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Eigenvalues assignment in descriptor linear systems
by state and its derivative feedbacks
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Abstract. The eigenvalues assignment problems for descriptor linear systems with state and its derivative feedbacks are considered herein.
Necessary and sufficient conditions for the existence of solutions to the problems are established. The Euler and Tustin approximations of the
continuous-time systems are analyzed. Procedures for computation of the feedbacks are given and illustrated by numerical examples.
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1. INTRODUCTION

The descriptor linear systems (also referred to as singular sys-
tems) have been analyzed in many books and papers [1–6, 9–
16]. By the use of the widely-known Weierstrass-Kronecker
theorem, the analysis of the systems has been reduced to anal-
ysis of the standard linear systems [1–5, 12, 16]. The method
based on the Drazin inverse matrices is also used to analyze
this class of linear systems [4, 6]. The stability of positive de-
scriptor linear systems has been analyzed in [15] and the stabi-
lization of the positive descriptor fractional discrete-time linear
systems with two different fractional orders by means of a de-
centralized controller has been investigated in [14]. To modify
the dynamics of the descriptor linear systems, the state or out-
put feedbacks are used [3, 12, 16].

In this paper, the state and its derivative feedbacks will be ap-
plied to descriptor linear systems with regular pencils in order
to obtain closed-loop systems with the desired dynamics. Ap-
plication of these feedbacks essentially enlarges the possibility
of modification of dynamical properties in the descriptor linear
systems.

The paper is organized as follows. In Section 2 the synthesis
of the descriptor linear continuous-time systems with state and
its derivative feedbacks and desired dynamics are considered.
Similar problems for the descriptor linear systems obtained by
means of Euler and Tustin approximations are analyzed in Sec-
tion 4. Concluding remarks are given in Section 5.

The following notation will be used: ℜ – the set of real num-
bers, ℜn×m – the set of n×m real matrices, ℜ

n×m
+ – the set of

n×m real matrices with nonnegative entries and ℜn
+ = ℜ

n×1
+ ,

Mn – the set of n×n Metzler matrices (real matrices with non-
negative off-diagonal entries), In– the n×n identity matrix.
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2. CONTINUOUS-TIME LINEAR SYSTEMS
Let us consider the descriptor linear continuous-time system:

Eẋ = Ax+Bu , (1)

where x = x(t) ∈ ℜn is the state vector, u = u(t) ∈ ℜm is the
input vector and E,A ∈ ℜn×n, B ∈ ℜn×m. It is assumed that
detE = 0 and:

det[Es−A] 6= 0 (2)

for some s ∈C (the field of complex numbers). If condition (2)
is satisfied, then equation (1) has a solution.

The state and its time-derivative feedback:

u = v−K1u−K2ẋ (3)

is applied to system (1) (Fig. 1), where v= v(t)∈ℜm is the new
input. Equation (3) describes a PD controller.

Fig. 1. The system with feedbacks

Substituting (3) into (1), we obtain:

Eẋ = (A−BK1)x−BK2ẋ+Bv (4)

and
(E +BK2) ẋ = (A−BK1)x+Bv. (5)
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The matrix K2 is chosen so that

det [E +BK2] 6= 0. (6)

If condition (6) is satisfied, then from (5) we obtain:

ẋ = Āx+ B̄v (7a)

where:

Ā = [E +BK2]
−1 (A−BK1) , B̄ = [E +BK2]

−1 B. (7b)

The problem being considered can be divided into the following
two sub-problems.

Sub-problem 1. For the given matrices E, A, B of system (1),
find the matrix K2 such that condition (6) is satisfied.

Sub-problem 2. Knowing the matrices A, B and K2, find the
matrix K1 such that the matrix Ā has the desired eigenvalues [3,
4, 6, 16].

3. SOLUTION OF THE SUB-PROBLEMS
Note that the matrix K2 can be chosen so that condition (6) is
satisfied if and only if:

rank
[
E B

]
= n. (8)

The proof of (8) follows immediately from the equality below:

[E +BK2] =
[
E B

][ In

K2

]
. (9)

Note that if condition (8) is satisfied, then the desired matrix K2
can be computed from (9).

It is well-known [1–8,13,16] that the matrix K1 can be chosen
so that the matrix Ā has the desired eigenvalues if and only if
the following pair:

Â = [E +BK2]
−1 A, B̂ = [E +BK2]

−1 B (10)

is completely controllable, i.e.:

rank
[
B̂ ÂB̂ . . . B̂Ân−1

]
= n. (11)

Therefore, the following theorem has been proved.

Theorem 1. Sub-problems 1 and 2 have solutions if and only
if condition (8) is satisfied and the pair in (10) is completely
controllable.

Example 1. Consider system (1) with the following matrices:

E =

[
1 −2
−2 4

]
, A =

[
1 0
2 −2

]
, B =

[
1
−1

]
. (12)

System (1) with (12) satisfies conditions (2) and (8) since:

det[Es−A] =

∣∣∣∣∣ s−1 −2s
−2s−2 4s+2

∣∣∣∣∣=−6s−2 6= 0,

for s 6=−1
3

(13)

and

rank
[
E B

]
= rank

[
1 −2 1
−2 4 −1

]
= 2. (14)

Note that for
K2 =

[
1 1

]
, (15)

the matrix

[E +BK2] =

[
1 −2
−2 4

]
+

[
1
−1

][
1 1

]
=

[
2 −1
−3 3

]
(16)

is nonsingular. In this case the matrices in (10) have the forms
below:

Â = [E +BK2]
−1 A

=

[
2 −1
−3 3

]−1[
1 0
2 −2

]
=

1
3

[
5 −2
7 −4

]
,

B̂ = [E +BK2]
−1 B

=

[
2 −1
−3 3

]−1[
1
−1

]
=

1
3

[
2
1

]
.

(17)

Note that the matrix Â defined by (17) is unstable since the co-
efficients of the polynomial

det
[
I2s− Â

]
=

∣∣∣∣∣∣∣
s− 5

3
2
3

−7
3

s+
4
3

∣∣∣∣∣∣∣= s2− 1
3

s− 2
3

(18)

have different signs. The pair in (17) is completely controllable
since

rank
[
B̂ ÂB̂

]
= rank


2
3

8
9

1
3

10
9

= 2. (19)

Therefore, by Theorem 1, there exists the feedback matrix K1
such that the closed-loop system with the matrix Ã = Â− B̂K1
is asymptotically stable. To find the desired matrix K1, we
may use one of the well-known eigenvalue assignment proce-
dures [3, 8, 13, 16]. Let s1 =−2, s2 =−3 be the desired eigen-
values of the matrix Ã with the characteristic polynomial:

det
[
I2s− Ã

]
= (s+2)(s+3) = s2 +5s+6, (20)

then it easy to check that the desired matrix K1 =
[
7 2

]
.
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4. DISCRETE-TIME LINEAR SYSTEMS
4.1. Euler approximation
Consider the discrete-time linear systems obtained from (4) by
means of the Euler approximation of the derivative of the state
vector:

E
xi+1− xi

d
= Axi−B

(
K2

xi+1− xi

d
+K1xi

)
+Bvi ,

i = 0,1, . . . (21)

where xi = x(ti), vi = v(ti), and d is the discretization step. From
(21) we obtain:

(E +BK2)xi+1 = [E +(A−BK1)d +BK2]xi +Bdvi . (22)

If
det [E +BK2] 6= 0 (23)

then from (22) we obtain:

xi+1 = Adtxi +Bdtvi (24a)

where matrices Adt , Bdt of the discrete-time linear system can
be written as follows:

F1 = E +BK2 ,

Adt = F−1
1 [F1 +(A−BK1)d] = In +F−1

1 (A−BK1)d,

Bdt = [E +BK2]
−1 Bd = F−1

1 Bd.

(24b)

The matrix K2 can be chosen so that condition (23) is satisfied
if and only if (9) holds.

Note that the matrix Adt can be written in the following form:

Adt = Âdt − B̂dtK1 , (25a)

where:
Âdt = In−F−1

1 Ad, B̂dt = F−1
1 Bd. (25b)

The matrix K1 can be chosen so that the matrix Adt has the
desired eigenvalues (is asymptotically stable) if and only if the
pair (Âdt , B̂dt) is completely controllable (satisfies condition
(11) [1–4, 8, 13, 16].

Therefore, the following theorem has been proved.

Theorem 2. The matrices K2 and K1 can be chosen so that the
discrete-time system (24) has the desired asymptotically stable
dynamics if and only if condition (23) is satisfied and the pair
(Âdt , B̂dt) is completely controllable.

The desired feedback matrices K2 and K1 for the asymptoti-
cally stable closed-loop system can be computed by the use of
the following procedure.

Procedure 1.
Step 1. If condition (8) is satisfied, then find the matrix K2 such

that the matrix F1 = E +BK2 is nonsingular (condition
(23) is satisfied).

Step 2. Knowing K2, compute the matrices (25b) and check if
the pair (Âdt , B̂dt) is completely controllable (satisfies
condition (11)).

Step 3. Knowing the matrices (25b), compute the matrix K1
such that the matrix Adt defined by (25) has the desired
asymptotically stable dynamics.

The procedure will be illustrated by the following simple ex-
ample.

Example 2. Let us take under consideration a continuous-time
linear system from Example 1 with the matrices from (12). Ap-
plying the Euler approximation for d = 0.1 to the system, we
obtain the discrete-time system (24a). Find the desired feedback
matrices K2 and K1.

Using Procedure 1, we obtain the following.
Step 1. Condition (8) is satisfied since:

rank
[
E B

]
= rank

[
1 −2 1
−2 4 −1

]
= 2 (26)

and for K2 =
[
1 1

]
we have:

detF1 = det [E +BK2] = det

[
2 −1
−3 3

]
= 3. (27)

Step 2. Using (25b), we obtain:

Âdt = In−F−1
1 Ad =

[
1.167 −0.067
0.233 0.867

]
,

B̂dt = F−1
1 Bd =

[
0.067
0.033

]
.

(28)

The pair is completely controllable since:

rank
[
B̂dt Âdt B̂dt

]
= rank

[
0.067 0.076
0.033 0.044

]
= 2. (29)

Step 3. For the matrix Adt with the eigenvalues of s1 = −2,
s2 = −3, using the Ackerman method, the matrix K1 has the
following form:

K1 =
[
−742.25 1695.5

]
. (30)

4.2. Tustin approximation
Similarly to Section 4.1, consider the discrete-time system ob-
tained from (4) by the Tustin approximation of the derivative of
the state vector:

E
xi+1− xi

d
= A

xi+1 + xi

2

+B(K2
xi+1− xi

d
+K1xi)+Bvi, i = 0,1, . . . (31)
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From (31) we have:

(2E−dA−2BK2)xi+1

= (2E +dA+2BdK1−2BK2)xi +2Bdvi . (32)

If
det [2E−dA−2BK2] 6= 0 (33)

then from (32) we obtain:

xi+1 = Ãdtxi + B̃dtvi (34a)

where:

F2 = 2E−dA−2BK2 ,

Ãdt = In +2F−1
2 (A+BK1)d,

B̃dt = 2F−1
2 Bd.

(34b)

The matrix K2 can be chosen so that condition (33) is satisfied
if and only if:

rank
[
2E−dA −2B

]
= n. (35)

Note that if condition (35) is satisfied, then:

2E−dA−2BK2 =
[
2E−dA −2B

][ In

K2

]
(36)

and there exists the matrix K2 such that (33) holds.

Remark 1. From comparison of (23) and (33), it follows that
condition (33) is less restrictive than condition (23).

The matrix Ãdt can be written in the form presented below:

Ãdt = Âdt − B̂dtK1 , (37a)

where:

Âdt = In +2F−1
2 Ad, B̂dt =−2F−1

2 Bd. (37b)

Note that the matrix K1 can be chosen so that the matrix Ãdt
has the desired eigenvalues if and only if the pair (Âdt , B̂dt) is
completely controllable [1–6, 8, 13, 16]. Therefore, the follow-
ing theorem has been proved.

Theorem 3. The matrix K2 can be chosen so that condition (33)
is satisfied and the matrix K1 so that the matrix Ãdt has the de-
sired eigenvalues if and only if the pair (Âdt , B̂dt) is completely
controllable.

The desired matrices K2 and K1 for the asymptotically stable
closed-loop system can be computed by the use of the following
procedure.

Procedure 2.
Step 1. Check condition (35). If it is satisfied, chose the matrix

K2 such that detF2 6= 0.
Step 2. Compute the matrices Âdt , B̂dt defined by (37b) and

check the controllability of the pair (Âdt , B̂dt).

Step 3. Compute the matrix K1 such that the matrix Ãdt has the
desired eigenvalues (is asymptotically stable).

The procedure will be illustrated by the following simple ex-
ample.

Example 3. Similarly to Example 2, consider the continuous-
time linear system with the matrices from (12). Applying the
Tustin approximation for d = 0.1 to the system, we obtain the
discrete-time system (34a). Find the desired feedback matrices
K2 and K1.

Using Procedure 2, we obtain:
Step 1. Condition (35) is satisfied since:

rank
[
2E−dA 2B

]
= rank

[
1.9 −4 2
−4.2 8.2 −2

]
= 2. (38)

For K2 =
[
1 1

]
we have:

detF2 = det [2E−dA−2BK2]

= det

[
−0.1 −6
−2.2 10.2

]
=−14.22. (39)

Step 2. In this case using (37b) and (39), we obtain:

Âdt = In +2F−1
2 Ad =

[
0.688 0.169
−0.281 0.997

]
,

B̂dt =−2F−1
2 Bd =

[
0.059
0.032

]
.

(40)

The pair in (40) is controllable since:

rank
[
B̂dt Âdt B̂dt

]
= rank

[
0.059 0.046
0.032 0.031

]
= 2. (41)

Step 3. Let the desired eigenvalues of the matrix Ãdt be s1 =−2,
s2 = −3. In this case, using one of the well-known eigenvalue
procedures, we obtain:

K1 =
[
−1047.77 2119.78

]
. (42)

From comparison of (4) and (24a), it follows that the Tustin ap-
proach gives better approximation of the continuous-time sys-
tem than the Euler approach.

5. CONCLUSIONS
The eigenvalue assignment problems for descriptor linear sys-
tems with state and its derivative feedbacks have been analyzed.
Necessary and sufficient conditions for the existence of solu-
tions to the problems have been established (Theorems 1, 2, 3).
The Euler and Tustin approximations of the continuous-time
systems have been investigated. Procedures for computation of
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the feedbacks have been given and illustrated by numerical ex-
amples. It has been shown that the application of the feedbacks
of the state vector and its derivative essentially enlarge the pos-
sibility of modifications of the dynamical properties of the de-
scriptor linear systems. This approach can be applied, for exam-
ple, to analysis of the dynamical properties of descriptor linear
electrical circuits. The considerations can be further extended
to descriptor linear fractional order systems.
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