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Discrete identification of continuous non-linear and
non-stationary dynamical systems that is insensitive
to noise correlation and measurement outliers

Janusz KOZŁOWSKIo and Zdzisław KOWALCZUKo

The paper uses specific parameter estimation methods to identify the coefficients of
continuous-time models represented by linear and non-linear ordinary differential equations.
The necessary approximation of such systems in discrete time in the form of utility models
is achieved by the use of properly tuned ‘integrating filters’ of the FIR type. The resulting
discrete-time descriptions retain the original continuous parameterization and can be identified,
for example, by the classical least squares procedure. Since in the presence of correlated noise,
the estimated parameter values are burdened with an unavoidable systematic error (manifested
by asymptotic bias of the estimates), in order to significantly improve the identification consis-
tency, the method of instrumental variables is used here. In our research we use an estimation
algorithm based on the least absolute values (LA) criterion of the least sum of absolute values,
which is optimal in identifying linear and non-linear systems in the case of sporadic measure-
ment errors. In the paper, we propose a procedure for determining the instrumental variable for
a continuous model with non-linearity (related to the Wienerian system) in order to remove the
evaluation bias, and a recursive sub-optimal version of the LA estmator. This algorithm is given
in a simple (LA) version and in an instrumental variable version (IV-LA), which is robust to out-
liers, removes evaluation bias, and is suited to the task of identifying processes with non-linear
dynamics (semi-Wienerian/NLID). In conclusion, the effectiveness of the proposed algorithmic
solutions has been demonstrated by numerical simulations of the mechanical system, which is
an essential part of the suspension system of a wheeled vehicle.
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1. Introduction

In supervisory systems, dedicated methods of identifying an entire process
or detecting some changes are usually implemented in order to obtain appro-
priate diagnostic information about the evolution of the monitored process. The
dynamics of a process can conveniently be modeled using a simple input-output
description or a more complex state-space representation. The usage of easy-to-
use discrete representations of the observed process in the form of difference
equations simplifies the problem of computer implementation of identification
schemes for obvious reasons. This is because in such mathematical models the
regression data takes the simple form of delayed samples of the recorded inputs
and outputs. On the other hand, these representations are not physically moti-
vated and not intuitive, and the parameter values of these mathematical models
do not have a physical scale (unit) and strongly depend on the sampling frequency
used [1–3].
Whereas in the case of mathematical descriptions of the continuous-time

nature, the modeling parameters can usually be assigned specific physical units.
The original parameterization of the model is also not affected by other data
processing conditions (e.g. sampling period). Moreover, thanks to the intuitive
and interpretable physical parameters, the initial verification of the estimation
results is possible and very easy [4, 5].
It should be realized that all identification algorithms are in fact numerical

procedures and therefore the estimation of parameters that shape continuous
models must be based on sampled input-output data. Consequently, the operation
of approximating continuous-time concepts (quantities, like derivatives appearing
in differential equations) in discrete time should be performed [6–16].
Some time ago, some hopes were pinned on the so-called “delta” approach,

which uses finite differences to imitate the original differentials, which at certain
computational costs can be used in the design of both identification systems
and control systems [17]. However, it has also been proven analytically and
numerically that this approach can lead to significant inaccuracies in the numerical
mechanization of descriptions in continuous time [18].
Moreover, in practice, an ‘integral’ approach can easily be applied, which

overcomes the noise attenuation problem of delta-based modeling [19]. Indeed, a
properly crafted low-passmultiple-integration operator eliminates the detrimental
additive noise to a large extent, but the regression variables themselves computed
as multiple integrals of the inputs and outputs inevitably diverge to infinity.
The integrated free response of the system (due to unknown non-zero initial
conditions) must also not be underestimated.
Fortunately, an effective remedy for the above problems seems to be the use of

dedicated low-pass operators, such as the Poisson IIR filter [4] or the Sagara FIR
filter [1]. Note that with such IIR or FIR filters, the additive noise (characteristic
of measurement signals) is eliminated, the values of the regressors (calculated as
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filtered derivatives of the input and output signals) are limited, and the properly
filtered transient response of the system (in effect tending to zero) does not affect
on the ultimate accuracy of such identification (and modeling).
In practical industrial automation systems, the result of processing measure-

ment data is usually affected by noise and various system disturbances. The emer-
gence of this type of parasitic phenomena often results in a significant deteriora-
tion in the quality of the controlled industrial process. In general, high-frequency
additive noise (e.g. from quantization in AD converters) can be effectively elim-
inated with properly tuned low-pass anti-aliasing prefilters. In turn, in the case of
systematic errors, the problem is usually solved by proper calibration ofmeasuring
instruments and the use of dedicated compensation techniques. Importantly, the
results of diagnostic procedures that rely on classical least squares (LS) methods
can turn out to be very skewed, especially when the measurements are contami-
natedwith sporadic errors called outliers. A radical improvement in the estimation
quality can be easily obtained by implementing an identification method resistant
to occasional errors in the sense of the least sum of absolute values (LA).
Reliable modeling and effective identification of dynamic systems in contin-

uous time play a key role in the supervision and control of various industrial pro-
cesses [20–23].Wewill discuss such problems [24] regarding the estimation of the
parameters of models of physical systems in the following sections of this article.
In Section 2, mechanizations of the discrete-time equivalents of linear and

non-linear differential equations are presented. In particular, an efficient method
of representing the specific (NLID) non-linearity present in the differential equa-
tion of a certain practical system (car suspension) is proposed. Section 3 shows
the various parameter estimation procedures along with a discussion of their
asymptotic properties and robustness (insensitivity) to outliers in the processed
data. Our novelties, introduced to the system identification practice, are recursive
algorithms optimal in the sense of the least sum of absolute values (basic LA and
IV-LA) and an innovative method of generating instrumental variables for the
analyzed non-linear dynamic objects (called semi-Wienerian systems).
As a consequence of the proposedmethodology, Section 4 discusses the results

of several numerical tests that demonstrate the effectiveness of the described
estimation procedures. At the end of the work, in Section 5, the originality of the
research results is emphasized and the prospects for further research in the field
of robust identification of practical processes are outlined.

2. Continuous-time modeling

Let the dynamics of the supervised industrial system (the object of parameter
estimation) be expressed by the ordinary differential equation

𝑦 (𝑛) + 𝑎𝑛−1𝑦 (𝑛−1) + . . . + 𝑎0𝑦 = 𝑏0𝑢, (1)
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where 𝑛 denotes the system order, while 𝑢 = 𝑢(𝑡) and 𝑦 = 𝑦(𝑡) stand for the
input and output signals, respectively. The description (1) can be subject to any
initial conditions, and the parameterization coefficients {𝑎𝑛−1, . . . , 𝑎0, 𝑏0} are
assumed to be unknown. Since the practical identification of continuous-time
models must be based on the processing of sampled data, an appropriate discrete-
time approximation of (1) must be used.

2.1. Discrete approximation of differential equations

There are many practical approaches to the numerical mechanization of differ-
ential equations, such as the solution using the delta operator for direct evaluation
of derivatives, the classical approximation method based on multiple integration
of both sides of the differential equation, and the use of suitably tuned low-pass
matching (or state variable) filters [1, 4].
Unfortunately, due to the high-pass nature of the delta operator, additive noise

is amplified, which can significantly distort the evaluated continuous quantities
(derivatives). Moreover, in the case of pure integration, regression data rep-
resented by multiple integrals of signals (inputs and outputs) inevitably tend to
infinity. In addition, the free response of the integrator also affects modeling accu-
racy and usually cannot be ignored. The above indicated problems can effectively
be eliminated by employing low-pass matching filters used in the discrete-time
approximation synthesis for the model (1).
Among others things, a finite-horizon integrating filter of the FIR type de-

serves attention [1]. The resulting operator, referred to as the ‘linear integral filter’
(LIF), takes the form of a multiple integral of the signal (or its 𝑖-th derivative) in
a finite time horizon [𝑡 − 𝜏, 𝑡]

𝐽𝑛𝑖 𝑥(𝑡) =
𝑡∫

𝑡−𝜏

𝑡1∫
𝑡1−𝜏

· · ·
𝑡𝑛−1∫

𝑡𝑛−1−𝜏

𝑥 (𝑖) (𝑡𝑛)d𝑡𝑛 · · · d𝑡2d𝑡1 , (2)

where the length of the integration horizon (𝜏) can easily be selected so as to
obtain a proper bandwidth of (2).
Applying (2) to both sides of the model (1), the following “integral” equation

with the original parameterization of the underlying continuous-time system is
obtained

𝐽𝑛𝑛 𝑦 + 𝑎𝑛−1𝐽𝑛𝑛−1𝑦 + . . . + 𝑎0𝐽
𝑛
0 𝑦 = 𝑏0𝐽

𝑛
0𝑢. (3)

It is important for modeling consistency that with (2) the effect of the “inte-
grated” free response of the system becomes irrelevant after a finite time (𝑛𝜏).
The integrals used above can easily be calculated based on sampled data. With
the aid of the bilinear (Tustin’s) operator the discrete-time mechanization of (2)
can be shown as

𝐽𝑛𝑖 𝑥(𝑡)
��
𝑡=𝑘𝑇

≈ 𝐼𝑛𝑖 𝑥(𝑘), (4)
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𝐼𝑛𝑖 =

[
𝑇

2

(
1 + 𝑞−1

)]𝑛−𝑖 (
1 − 𝑞−1

) 𝑖 (
1 + 𝑞−1 + . . . + 𝑞−𝐿+1

)𝑛
, (5)

where 𝑇 stands for the sampling time, 𝑞−1 symbolizes the unit delay operator, 𝐿
is the “numerical” length of the integration horizon (𝜏 = 𝐿𝑇), and for brevity,
the time moment 𝑡 = 𝑘𝑇 is represented by the index 𝑘 . As a result of the above
assumptions, the discrete equivalent of the original continuous-time model takes
the convenient form of a regression equation for the converted output

𝐼𝑛𝑛 𝑦(𝑘) = 𝜒(𝑘) = 𝜙T(𝑘) 𝜃 + 𝑒(𝑘), (6)

𝜙(𝑘) =
[
−𝐼𝑛𝑛−1𝑦 . . . − 𝐼𝑛0 𝑦 𝐼𝑛0𝑢

]T
, (7)

𝜃 = [𝑎𝑛−1 . . . 𝑎0 𝑏0]T , (8)

where the reference term 𝜒(𝑘) represents the converted output of the discrete-time
counterpart of the original continuous-time model.
The above model takes into account a residual or equation error 𝑒(𝑘), which

is a stochastic component and includes both system disturbances and other inac-
curacies of this type of modeling. It is worth noting that the model (6)–(8) retains
original continuous parameterization, while the “integral” regressors (7) are nu-
merically well-conditioned (bounded). According to the rule proposed by [1], the
horizon 𝐿 (or 𝜏 = 𝐿𝑇) should be selected so that the frequency bandwidth of
the filter (2) matches as closely as possible the frequency band of the identified
system (1). The LIF operator with a too narrow frequency band (large 𝜏 and 𝐿
horizons) simply falsifies the system dynamics (3). On the other hand, when this
bandwidth is too large (small 𝜏 and 𝐿), the broadband noise strongly affects the
accuracy of the estimation (due to bias).

2.2. Non-linear continuous-time models

Consider now a continuous-time differential equation model

𝑦 (𝑛) + 𝑎𝑛−1𝑦 (𝑛−1) + . . . + 𝑎1𝑦 (1) + 𝑓 (𝑦) = 𝑏0𝑢 (9)

with the non-linear term 𝑓 (𝑦) representing an unknown function such that
𝑓 (0) = 0. Here we can apply a method suitable for many practical cases, which is
to use the series expansion as an approximation to the non-linear term, provided
that 𝑓 (𝑦) is at least 𝑟 times differentiable,

𝑓 (𝑦) = 𝑐1𝑦 + 𝑐2𝑦2 + . . . + 𝑐𝑟 𝑦𝑟 . (10)

Now, using the FIR integrating filters (5), the regression equivalent of the
non-linear system (9) can be

𝐼𝑛𝑛 𝑦(𝑘) = 𝜒(𝑘) = 𝜙T(𝑘) 𝜃 + 𝑒(𝑘), (11)
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𝜙(𝑘) =
[
−𝐼𝑛𝑛−1𝑦 . . . − 𝐼𝑛1 𝑦 − 𝐼𝑛0 𝑦 . . . − 𝐼𝑛0 𝑦

𝑟 𝐼𝑛0𝑢
]T
, (12)

𝜃 = [𝑎𝑛−1 . . . 𝑎1 𝑐1 . . . 𝑐𝑟 𝑏0]T , (13)

where, as before, 𝜒(𝑘) is the converted output.
Once a regression representation of the non-linear system is obtained, typi-

cal identification procedures can be applied that will allow us to appropriately
evaluate the unknown but physically motivated coefficients.

3. Estimation procedures

As shown, the dynamics of a supervised system can be expressed using the
regression model (6)–(8) or (11)–(13). Now the system parameters can be effec-
tively estimated with appropriate identification procedures. Three identification
methods are considered below: the least squares algorithm, the instrumental vari-
able method, and the least absolute values procedure.

3.1. Least squares method

The classical weighted LS estimation scheme results from the minimization
of the quadratic loss index

𝑉LS =

𝑘∑︁
ℓ=1

𝜆𝑘−ℓ 𝑒2(ℓ) =
𝑘∑︁
ℓ=1

𝜆𝑘−ℓ
[
𝜒(ℓ) − 𝜙T(ℓ) 𝜃

]2
, (14)

where the weighting factor 𝜆 constrained to unity (0 � 𝜆 ¬ 1) controls the rate
of exponential forgetting when tracking variable parameters of a non-stationary
system.
The aboveLS criterion can be analyticallyminimized by nullifying its gradient

∇𝜃 𝑉LS = −2
𝑘∑︁
ℓ=1

𝜆𝑘−ℓ 𝜙(ℓ) [𝜒(ℓ) − 𝜙T(ℓ) 𝜃] = 0. (15)

As a consequence, theweighted (WLS) estimator takes the following algebraic
form

𝜃 (𝑘) =
[
𝑘∑︁
ℓ=1

𝜆𝑘−ℓ 𝜙(ℓ) 𝜙T(ℓ)
]−1 [ 𝑘∑︁

ℓ=1
𝜆𝑘−ℓ 𝜙(ℓ) 𝜒(ℓ)

]
. (16)

It is easy to verify that the LS procedure (using 𝜆 = 1) generates consistent
estimates, when the regression data 𝜙(𝑘) and the residual error 𝑒(𝑘) are uncorre-
lated: E{𝜙(𝑘) 𝑒(𝑘)} = 0. By definition, this condition is met when 𝑒(𝑘) takes the
form of zero-mean white noise (a sequence of independent random variables).
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Most often, the residual error turns out to be correlated, which makes the
LS estimators asymptotically biased. The consistency of it can be significantly
improved by using the technique of instrumental variables (IV).

3.2. Instrumental variable method

The idea behind the IV method stems from the analysis of the rearrange-
ment (15) that leads to minimization of the LS index (14). Since consistency
problems are attributed to the non-zero correlation E{𝜙(𝑘) 𝑒(𝑘)} ≠ 0, one can
replace the original regressors 𝜙(𝑘) in (15) with a suitably selected instrument
𝜉 (𝑘), provided 𝜉 (𝑘) and 𝑒(𝑘) are uncorrelated: E{𝜉 (𝑘) 𝑒(𝑘)} = 0. In this way
the algebraic IV algorithm can be written down as

𝜃 (𝑘) =
[
𝑘∑︁
ℓ=1

𝜆𝑘−ℓ 𝜉 (ℓ) 𝜙T(ℓ)
]−1 [ 𝑘∑︁

ℓ=1
𝜆𝑘−ℓ 𝜉 (ℓ) 𝜒(ℓ)

]
. (17)

To avoid the non-recommended inversion of the matrix present in (16)
and (17), the well-known matrix inversion lemma [25] can be used. The re-
sulting recursive form of both algorithms, including prediction error estimation,
covariance matrix update and final correction of the estimation vector, can be
presented as

𝜀(𝑘) = 𝜒(𝑘) − 𝜙T(𝑘) 𝜃 (𝑘 − 1), (18)

𝑃(𝑘) = 1
𝜆

[
𝑃(𝑘 − 1) − 𝑃(𝑘 − 1) 𝜓(𝑘) 𝜙T(𝑘) 𝑃(𝑘 − 1)

𝜆 + 𝜙T(𝑘) 𝑃(𝑘 − 1) 𝜓(𝑘)

]
, (19)

𝜃 (𝑘) = 𝜃 (𝑘 − 1) + 𝑃(𝑘) 𝜓(𝑘) 𝜀(𝑘) (20)

with 𝜓(𝑘) = 𝜙(𝑘) and 𝜓(𝑘) = 𝜉 (𝑘) for the LS and IV estimation schemes,
respectively. Typically, the initial diagonal covariance matrix is set as 𝑃(0) =

diag[105 . . . 105] at the start-up of these estimators.
According to its purpose, the instrumental variable 𝜉 (𝑘) should match the

original regressors 𝜙(𝑘) as much as possible, while keeping 𝜉 (𝑘) and 𝑒(𝑘)
uncorrelated: E{𝜉 (𝑘) 𝑒(𝑘)} = 0. Among the various implementations of such
variables, it is preferable to use a method based on simple deterministic filter-
ing [1,26]. The desired noise-free output of the linear system (1) can be obtained
from

�̂�(𝑘) = �̂�0

𝜌𝑛 + �̂�𝑛−1𝜌𝑛−1 + . . . + �̂�1𝜌 + �̂�0
𝑢(𝑘) (21)

with the differentiation operator 𝜌 = 𝑑/𝑑𝑡 (being the time counterpart of the
frequency Laplace variable ‘𝑠’) implemented, for instance, using the well-known
bilinear (Tustin’s) formula: 𝜌 = [2(1−𝑞−1)]/[𝑇 (1+𝑞−1)]. Note that this indirect
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transformation [12] maps the left-half 𝑠-plane onto the unit disc in the 𝑧-plane,
so the resulting discrete-time filter (21) remains stable.
Note that in the case of identifying the non-linear model (9), processing based

on the filter (21) used to generate the instrumental variable cannot be directly
applied. Thus, we propose an instrumental variable based on the use of the Taylor
series scheme to numerically approximate the non-linear system [27]. This novel
solution can be used to evaluate the noise-free output of the dynamic system as

�̂� (𝑛) (𝑘 − 1) = −�̂�𝑛−1 �̂� (𝑛−1) (𝑘 − 1) + . . . − �̂�1 �̂� (1) (𝑘 − 1)
− 𝑐1 �̂�(𝑘 − 1) + . . . − 𝑐𝑟 �̂�𝑟 (𝑘 − 1) + �̂�0𝑢(𝑘 − 1),

�̂� (𝑛−1) (𝑘) = �̂� (𝑛−1) (𝑘 − 1) + 𝑇 �̂� (𝑛) (𝑘 − 1),

�̂� (𝑛−2) (𝑘) = �̂� (𝑛−2) (𝑘 − 1) + 𝑇 �̂� (𝑛−1) (𝑘 − 1) + 𝑇
2

2!
�̂� (𝑛) (𝑘 − 1),

...

�̂�(𝑘) = �̂�(𝑘 − 1) + 𝑇 �̂� (1) (𝑘 − 1) + . . . + 𝑇
𝑛

𝑛!
�̂� (𝑛) (𝑘 − 1),

(22)

where the estimates of the parameters 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 of the model (11)–(13) are
used in the above processing.
Now, the instrumental variable 𝜉 (𝑘) can be determined in a similar fashion

as 𝜙(𝑘), provided the noise-free output, (21) or (22), replaces 𝑦(𝑘) contaminated
with noise:

𝜉 (𝑘) =
[
−𝐼𝑛𝑛−1 �̂� . . . − 𝐼𝑛0 �̂� 𝐼𝑛0𝑢

]T
, (23)

𝜉 (𝑘) =
[
−𝐼𝑛𝑛−1 �̂� . . . − 𝐼𝑛1 �̂� − 𝐼𝑛0 �̂� . . . − 𝐼𝑛0 �̂�

𝑟 𝐼𝑛0𝑢
]T (24)

for linear (6)–(8) and non-linear (11)–(13) systems, respectively. Of fundamental
importance is that the processing (22) is completely deterministic, and therefore
the estimate of 𝑦(𝑘) will always be noise-free (neglecting the effects of quan-
tization). It is thus obvious that the instrumental variable obtained from (24) is
fundamentally (completely) uncorrelated with the residual (noise) process 𝑒(𝑘)
occurring in the non-linear model (11).
The described IV procedure effectively solves the problem of consistent iden-

tification in the presence of correlated noise. Both LS and IV schemes resulting
from the minimization of quadratic criteria are completely ineffective for reliable
estimation of parameters in the case of large measurement errors. Therefore, to
overcome the problem of sporadic outliers, we consider an algorithm that penal-
izes/weights errors less drastically, namely based on their absolute values rather
than square values.
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3.3. Least absolute values method

The weighted least absolute value (LA) algorithm quoted here is based on
minimizing the following (non-differentiable) loss index [6, 28]

𝑉LA =

𝑘∑︁
ℓ=1

𝜆𝑘−ℓ |𝑒(ℓ) | =
𝑘∑︁
ℓ=1

𝜆𝑘−ℓ |𝜒(ℓ) − 𝜙T(ℓ) 𝜃 |, (25)

where, as before, 𝜆 stands for the weighting factor.
Thus the estimation process becomes resistant to outliers that may appear in

the processed measurement data. Assuming that an estimate of the residual error
𝑒(𝑘) is available (e.g. from a running LS algorithm), the criterion (25) can be
converted to

𝑉LA ≈
𝑘∑︁
ℓ=1

𝜆𝑘−ℓ
𝑒2(ℓ)
|𝑒(ℓ) | =

𝑘∑︁
ℓ=1

𝜆𝑘−ℓ
[𝜒(ℓ) − 𝜙T(ℓ) 𝜃]2

|𝑒(ℓ) | . (26)

Now, with the residual error estimate known, nulling the gradient of (26) leads
to the following estimator

𝜃 (𝑘) =
[
𝑘∑︁
ℓ=1

𝜆𝑘−ℓ
𝜙(ℓ) 𝜙T(ℓ)

|𝑒(ℓ) |

]−1 [ 𝑘∑︁
ℓ=1

𝜆𝑘−ℓ
𝜙(ℓ) 𝜒(ℓ)
|𝑒(ℓ) |

]
. (27)

This result can be further improved by using the idea of successive approxi-
mations. Since the current residual error 𝑒(𝑘) can be estimated simply from the
recent estimate of the 𝜃 parameter vector, the complete iterative identification
scheme (𝑝 = 0, 1, . . . ) takes the following form

𝑒/𝑝/(ℓ) = 𝜒(ℓ) − 𝜙T(𝑘) 𝜃/𝑝/ (28)

𝜃/𝑝+1/ =

[
𝑘∑︁
ℓ=1

𝜆𝑘−ℓ
𝜙(ℓ) 𝜙T(ℓ)
|𝑒/𝑝/(ℓ) |

]−1 [ 𝑘∑︁
ℓ=1

𝜆𝑘−ℓ
𝜙(ℓ) 𝜒(ℓ)
|𝑒/𝑝/(ℓ) |

]
, (29)

where the simplest method is to use the LS estimate

𝜃/0/ = 𝜃LS (30)

to initiate the iteration loop (with 𝑝 = 0).
The iterative implementation presented above ends when the improvement in

minimization drops below the assumed threshold (Δmin)���𝑉LA(𝜃/𝑝/) −𝑉LA(𝜃/𝑝+1/)��� < Δmin . (31)
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This condition is mathematically justified, because the key factor here is
the decreasing sequence of successively calculated values of the base LA crite-
rion [29].
Assuming that the above processing is limited to only one iteration and using

the already mentioned matrix inversion lemma, the recursive version of the itera-
tion LA scheme (including prediction error estimation, covariance matrix update,
and final estimation vector correction) can be roughly approximated as [5]

𝜀(𝑘) = 𝜒(𝑘) − 𝜙T(𝑘) 𝜃 (𝑘 − 1), (32)

𝑃(𝑘) = 1
𝜆

[
𝑃(𝑘 − 1) − 𝑃(𝑘 − 1) 𝜓(𝑘) 𝜙T(𝑘) 𝑃(𝑘 − 1)

𝜆 |𝜀(𝑘) | + 𝜙T(𝑘) 𝑃(𝑘 − 1) 𝜓(𝑘)

]
, (33)

𝜃 (𝑘) = 𝜃 (𝑘 − 1) + 𝑃(𝑘) 𝜓(𝑘) sign [𝜀(𝑘)] (34)

with 𝜓(𝑘) = 𝜙(𝑘) and 𝜓(𝑘) = 𝜉 (𝑘) used for the LA estimation routines in the
straight and IV versions, respectively, and the converted output 𝜒(𝑘) given by (6)
or (11). We recommend starting the procedure (32)–(34) with LS (auxiliary)
results (18)–(20) for covariance matrices and parameter estimates.
The proposed initiation is indeed crude, but due to the weighting mechanism

(𝜆 < 1) contained in the LA estimation algorithm, such forced start-up data will
be gradually eliminated from the finite memory of the estimator. Note that the
effective number of observations, also referred to as the memory length of the
weighted estimator, equals Γ = 1/(1 − 𝜆).
All three LS, IV andLAestimation algorithms discussed abovewill be verified

in a numerical simulation study reported below.

4. Numerical simulations

Consider the mechanical system shown in Fig. 1. Such a structure usually
constitutes the essential part of the wheeled vehicle suspension system.
Given that 𝑢(𝑡) represents the external force, the reaction of the damper

is proportional to the velocity (with a coefficient 𝐵), and the classical spring
(𝐾) follows the linear Hooke’s rule, the resulting continuous-time model can be
described as follows

𝑚 ¥𝑦(𝑡) + 𝐵 ¤𝑦(𝑡) + 𝐾 𝑦(𝑡) = 𝑢(𝑡). (35)

Modernmanufacturers of cars andwheeled vehicles prefer to use the so-called
progressive springs as the basis of automotive suspensionmechanisms, which can
be shown as a specific non-linear model as follows

𝑚 ¥𝑦(𝑡) + 𝐵 ¤𝑦(𝑡) + 𝐾 𝑦3(𝑡) = 𝑢(𝑡). (36)
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Figure 1: Suspension: a non-linear dynamical system

In order to use the idea of realizable discrete-time integrating filters, the
corresponding counterpart of the non-linear model (36) should be presented in
the necessary monic form (9) as follows

¥𝑦(𝑡) + 𝑎1 ¤𝑦(𝑡) + 𝑐3𝑦3(𝑡) = 𝑏0𝑢(𝑡), (37)

where 𝑎1 = 𝐵/𝑚, 𝑐3 = 𝐾/𝑚, and 𝑏0 = 1/𝑚.
It should be emphasized that the considered non-linear description (37) clearly

differs from the known (classical) representations of non-linear systems, such as
theWiener and Hammerstein models. This is because these models are based on a
simple series structurewith cascaded linear-dynamic and non-linear-static blocks.
In contrast, a non-linear block is used in (37) to generate feedback, so it directly
influences the dynamics of the modeled system (see block diagram in Fig. 2
based on a canonical regulatory structure or a general approach to simulating

Figure 2: NLID: non-linear-in-dynamics model of the suspension
with the non-linear function 𝑓 (𝑦) = 𝑦3 in the loop



402 J. KOZŁOWSKI, Z. KOWALCZUK

continuous-time systems). Such a system with non-linearity in dynamics (as
opposed to Hammerstein and Wiener models with an isolated linear dynamic
part) will be referred to as a non-linear-in-dynamics (NLID) system. Note that
shifting the output beyond the non-linear element creates a new system that could
be called semi-Wienerian.
The appropriate regression model of the non-linear dynamics of the mechan-

ical suspension can therefore be presented as (11)–(13), in which 𝑛 = 2 and 𝑟 = 3

𝐼22 𝑦(𝑘) = 𝜒(𝑘) = 𝜙
T(𝑘) 𝜃 + 𝑒(𝑘), (38)

𝜙(𝑘) =
[
−𝐼21 𝑦 − 𝐼20 𝑦

3 𝐼20𝑢
]T
, (39)

𝜃 = [𝑎1 𝑐3 𝑏0]T . (40)

The instrumental variable procedure which makes our identification process
insensitive to correlated noise requires an appropriate instrument (24)

𝜉 (𝑘) =
[
−𝐼21 �̂� − 𝐼20 �̂�

3 𝐼20𝑢
]T
, (41)

where the noise-free output for the dynamical system (37) of the order 𝑛 = 2, has
the form of (22)

�̂� (2) (𝑘 − 1) = −�̂�1 �̂� (1) (𝑘 − 1) − 𝑐1 �̂�3(𝑘 − 1) + �̂�0𝑢(𝑘 − 1),
�̂� (1) (𝑘) = �̂� (1) (𝑘 − 1) + 𝑇 �̂� (2) (𝑘 − 1),

�̂�(𝑘) = �̂�(𝑘 − 1) + 𝑇 �̂� (1) (𝑘 − 1) + 𝑇
2

2!
�̂� (2) (𝑘 − 1).

(42)

A series of computer simulations of the identification procedures were carried
out for the non-linear process under consideration using a convenient persistently
exciting (periodic) input signal

𝑢(𝑡) =
𝑁∑︁
𝑖=1
sin𝜔𝑖𝑡, (43)

where 𝑁 = 5, and the angular frequencies [rad/s] were assumed as: 𝜔1 = 0.7,
𝜔2 = 1.1, 𝜔3 = 1.4, 𝜔4 = 1.7, 𝜔5 = 2.1.
In the first numerical experiment, the non-linear model was identified in the

presence of additive correlated noise. The coefficients were assumed as 𝑎1 = 3.5,
𝑐3 = 5, and 𝑏0 = 4, while the residual error 𝑒(𝑘) was implemented in the form of
a zero-mean correlated process such that the eventual noise-to-signal ratio of the
respective standard deviations was 𝑁/𝑆 = 10%. The discrete-time counterpart
of the identified model was obtained using finite-horizon integrating filters with
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𝐿 = 50. The sampling time was set to 𝑇 = 0.02 s, and for the simulated stationary
dynamics, the forgetting mechanism was turned off (𝜆 = 1). Simulation time of
the exercised LS and IV recursive estimation schemes (18)–(20) was limited to
200 s (10000 samples).
From the estimation runs shown in Figs. 3 and 4, it is clear that the IV scheme,

which uses the innovative procedure (22) to generate instrumental variables,
radically improves the consistency of estimation. The LS method, in turn, shows
an evident asymptotic bias.
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Figure 3: Parameter estimation of the non-linear and stationary
suspension system using the LS method
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Figure 4: Parameter estimation of the non-linear and stationary
suspension system using the IV method

The same model was then identified using the resistant-to-outliers LA pro-
cedure. This time, however, the simulated variable parameter 𝑎1 was changing
gradually (3.5 . . . 2.8) in a restricted time interval [50 s , 150 s], while the other
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parameters were kept constant (𝑐3 = 5, 𝑏0 = 4). In this test the residual error
𝑒(𝑘) was represented by a normally-distributed zero-mean white noise sequence
with variance selected so that the already mentioned noise-to-signal ratio was
𝑁/𝑆 = 1%. Measurement faults were represented by missing data (𝑦(𝑘) = 0)
introduced at 𝑡 ∈ [95 s, 96 s]. Again, the integration horizon was set at 𝐿 = 50
and the sampling period was set to𝑇 = 0.02 s. Yet, the forgetting mechanismwith
𝜆 = 0.99 was activated for tracking the time-variant parameter 𝑎1. Simulation
time of the recursive LS (18)–(20) and LA (32)–(34) schemes was limited to
200 s (10000 samples).
It is evident from Figs. 5 and 6, that the weighted LA procedure allows for

reliable tracking of variable parameters regardless of occasional faults. On the
other hand, the LS algorithm with pronounced sensitivity to such errors simply
fails in this case.
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Figure 5: Tracking variable parameters of the non-linear and non-stationary
suspension system using the LS method; vertical dashed line shows the
appearance of measurement faults

Ultimately, the most challenging case was considered, in which the non-linear
model was identified provided the two parasitic phenomena occur simultaneously.
Namely, the zero-mean correlated residual error 𝑒(𝑘), such that 𝑁/𝑆 = 10%,
represented a considerable disturbance, while missing data (𝑦(𝑘) = 0) introduced
at 𝑡 ∈ [95 s, 96 s] simulated sporadic measurement faults. Once more, the
integration horizon was set to 𝐿 = 50, the sampling period was set to 𝑇 = 0.02 s,
and the forgetting mechanism 𝜆 = 0.999 was implemented in the exercised
procedures.
It is apparent from Figs. 7 and 8 that the tested IV-LA, henceforth marked

as IVabs, the IV in the sense of absolute values: (32)–(34) with 𝜓(𝑘) = 𝜉 (𝑘),
significantly suppresses the asymptotic bias of estimates, regardless of sporadic
outliers corrupting the measurement data. Contrary to this, the classical IVsqr,
the IV in the square sense: (18)–(20) with 𝜓(𝑘) = 𝜉 (𝑘), inherits its drawback
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Figure 6: Tracking variable parameters of the non-linear and non-stationary
suspension system using the LA method; vertical dashed line shows the
appearance of measurement faults

(i.e. sensitivity to faults in data) typical for estimation algorithms derived from
minimization of square indices.
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Figure 7: Parameter estimation of the non-linear and stationary suspension
system using the IVsqr method; vertical dashed line shows the appearance of
measurement faults

Proper selection of the weighting factor 𝜆 is critical when implementing
estimators. In general, the weighting factor (𝜆) used in the weighted estimator
can be related to the so-called memory length of the algorithm (Section 3):
Γ = 1/(1 − 𝜆). This means that the parameters of the identified model are
evaluated based on the measurement data (i.e. the converted output 𝜒(ℓ) and
the regression vector 𝜙(ℓ)) obtained in the current time interval [𝑘 − Γ, 𝑘]. As a
consequence, for 𝜆 close to unity, the weighted algorithm is very “conservative”,
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Figure 8: Parameter estimation of the non-linear and stationary suspension
system using the IVabs method; vertical dashed line shows the appearance of
measurement faults

resulting in a delayed response to an actual parameter change. In contrast, with
smaller values of 𝜆 the weighted algorithm reacts much faster to changes in the
parameters of the identified process, but at the expense of the evidently increased
variance of the estimation process.
More specifically, the choice of 𝜆 is mostly intuitive, based on unique prior

knowledge of the underlying system dynamics and predictions of parameter evo-
lution in the supervised system (e.g. sudden or gradual parameter changes).
A known remedy for the problem of proper tuning of the 𝜆 coefficient is the idea
of parallel estimation (e.g. the use of a “battery” of 3 competing estimators work-
ing in parallel with differently tuned weighting factors: 𝜆1 < 𝜆2 < 𝜆3). In such a
solution [2], the on-line decision-making mechanism evaluates the performance
quality indicator (such as the local mean square residual error 𝑒(𝑘) used in the
regression model) and proposes the estimation results generated by the ‘winning’
procedure (i.e. the one with the smallest index).

5. Summary and further study

The article addresses the problem of parametric estimation in order to obtain
identification procedures resistant to correlated noise and occasional outliers
in the analysis of non-stationary and non-linear models in continuous time. The
presented numerical simulations show that the IV scheme used successfully solves
the problem of correlated noise and therefore can be recommended as a good tool
for suppressing the asymptotic bias (systematic error) of the obtained estimates.
In addition, an innovative method of generating instrumental variables adapted to
non-linear dynamics was presented, which proved its effectiveness and practical
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usefulness in experiments. The non-trivial problem of parametric identification
resistant to measurement errors is solved by the applied algorithm that takes into
account penalization according to the sum of absolute values. On the other hand,
the weighting mechanism makes it possible to track the time-varying parameters
of non-stationary systems.
Our original contribution to the field of identifying continuous-time models

can be summarized as follows: The most important achievements include the
procedure for determining the instrumental variable for a continuous model with
non-linearity (NLID) and thus removing the evaluation bias (systematic error)
for such semi-Wienerian systems, and the suboptimal estimation algorithm in
the sense of the minimum sum of absolute deviations (LA) in the recursive ver-
sion, which actually implements minimization of the objective function (absolute
values) only approximately, but it can be performed on-line and maintains the
system’s robustness to sporadic outliers.
The fundamental direction of this research was initiated and described in our

conference article [24]. This study has been consistently and further developed
in this article. In particular, the difficult problem of such a synergistic implemen-
tation of an estimation procedure that is both insensitive to occasional outliers in
the data and consistent (asymptotically convergent) in the presence of correlated
noise appears to have been innovatively and successfully solved here as well as
illustrated by new working examples.
Let us remember that the LA algorithm itself (applied even in the simple

version) brings the feature of insensitivity to outliers (deviations), and in the form
enriched with an instrumental variable (IV-LA or IVabs) additionally removes the
evaluation error and is suitable for the task of identifying processes with non-
linear dynamics (semi-Wienerian/NLID). It is worth noting that the developed
IVabs method with the applied weighting mechanism (𝜆) is also suitable for
tracking variable parameters of non-stationary systems (both linear and semi-
Wienerian/NLID).
Finally, the proposed method of instrumental variable in the sense of LA

(marked as IVabs)was also verified in the numerical study of the task of identifying
a practical non-linear system (vehicle suspension with “progressive” springs).
Since the presented approach takes into account only one non-linear static

element 𝑓 (𝑦), which is an intercept (free term) in the differential equation, an
interesting direction for further research seems to be the search for an effective
discrete approximation model for other (more complex) types of continuous-time
systems (e.g. with non-linear functions corrupting derivatives).
In view of the above, further research in this area may focus on the following

issues.

1. Identification of non-linear MIMO systems: Given that any system with mul-
tiple inputs and multiple outputs can simply be written as a set of ordinary
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differential equations, the appropriate SISO to MIMO generalization need
not actually be problematic. In the literature, one can find dedicated practical
approaches to modeling [30] and identification [31] of linear MIMO systems.

2. Identification of non-linear models with input delay: The simultaneous iden-
tification of both system parameters and input delay is definitely a non-trivial
matter. For a delay system represented by a linear differential equation, efficient
estimation schemes are available [32].

3. Identification of non-linear distributed-parameter objects: Since the dynamics
of a system of distributed parameters is by definition represented by a partial
differential equation, the necessary discrete-time approximation seems to be
quite a challenge. Interesting results in this regard, including linear systems
with distributed parameters, were presented by, for example, Sagara [33].

It is particularly important that the developed methods of identifying non-
linear systems are resistant to (destructive) measurement errors, thanks to which
they can be directly used in reliable diagnostics of wheeled vehicle components.
Some useful techniques and results in the diagnosis of vehicle dynamics, taking
into account the well-known quarter-car model, can be found in the work [16]. In
the available literature [15] you can also find many other interesting and practical
studies in the wide field of identification of non-linear systems.
Finally, it is worth noting that there are specific modern methods (based on

AI, including neural networks) that can be effectively used to identify [34–36]
the parameters of discrete- or continuous-time dynamical systems.

The authors declare that there is no competing financial interest or personal
relationship that could have appeared to influence the work reported in this paper.
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