑠𝑠2 (𝑡) 0.0200 0.0175 0.0150 0.0125 0.0100
𝜅𝑠 (𝑡) 0.1000 0.0950 0.0900 0.0850 0.0800
𝑐𝑠 (𝑡) 3.0000 2.8000 2.6000 2.4000 2.2000
𝑐𝑠1 (𝑡) 0.0500 0.0475 0.0450 0.0425 0.0400
𝑐𝑠2 (𝑡) 0.5000 0.4800 0.4600 0.4400 0.4200
𝑐𝑠3 (𝑡) 1.0000 0.9750 0.9500 0.9250 0.9000



672 R. MATUSIK, A. NOWAKOWSKI

As we see, strategies and values of the functionals found in step 5.1 for
player 𝑢𝜈 and strategies and values of the functionals found in step 5.2 for
player 𝑢𝜎 are the same. These strategies and time 𝑇𝜀 are suspected optimal.
In the Figure 3 we present values of the basic reproduction number 𝑅0.

Figure 3: Basic reproduction number 𝑅0 for the suspected
optimal strategies

In the Figure 4 given below we see part of the population 𝑉 having anti-
bodies.

Figure 4: A part of the population having antibodies
for the suspected optimal strategies

In the Figure 5 given below we see costs 𝐶 of the pandemic.
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Figure 5: Costs of the pandemic for the suspected optimal strategies

6.1. Take the following vectors:
𝑝1 = (5, 5, 5, 5, 5, 5, 5, 5, 5),
𝑝2 = (50, 50, 50, 50, 50, 50, 50, 50, 50),
𝑝3 = (20, 50, 30, 40, 90, 70, 10, 80, 60),
𝑝4 = (150, 130, 180, 190, 170, 120, 140, 110, 160).

Having suspected strategies from step 5.1 and vectors 𝑝𝑖, 𝑖 = 1, . . . , 4, build
dual open-loop functions

𝑢𝜈 (𝑡, 𝑝𝑖) = {𝑣𝑠2(𝑡)𝑝
1
𝑖 𝑝
2
𝑖 , 𝑣

𝑠
1(𝑡)𝑝

2
𝑖 𝑝
3
𝑖 , 𝛾

𝑠
𝑖 (𝑡)𝑝3𝑖 𝑝4𝑖 , 𝛾𝑠𝑟 (𝑡)𝑝4𝑖 𝑝5𝑖 } and

𝑢∼𝜈 (𝑡, 𝑝𝑖) = {𝑠𝑠 (𝑡)𝑝5𝑖 𝑝6𝑖 , 𝑠𝑠1(𝑡)𝑝
6
𝑖 𝑝
7
𝑖 , 𝑠

𝑠
2(𝑡)𝑝

7
𝑖 𝑝
8
𝑖 , 𝜅

𝑠 (𝑡)𝑝8𝑖 𝑝9𝑖 , 𝑐𝑠 (𝑡)𝑝9𝑖 𝑝1𝑖 ,
𝑐𝑠1(𝑡)𝑝

8
𝑖 𝑝
2
𝑖 , 𝑐

𝑠
2(𝑡)𝑝

7
𝑖 𝑝
3
𝑖 , 𝑐

𝑠
3(𝑡)𝑝

6
𝑖 𝑝
4
𝑖 },

where 𝑝1
𝑖
, . . . , 𝑝9

𝑖
are coordinates of the vectors 𝑝𝑖, 𝑖 = 1, . . . , 4 given above.

6.2. Take the following vectors:
𝑝1 = (−0.005,−0.008,−0.002,−0.006,−0.004,−0.001,−0.003,

−0.007,−0.001),
𝑝2 = (−0.005,−0.0002,−0.0001,−0.008,−0.003,−0.0007,−0.0004,

−0.006,−0.003),
𝑝3 = (−0.01,−0.01,−0.01,−0.01,−0.01,−0.01,−0.01,−0.01,−0.01),
𝑝4 = (−0.001,−0.00001,−0.00001,−0.001,−0.00001,−0.00001,

−0.001,−0.001,−0.00001).
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Having suspected strategies from step 5.2 and vectors 𝑝𝑖, 𝑖 = 1, . . . , 4, build
dual open-loop functions

𝑢𝜎 (𝑡, 𝑝𝑖) = {𝑠𝑠 (𝑡)𝑝5𝑖 𝑝6𝑖 , 𝑠𝑠1(𝑡)𝑝
6
𝑖 𝑝
7
𝑖 , 𝑠

𝑠
2(𝑡)𝑝

7
𝑖 𝑝
8
𝑖 , 𝜅

𝑠 (𝑡)𝑝8𝑖 𝑝9𝑖 , 𝑐𝑠 (𝑡)𝑝9𝑖 𝑝1𝑖 ,
𝑐𝑠1(𝑡)𝑝

8
𝑖 𝑝
2
𝑖 , 𝑐

𝑠
2(𝑡)𝑝

7
𝑖 𝑝
3
𝑖 , 𝑐

𝑠
3(𝑡)𝑝

6
𝑖 𝑝
4
𝑖 } and

𝑢∼𝜎 (𝑡, 𝑝𝑖) = {𝑣𝑠2(𝑡)𝑝
1
𝑖 𝑝
2
𝑖 , 𝑣

𝑠
1(𝑡)𝑝

2
𝑖 𝑝
3
𝑖 , 𝛾

𝑠
𝑖 (𝑡)𝑝3𝑖 𝑝4𝑖 , 𝛾𝑠𝑟 (𝑡)𝑝4𝑖 𝑝5𝑖 },

where 𝑝1
𝑖
, . . . , 𝑝9

𝑖
are coordinates of the vectors 𝑝𝑖, 𝑖 = 1, . . . , 4 given above.

7.1. Find 𝑊𝜈 for all vectors 𝑝𝑖, 𝑖 = 1, . . . , 4 given above, solving differential
inequality (22).

7.2. Find 𝑊𝜎 for all vectors 𝑝𝑖, 𝑖 = 1, . . . , 4 given above, solving differential
inequality (24).

8.1. For dual open-loop strategies 𝑢𝜈 (𝑡, 𝑝𝑖) and 𝑢∼𝜈 (𝑡, 𝑝𝑖), 𝑖 = 1 . . . , 4 found in
step 6.1, for 𝑅0 given in Appendix, 𝑦𝜈 = 1, for𝑊𝜈 found in step 7.1, 𝜀 = 0.1,
𝑎 = 1, 𝑛 = 1 and 𝑇𝜀 = 0.5, choose the following 𝑝𝑙 , 𝑙 = 𝑙, . . . , 4, which
satisfy inequality (23):
𝑝1 = (5, 5, 5, 5, 5, 5, 5, 5, 5),
𝑝2 = (50, 50, 50, 50, 50, 50, 50, 50, 50),
𝑝3 = (20, 50, 30, 40, 90, 70, 10, 80, 60),
𝑝4 = (150, 130, 180, 190, 170, 120, 140, 110, 160).

8.2. For dual open-loop strategies 𝑢𝜎 (𝑡, 𝑝𝑖) and 𝑢∼𝜎 (𝑡, 𝑝𝑖), 𝑖 = 1, . . . , 4 found
in step 6.2, for 𝑅0 given in Appendix, 𝑦𝜎 = 1, for 𝑊𝜎 found in step 7.2,
𝑎 = 1, 𝑛 = 1 and 𝑇𝜀 = 0.5, choose the following 𝑝𝑙 , 𝑙 = 1, . . . , 4, which
satisfy inequality (25):
𝑝1 = (−0.005,−0.008,−0.002,−0.006,−0.004,−0.001,−0.003,

−0.007,−0.001),
𝑝2 = (−0.005,−0.0002,−0.0001,−0.008,−0.003,−0.0007,−0.0004,

−0.006,−0.003),
𝑝3 = (−0.01,−0.01,−0.01,−0.01,−0.01,−0.01,−0.01,−0.01,−0.01),
𝑝4 = (−0.001,−0.00001,−0.00001,−0.001,−0.00001,−0.00001,

−0.001,−0.001,−0.00001).

9.1. Find𝑊𝜈 for the optimal vector 𝑝𝜀𝜈 – see Figure 6.

9.2. Find𝑊𝜎 for the optimal vector 𝑝𝜀𝜎 – see Figure 7.

10. Because (30)–(31) and (32)–(33) are satisfied then Verification Theorem
guarantees that the dual open-loop strategies (�̄�𝜀𝜈, �̄�𝜀𝜎) are 𝜀-Nash equilibrium
for the game (28)–(29).
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Figure 6:𝑊𝜈 for the optimal vector 𝑝𝜀𝜈

Figure 7:𝑊𝜎 for the optimal vector 𝑝𝜀𝜎

Remark 1 Looking carefully on Tables from Appendix one can wonder why we
do not choose strategies from Table 1, where we have better 𝑅0, lesser costs
and almost 100% of the population vaccinated. We would like to stress that we
have the game with players of which four wants to maximize our functional, but
eight of them wants to minimize the functional. Thus the player 𝜈 can not only
to maximize the functional as opponent player 𝜎 wants to minimize the func-
tional. The resulting strategies – approximate Nash equilibrium, are described
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in Table 6, where a kind of “compromise” between players is chosen and as a
result mainly interesting us quantities 𝑅0 and 𝐽 are higher than in Table 1 and
vaccinated population is smaller! We would like to stress that changing the choice
of strategies for players 𝜈 and 𝜎 will change the resulting Nash equilibrium. The
same influence for the Nash equilibrium has the choice of the functional.

5. Interpretation of the results

We can draw the following conclusions based on the multiple calculations
in Matlab. We are interested in minimizing basic reproduction number 𝑅0, part
of the population being hospitalized 𝐻, number of deaths 𝐹 and costs of the
pandemic𝐶. On the other hand, we try to maximize part of the population having
antibodies 𝑉 .
Decreasing the strategies 𝑣1(𝑡), 𝑣2(𝑡), 𝛾𝑖 (𝑡), 𝛾𝑟 (𝑡), 𝑠1(𝑡) or 𝑠2(𝑡) causes smaller

𝑅0. The strategies 𝑠(𝑡), 𝜅(𝑡), 𝑐(𝑡), 𝑐1(𝑡), 𝑐2(𝑡) and 𝑐3(𝑡) have no effect on 𝑅0,
because they are not included in the formula (10), which allow us computing the
basic reproduction number.
The greater values 𝑣1(𝑡), 𝑣2(𝑡), 𝛾𝑟 (𝑡), 𝑠1(𝑡), 𝜅(𝑡), 𝑐(𝑡), 𝑐1(𝑡), 𝑐2(𝑡), 𝑐3(𝑡) or the

smaller values 𝛾𝑖 (𝑡) cause maximizing part of the population having antibodies.
Changing the strategies 𝑠(𝑡) and 𝑠1(𝑡) have no effect on 𝑉 .
Decreasing strategies 𝑣1(𝑡) or 𝜅(𝑡) or increasing 𝛾𝑖 (𝑡) or 𝛾𝑟 (𝑡) causes decreas-

ing hospitalized. All other strategies have no effect on 𝐻.
Only two strategies cause decreasing fatality cases. It happens so for greater

values of 𝛾𝑖 (𝑡) or smaller values of 𝜅(𝑡).
The pandemic costs are greater for greater values of strategies 𝑣2(𝑡) or 𝛾𝑖 (𝑡)

or for smaller values of 𝑐(𝑡), 𝑐1(𝑡), 𝑐2(𝑡) or 𝑐3(𝑡).
We can enclose the above considerations in the simple Table 3.

Table 3: Conclusions

𝑣1 (𝑡) 𝑣2 (𝑡) 𝛾𝑖 (𝑡) 𝛾𝑟 (𝑡) 𝑠(𝑡) 𝑠1 (𝑡) 𝑠2 (𝑡) 𝜅(𝑡) 𝑐(𝑡) 𝑐1 (𝑡) 𝑐2 (𝑡) 𝑐3 (𝑡)

𝑅0 ↘ ↘ ↘ ↘ ↘ × ↘ ↘ × × × × ×

𝑉 ↗ ↗ ↗ ↘ ↗ × ↗ × ↗ ↗ ↗ ↗ ↗

𝐻 ↘ ↘ × ↗ ↗ × × × ↘ × × × ×

𝐹 ↘ × × ↗ × × × × ↘ × × × ×

𝐶 ↘ × ↗ ↗ × × × × × ↘ ↘ ↘ ↘
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6. Conclusion

Decision-making, supported with knowledge, is particular important, espe-
cially when strong uncertainties appear. We present the game model of COVID-
19, where players want to choose different strategies considering vaccination,
costs of the pandemic and controls (parameters) depending on time. We con-
struct for such a model a game with functional depending on basic reproduction
number, costs of the pandemic and number of the population having antibodies
at final and changing time. We build a non-cooperative differential game with
two main players of which one disposes with four strategies and the second one
with eight strategies. The first one looks for strategies to maximize the number
of the population having antibodies, while the second one looks for the strategies
to minimize the costs of the pandemic as well the basic reproduction number at
final time. We found as a result approximate open-loop Nash equilibrium (dual)
for our game and proved for it a verification theorem. Then, using this verification
theorem we present a numerical algorithm allowing to calculate approximate
open-loop Nash equilibrium. The approximate optimal dual open-loop strategies
allow to make optimal decision at each step time of the pandemic assuming
suitable initial conditions and fixed parameters for our model. We show in the
example a quality of such an approach, which significantly differs from standard
approach to pandemic problems. The cost functional is neither maximal with
respect to controls nor minimal with respect to them. However using the game
approachwe findmore realistic strategies in spite that they are again insight result,

related to the value of costs
𝑇∫
0
𝐶 (𝑡)𝑑𝑡 and 𝑅0(𝑇) (are greater), 𝑉 (𝑇) is lower.

Appendix

We have six tables with fours strategies for player 𝑢𝜈 and one of the eight fixed
opponents’ strategies 𝑢∼𝜈. These results are in website https://wmii.uni.lodz.pl/
~radmat/article/1.
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