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Introduction

On the deep seabed of the equatorial north Pacific Ocean within the Clarion-Clipper-
ton Fracture zone (CCz) (Figure 1) 16 ISA (International Seabed Authority) contractors 
explore large deposits of polymetallic nodules. Polymetallic nodules resting on the bottom 
of the ocean are of interest due to their metal contents such as ni, Cu, Co, and Mn and Rare 
earth elements (Ree) (Hein et al. 2020). The exploration area allocated to each contractor 
is 75,000 square kilometers. The deposits are located at a depth of 4 to 6 km and are sampled 
directly (physical samples), usually using a box corer (hereinafter referred to as BC) (Sterk 
and Stein 2015).
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BC sampling is performed in a relatively sparse grid due to the large surface area of the 
recognized deposits and the high cost of sampling. For example, in the B2 sector admin-
istrated by the Interoceanmetal Joint Organization (IOM), the distances between adjacent 
BC, where the abundance of polymetallic nodules (APn) is determined in situ (i.e. the mass 
of nodules per unit area), ranges from 3.3 up to 15 km depending on the stage of explora-
tion. The abundance of nodules in this area is highly variable with a coefficient of variation 
of 60–70% (Mucha et al. 2013). For this reason, in order to recognize the continuity of 
deposits and to estimate resources, it is necessary to use indirect sampling methods and 
measurements (acoustic profiling, backscatter, photo, and video profiling). In recent years, 
several publications have indicated great possibilities but also significant limitations related 
to the use of data from the indirect sampling method of polymetallic nodules for resource 
estimation. Information from the backscatter helps with, among other things, the better re-
source assessment of polymetallic nodules and provides the data needed for planning the 
optimal mining path (Alevizos et al. 2018; Knobloch et al. 2017; Machida et al. 2021; Wong 
et al. 2020, 2019; yang et al. 2020; yoo et al. 2018). The large number of bottom images 
taken during photo-profiling conducted along the course of the research vessel are also of 
great importance. They are the source of information on the continuity of the nodule de-
posit. However, their role in the estimation of nodule resources still seems to be not fully  
appreciated. 

The usefulness of photography is related to the well-known and very strong relation-
ship linking the weight of individual nodules with their surface (or longer axis) (Handa 
and Tsurusaki 1981; Wasilewska-Błaszczyk and Mucha 2020; Felix 1980; Kuhn and Rathke 
2017; lipton et al. 2021; yu and Parianos 2021). This encouraged us to search for a relation-
ship linking the nodule abundance (APn) in samples collected using a box-corer with the 
percentage coverage of the bottom with nodules (nC), determined in the photo taken at the 
sampled site. The effects of these studies have been documented in numerous articles and 
reports (e.g. Kuhn and Rathke 2017; Park et al. 1999, 1996; Sharma 1989; Technical Report 
Summary, TOMl Mineral Resource, Clarion Clipperton zone, Pacific Ocean 2021; yoo 
et al. 2015). examples of regression models and their descriptions documented in articles 
and reports are presented in Table 1. The proposed regression models often do not have an 
intercept or are non-linear, and their strength is assessed using the determination coefficient 
R2, which is not methodologically correct (Anderson-Sprecher 1994; Hahn 1973). Therefore, 
the often very high values of the coefficients of determination (R2) (of the order of 90% or 
even 95%) given there are overestimated to an unknown degree. This fact, as well as the 
issue of different sizes of data sets and the range of variability of nodule abundance (APn) 
and the use of different regression models (linear and nonlinear) make it difficult to compare 
the quality of the models presented in the articles for different deposit areas. However, these 
relationships, described by the model with an intercept where the application of R2 is cor-
rect, are weaker than expected, taking into account the strong correlation of the geometrical 
features of individual nodules with their masses (Kuhn et al. 2011; Kuhn and Rathke 2017; 
Mucha and Wasilewska-Błaszczyk 2020; Wasilewska-Błaszczyk and Mucha 2021).
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There are several factors that influence this state of affairs (Sharma 2017, 1993; Tsune 
and Okazaki 2014; Wasilewska-Błaszczyk and Mucha 2020). The quality of the bottom pho-
tos, together with the increasingly better cameras, seems to be of marginal importance here. 
Therefore, the very process of extracting nodules from photos, whether done manually or 
automatically, does not significantly reduce the strength of the relationship between the pa-
rameters of nodules determined from the photos and their abundance (Kuhn and Rathke 
2017; Park et al. 1999; Schoening et al. 2017). Two natural factors will have a significant 
impact on the weakening of the strength of this dependence – nodule coverage with sedi-
ment and the features of the empirical distribution of the size of the nodules. Tsune (Tsune 
2021, 2015) presented theoretical considerations on the effect of covering nodules with sed-
iments and the size distribution of nodules on the estimation of nodule abundance from 
seafloor photographs. Tsune indicated several parameters describing the shape of the size 
distribution of nodules and affecting the size of errors in the estimation of nodule abun-
dance from photographs. These include skewness, symmetry, and the number of modal  
values. 

The average length of the longer nodule axe (Mla) can be frequently used in regres-
sion models as an expression of the general size of the nodules within the seafloor images 
(Handa and Tsurusaki 1981; lipton et al. 2021; Piper et al. 1979; Sharma 1993, 1989; Shar-
ma et al. 2013; Technical Report Summary, TOMl Mineral Resource, Clarion Clipperton 
zone, Pacific Ocean 2021). Kuhn and Rathke (Kuhn and Rathke 2017) applied the formula 
(area and weight of individual nodule, Table 1) for separated groups of nodules (small-sized 
nodules and medium or large-sized nodules) but the results, in particular for medium or 
large-sized nodules, turned out to be unsatisfactory as the nodules were covered with sed-
iments. This natural factor (the coverage of nodules with sediments and their immersion 
in sediments, which is difficult to quantify from the images), has an equally large impact 
on reducing the strength of the relationship between the mass and geometric parameters 
of the nodules (Sharma 1989, 1993; Felix 1980; Kuhn et al. 2011; Kuhn and Rathke 2017;  
Tsune 2021). 

Benthic activities (e.g. burrowing and movement traces) may be responsible for covering 
the nodules with sediment (Tsune and Okazaki 2014). The nodules lie on the sea-bottom 
sediment, generally half-buried, but some nodules are completely covered by sediment and 
are thus not visible in photographs (Polymetallic nodules | International Seabed Authority 
2022). 

In the IOM (CCz) area, approximately 70% of its surface area is partially covered with 
sediments of varying intensity (Felix 1980; Kotliński 2009). The reason for the varied cov-
erage of nodules with sediments is the ongoing sedimentation and the activity of ocean 
currents. The buried nodules (Kotliński and Stoyanova 2007), which occur in sediments at 
a depth of more than 10 cm, are not prospective for exploitation. Sharma established individ-
ual regression models for computing APn in different seabed settings: five classes of Sedi-
ment-Water Interface Boundary thickness (SWIB) and five classes of nodule burial (Sharma 
1993, 1989). The established linear regression models with intercept, taking into account the 
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product of nC and Mla for various classes of nodule burial, were mostly characterized by 
significantly higher coefficients of determination R2 (48 to 98%) compared to R2 = 56% for 
the regression model established for all data together. 

When estimating the APn in part of B2 sector (the IOM area), Wasilewska-Błaszczyk 
and Mucha (Wasilewska-Błaszczyk and Mucha 2021) used not only nC, but also informa-
tion about the degree of nodule coverage with sediment encoded in the form of a qualitative 
variable, which is possible in the general linear models (GlM). In addition, the authors 
included in GlM, as the second categorical variable, the sizes of the nodules previously in-
dicated as an important feature of the nodules, significantly reducing the quality of the APn 
assessment based on the seafloor images. 

CCz polymetallic nodules are classified into three types based on their morphology, 
size and texture: smooth (S – type), rough (R – type), and smooth – rough mixed (S – R – 
type), which can be related, respectively, to their genetic classification: hydrogenetic (H), 
diagenetic (D) and mixed genesis – hydrogenetic-diagenetic (HD) (A geological model of 
polymetallic nodule deposits in the Clarion-Clipperton Fracture zone 2010). 

Certain features of the size fraction distribution of nodules in a part of the ocean floor 
(e.g. shape, the strength of asymmetry) are indicators of their belonging to particular genetic 
types of nodules. The authors coded them as ordinal variables – the increasing codes were 
assigned to H, HD and D types along with their increasing general sizes. The established 
GlM regression model combining the nodule abundance and the nodule seafloor coverage 
supported by qualitative variables was characterized by a significantly stronger relationship 
with the adjusted coefficient of determination (R2

adj) equal to 70.4% compared to simple 
linear regression (SlR) combining only APn and nC with R2

adj equal to 15.4%; in addi-
tion, a significant decrease in the standard error of estimation, from 4.2 to 2.5 kg/m2, was 
found. In the article by Wasilewska-Błaszczyk and Mucha (Wasilewska-Błaszczyk and Mu-
cha 2021), the verification of the model was performed for a separate data set lying within 
the research area. The promising results of these studies prompted the authors to make fur-
ther attempts aimed at developing this methodology to support regression relationships with 
qualitative information and to verify regression models on a separate data set to confirm 
their universality in adjacent deposit areas.

The main direction of the development of the methodology for estimating the abundance 
of nodules from seabed images is the introduction of information on the distribution of nod-
ule fractions within them. However, the consideration of this information in the regression 
model is significantly limited by the coverage of the nodule with sediments. This factor in 
a significant part of ocean floor images taken during photo profiling and, to a greater or 
lesser extent, falsifies the actual nodule fraction distribution. Thus, the geometric meas-
ures of individual nodules (area and the lengths of nodules) are underestimated. This is 
often confirmed by significantly different nodule fraction distributions determined for the 
box core sample compared to the distributions obtained for the seafloor photos taken just 
before sampling (Technical Report Summary, TOMl Mineral Resource, Clarion Clipper-
ton zone, Pacific Ocean 2021; Wasilewska-Błaszczyk and Mucha 2020). Automation of the  
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process of assessing these parameters is justified only in the case of a lack of nodule cover-
age with sediments. Otherwise, such images should be excluded from the study; alternative-
ly, attempts to include qualitative variables with coded information on the extent of nodule 
coverage with sediment in regression models appear promising (Wasilewska-Błaszczyk and 
Mucha 2021).

The assessment of the abundance of nodules based on seafloor images has potential, 
but its technical possibilities are also limited. This results, for example, from incomplete 
information about the geometrical dimensions of nodules presented only in the form of its 
projection onto the plane. The lack of information about the vertical axis of nodules and 
limitations in reconstructing the shape of nodules horizontally due to the natural seafloor 
conditions (e.g., immersion in the sediment and nodule coverage with sediment) means that 
one should take into account the risk of certain errors in estimating the abundance of nod-
ules based on images.

Regression models documented in the literature are often based on a relatively small 
statistical sample, which makes them uncertain due to the lack of confirmation of their sta-
tistical significance. The R2 values reported in the literature only indicate the strength of the 
relationships combining APn with nodule parameters obtained from images, while there 
are no measures expressing the accuracy of the prediction of abundance, for example, in 
the form of standard estimation error (See). When using the APn calculated from models 
to estimate resources, it is also extremely important to confirm the reliability of models on 
a separate data set.

1. The aim of the study

The main purpose of the study, the results of which are presented in the article, was to 
model the regression relationships of the abundance of polymetallic nodules (APn) with the 
various parameters (features) of the nodules obtained based on the analysis of the seafloor 
photos in the H22 exploration block (IOM area) (Figure 1). The modeling used the following 
quantitative parameters (variables): percentage nodule coverage of the seafloor (nC), mean 
and median lengths of the longer axes of nodules (Mla, Mela), mean and median surface 
of nodules (MA, MeA). The following qualitative parameters were also used: the type of 
size fraction distribution (FD) and the degree of nodule coverage with sediments (SC). De-
pending on the number and type of these predictor variables, various variants of regression 
models were used (STATGRAPHICS 19® Centurion 2022): simple linear regression (SlR), 
multiple regression (MR), general linear models (GlM).

The second objective of the research was to verify and compare the correctness and ef-
fectiveness of the obtained models from the point of view of the accuracy of the prediction 
of nodule abundance made on a separate data set.
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2. Initial modeling assumptions –  
quantitative and qualitative regression variables

The regression dependency between the nodule abundance and the nodule coverage of 
the seafloor in the photos is obvious. It results from a laboratory established strong non-lin-
ear (power) relationship between the mass of single nodules (W) and their surfaces (A). 
The coefficients of determination of the regression models expressing the strength of this 
relationship are high and amount to 91% for the area of the horizontal section of nodules 
≤40 cm2 and 83% for the area >40 cm2 (Wasilewska-Błaszczyk and Mucha 2020). This 
is also confirmed by the graph of the median mass of nodules within individual fractions  
(Figure 2). Their fast growth accompanied by a significant increase in the mass range is 

Fig. 2. Box and whisker plots of the weight and area of individual nodules in intervals of fraction  
(for 322 nodules from the trawl sample, IOM area)

Rys. 2. Wykresy ramka–wąsy masy i powierzchni poszczególnych konkrecji w przedziałach frakcji  
(dla 322 konkrecji z próbki włoka, obszar IOM)
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observed especially for fractions larger than 6 cm. Therefore, it seems reasonable to distin-
guish more detailed groups of nodule sizes representing different fraction distributions con-
sidered in GlM. This need is also evidenced by the noticeable smoothing (underestimation) 
of the upper range of the abundance of nodules estimated on the basis of the GlM model 
(Wasilewska-Błaszczyk and Mucha 2021) in relation to the value of this parameter found in 
direct sampling.

To distinguish different types of size fraction distribution of nodules, an analysis of six-
ty-six samples collected with the use of the box corer in the H22 exploration block and as-
sociated with the genetic types (H, HD, and D) was performed. This analysis was supported 
by the results of the identification of size fraction distributions of nodules on seafloor images 

Fig. 3. Box chart with data points overlapped for nodules number in the fractions based on sixty-six box core 
samples from the H22 exploration block for four types of fraction distribution FD (A–D). 

IQR – interquartile range

Rys. 3. Wykres pudełkowy z nakładającymi się punktami danych dla liczby konkrecji we frakcjach  
na podstawie sześćdziesięciu sześciu próbek czerpaka skrzynkowego z bloku eksploracyjnego H22  

dla czterech typów rozkładu frakcji FD (A–D). 
IQR – rozstęp międzykwartylowy
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Fig. 4. Scheme of independent variables determined from seafloor photographs used in regression models 
(SlR – simple linear regression, MR – multiple regression, GlM – general linear models)  

to predict the abundance of nodules (dependent variable)

Rys. 4. Schemat zmiennych niezależnych wyznaczonych na podstawie zdjęć dna morskiego wykorzystywanych 
w modelach regresji (SlR – prosty model liniowy, MR – regresja wielokrotna, GlM – ogólne modele liniowe) 

do przewidywania zasobności konkrecji (zmienna zależna)
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before sampling. Within the box corer samples classified as genotype D, the occurrence of 
two distinctly different distributions of nodule fractions with varied sizes of nodules was 
found, which was a premise for their separate treatment. For this reason, four types of em-
pirical distributions were finally distinguished for modeling regression relationships, which 
are presented as box plots (Figure 3). examples of typical ocean floor images with nodules 
representing particular types of distribution are presented in Figure 4, while the medians of 
the relative shares (percentages) of the number of nodules in the samples within different 
size fraction intervals are included in Table 1. These quantitatively define the types of size 
fraction distribution (further marked with the symbol FD).

The four featured types of size fraction distribution of nodules (FD) are characterized 
below (Figure 4):

�� Type 1 (FD 1): usually hydrogenetic (H) nodules; nearly 100% of the nodules are 
fractions up to 6 cm, and about 95% are nodules of fractions up to 4 cm; fraction 
distribution is characterized by a strong positive skewness.

�� Type 2 (FD 2): usually hydrogenetic-diagenetic (HD) nodules; nodule fractions up to 
4 cm constitute approximately 77%, nodules from 6 to 8 cm constitute an average of 
7%; fraction distribution is characterized by a moderate positive skewness.

�� Type 3 (FD 3): nodules usually belonging to the diagenetic type (D), less often hy-
drogenetic-diagenetic (HD); nodules of fractions up to 4 cm constitute about 40%, 
and large nodules (larger than 6 cm) constitute about 23%; the fraction distribution is 
characterized by a weak positive skewness.

�� Type 4 (FD 4): diagenetic nodules (D); fractions larger than 6 cm constitute much 
more than 50% and the number of nodules larger than 8 cm is greater than 10% (even 
up to 30–50%); flattened quasi-symmetrical fraction distribution.

Quantitative statistics of nodules in size fraction intervals (Table 2), as well as a set of 
typical images for four types of size fraction distribution (Figure 4), are sufficient to qualify 
nodules in the ocean floor image for one of the size fraction distribution types based on 

Table 2.  Medians of the share (%) of nodules number within different size fraction intervals  
 (for sixty-six box core samples from the H22 exploration block)

Tabela 2. Mediany udziału (%) liczby konkrecji w różnych przedziałach frakcji wielkości  
 (dla sześćdziesięciu sześciu próbek czerpaków skrzynkowych z bloku eksploracyjnego H22)

n – number of box core samples.
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expert assessment. This procedure has an advantage over the automation of the process of 
reading the contours of nodules from photos (automatic image processing) when there is 
a clear coverage of the nodules with sediment. Such a qualification of the distributions can 
be made based on a fragment of the photo that does not raise any doubts because it often 
happens that increased nodule coverage with sediment occurs only in a part of the photo.

In the case of nodule coverage with sediment (SC), three intensity levels were distin-
guished (Figure 4):

�� level 1 – no or negligible coverage with sediments;
�� level 2 – moderate coverage with sediments in small fragments of the ocean floor 

covered by the photo;
�� level 3 – intensive nodule coverage with sediments on most of the photo.

To emphasize the difference in the intensity of nodule coverage with sediments, three 
box corer samples illustrating different levels of SC (Figure 4), were selected. The size frac-
tion distributions of nodules were assigned to the same type (FD = 3), and the abundance of 
nodules (APn) showed very similar values (from 13.9 to 14.1 kg/m2).

3. Materials

The research area includes the H22 and H11 exploration blocks located in the cen-
tral-eastern part of the B2 sector administrated by the Interoceanmetal Joint Organization 
(IOM) (Figure 1 and 5) (Baláž 2021; Kotliński et al. 2008). They are distinguished by a high 
abundance of nodules and seem to be the most promising in the perspective of their prof-
itable exploitation (Abramowski et al. 2021). The study used data from box corer samples 
(polymetallic nodule abundance APn) and information obtained from seafloor images taken 
before sampling (with an area of about 1.5 m2). The information from the photos was both 
quantitative (percentage nodule coverage of the seafloor nC) and qualitative (expert assess-
ment of the level of sediment coverage SC and the types of size fraction distribution FD). 
The number of items of data used from both exploration blocks was sixty-six (H22) and 
forty-four (H11), respectively (Figure 5). The information from the H22 area was the basic 
data set, which was the training set for regression analysis. However, the information from 
the H11 area was a validation data set (test data). The statistical characteristics of the total 
data sets and data grouped into types of size fraction distribution (FD) are summarized in 
Table 3.

Furthermore, for thirty-seven seafloor images, the mean and median values of the two 
geometric measures of nodules were determined: their longer axis (Mla, Mela) and their 
surface (MA, MeA) (Table 2).

The mean abundance of nodules (APn) in both the training (H22) and test (H11) data sets 
is characterized by close values of 13.5 and 13.0 kg/m2. Based on statistical tests performed 
at the significance level of 0.05 there are no grounds to reject the hypotheses on the identity of 
distributions (Kolmogorov-Smirnov test) and the equality of medians (Mann-Whitney test)  
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(STATGRAPHICS 19® Centurion 2022) of the abundance of nodules (APn) in both ex-
ploration blocks. Analogous results of statistical testing of distributions and medians were 
obtained for APns grouped into types of size fraction distribution. The variability of the 
abundance of nodules can be described as moderate with the coefficients of variation of 
around 35% (H22 block) and 30% (H11 block). A comparable or slightly lower variability in 
the range of 22–29% (H22) and 14–32% (H11) is characteristic for nodule abundance (APn) 
within the distinguished types of FD. Thus, the exploration blocks under consideration are 
characterized by a much lower relative variability of the nodule abundance than the entire 
B2 area.

Such a large differentiation of means is not observed between nCs for different FDs, 
which range from 34 to 44% (H22) and from 33 to 53% (H11). In general, for nC, the ten-
dency is generally decreasing in the transition from FD = 1 to FD = 4.

Fig. 5. The location of the box corer sampling sites and seafloor photographs in the H22 (training set) and H11 
(test set) exploration blocks 

A – information on nodule coverage of seafloor (nC), B – types of size fraction distribution (FD),  
C – levels of sediment coverage of nodules (SC)

Rys. 5. lokalizacja miejsc pobierania próbek z czerpaka skrzynkowego i zdjęć dna oceanicznego w blokach 
eksploracyjnych H22 (zbiór treningowy) i H11 (zbiór testowy) 

A – informacja o pokryciu konkrecjami dna oceanicznego (nC),  
B – rodzaje rozkładu frakcji wielkościowej (FD), C – poziomy pokrycia konkrecji przez osady (SC)
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4. Methods

Three regression methods (STATGRAPHICS 19® Centurion 2022) were used to assess 
the nodule abundance (APn) based on the quantitative and qualitative parameters of the 
nodule deposits:

�� simple linear regression (SlR) for continuous predictor variables where only one 
variable is used (APn = f(nC)); 

�� multiple regression (MR) where more than one predictor variable is continuous 
(APn = f(nC, Mla, Mela, MA, MeA)); 

�� general linear models (GlM) in cases where, next to continuous predictor variables 
(nC), the APn variability is additionally explained by categorical (ordinal) predictor 
variables (SC, FD): APn = f(nC, SC, FD). 

The equations of the mentioned regression models are presented in Table 4.
each of the determined regression models was evaluated for its statistical significance by 

calculating the so-called p-value. When the p-value is ≤0.05, the model can be considered 
statistically significant with a risk of error not greater than 5%. The analysis also eliminated 
those variables whose individual contribution to the explanation of the dependent variable 
was statistically insignificant. 

The explanatory power of the regression models were compared on the basis of the value 
of the adjusted coefficient of determination , which is recommended for the comparison of 
the regression models that contain different numbers of independent variables:
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�ª n – count of data, 
p – the number of estimated model coefficients, 
ˆiy  – theoretical value of the dependent variable y determined from the model equation  

  for the observation “i”, 
yi – empirical value of the dependent variable y for the observation “i”, 
y  – arithmetic mean of the empirical values of the dependent variable y.

The adjusted coefficient of determination R2
adj expresses the percentage of the varia-

bility in the dependent variable, which was explained by the fitted model; compared to R2, 
it is slightly lower. The use of the determination coefficient to compare the strength of the 
models is justified because all the regression models presented in this article have an intercept  
(Anderson-Sprecher 1994).
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The second key goodness-of-fit measure of the regression model to the data is the stand-
ard error of estimation (See), which informs about the average value of empirical deviations 
of the dependent variable from the theoretical values calculated from the model:

 ( )2

1
See

1
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i i

i

y y
n p=

−
=

− −∑
 (2)

The quality assessment of the regression models was performed using the two measures 
defined above, See and R2

adj.
The predictive ability of APn from the regression models determined for the training 

set (H22) was checked on the test set (H11). For this purpose, four other measures based on 
residuals between the measured and theoretical values of the dependent variable determined 
from the regression equations were calculated and compared:

�� the mean error (Me) characterizing the mean deviation of the measured y values 
from the values indicated by the model:

 

1

1Me ( )ˆ
n

i i
i

y y
n =

= −∑
 (3)

�� the mean absolute error (MAe) characterizing the mean absolute deviation of the 
measured y values from the values indicated by the model:
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�� the mean percentage error (MPe):

 

1

100%M
ˆ

Pe
n

i i

ii

y y
n y=

−
= ∑

 (5)

�� the mean absolute percentage error (MAPe):
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An important assumption of regression analysis is the non-correlation of independent 
variables, as reported by the variance inflation factor (VIF). Values greater than 10.0 usually 
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indicate serious multicollinearity among the predictor variables, which leads to imprecise 
estimates of the model coefficients.

In GlM, the nC variable was used in the form of a natural logarithm because such 
a transformation ensures a significantly better fit of the model to the empirical relationship 
(Wasilewska-Błaszczyk and Mucha 2021).

5. Results and discussion 

The first stage of the study was aimed at verifying the strength of the relationship be-
tween the percentage coverage of the bottom with nodules (nC) and the nodule abundance 
(APn) within the groups that have similar distributions of size fraction of nodules (FD) 
within the bottom images. For this purpose, individual simple regression models (SlR) 
showing the relationship between APn and nC were determined for the selected types of 
size fraction distributions (Figure 6, Table 4).

The variability of nodule abundance (APn) estimated based on individual simple linear 
regression models (SlR) is explained for FD: 2, 3, and 4 by nC in 56%, 62%, and 81%, 
respectively, as indicated by the coefficients of determination (R2

adj). Standard estimation 
errors (See) expressed in % of the mean nodule abundance amount to 15.0%, 15.2%, and 
9.9%, respectively. The regression model was insignificant for significance level α = 0.05 
(p-value = 0.6579) only for FD = 1 (H type of nodules); no correlation was found (R2

adj = 0).  

Fig. 6. Simple linear models between APn and nC for different types of size fraction distribution (FD) 
R2

adj – the adjusted coefficient of determination

Rys. 6. Proste modele liniowe zależności między APn i nC 
dla różnych typów rozkładu frakcji wielkościowych konkrecji (FD)  

R2
adj – skorygowany współczynnik determinacji
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The magnitude of the MAPe error of estimating the nodule abundance from these individu-
al regression models for all data together is 21.1% and the Me error is 1.82 kg/m2. The values 
of these errors are nearly half as large as the corresponding errors of the APn estimation 
from a simple regression model (characterized by R2 = 20.9%) made without separating 
4 types of size fraction distributions; the errors in this case are MAPe = 39.8% and MAe = 
= 3.48 kg/m2. A visual comparison of the APn estimated from regression models (SlR) and 
the actual APn found in the box core samples is shown in Figure 7 (A – model for all data, 
B – individual models for different FD). Therefore, considering information on the types 
of nodule fraction distribution, despite at relatively small size of the separated data groups, 
significantly increases the quality of the APn estimation based on the nC. The conclusion is 
fully in line with expectations due to the strong power dependence of the mass of individual 
nodules and their area.

The observed increase in the strength of the relationship linking APn with nC along 
with the general increase in the size of nodules (FD: from 1 to 4) does not agree with the 
observation of ellefmo and Kuhn (ellefmo and Kuhn 2020), where a strong correlation is 
noted only for small nodules, while for large nodules, this correlation disappears due to their 
greater coverage with sediment.

A further significant increase in the coefficients of determination is observed for the 
GlM regression models (performed individually for FD types) that, in addition to nC, in-
clude the visually evaluated qualitative variable, namely the level of nodule coverage with 
sediment (SC) (Table 4, Figure 7D). The greatest increase in R2

adj from 0.0% to 60.1% is 
observed for the smallest fractions of nodules (FD = 1). This GlM model, probably due to 
the small amount of data, remains statistically insignificant for the significance level α = 0.05 
(p-value = 0.1418), but it is characterized by values of the See that are approximately half the 
size (1.29 kg/m2), MAe (0.73 kg/m2) and MAPe (9.7%).

In the next step, the GlM model was made for all data in total, considering nC, SC, 
and information on size fraction distributions encoded in the form of a qualitative variable 
(FD). This is characterized by a very high coefficient of determination (R2

adj = 87.2), while 
the MAe (1.24 kg/m2 versus 1.12 kg/m2) and MAPe errors (10.4% versus 8.9%) are only 
slightly higher than for individual GlM models, taking into account nC and SC (Table 4, 
Figure 7C). The advantage of this model is its statistical significance (p-value = 0.0000). 
Therefore, from a theoretical point of view, it can be practically used to assess the APn 
without the need to use individual models for groups of nodule fraction distributions, which 
are often calculated for numerically modest datasets.

The quality of the APn estimation made on the basis of the presented regression models 
specified for data from the H22 exploration block was also verified on the test set that did not 
participate in the creation of models (data from the H11 exploration block) (Figure 1 and 5). 
Referring to the statistics calculated for APn and nC, it can be concluded that the adjacent 
areas H22 (training set) and H11 (test set) with a similar area are characterized by similar 
deposit parameters, which may have a positive impact on the obtained results (Table 3). The 
MAe and MAPe errors for the SlR model for both data sets (training and test) are similar, 
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and sometimes even smaller for the test set, which may be related to the less intense effect 
of the nodule coverage with sediment in the H11 area in relation to the H22 area (Table 4). 

The MAe and MAPe errors for the GlM model (nC, SC) are generally twice as high 
for the test set as they are for the training set (the MAPe errors for different FDs range from 
3.3% to 20% and 4.9–10.6%, respectively); however, taking into account the distinctiveness 
of these sets, this seems fully acceptable. This can be confirmed by the MAPe errors for the 
GlM model (nC, FD, and SC), which for blocks H22 and H11 are 10.4 and 16.9%, respec-
tively. Therefore, the results of the quality assessment of the GlM model for the test dataset 
may prove its universality. The obtained results of estimating the nodule abundance (APn) 
based on a photographic survey seem extremely good, considering the different geometri-
cal bases of the photos (photo area of approximately 1.5 m2) and the box core sample (area 
0.25 m2). 

Fig. 7. Scatter plots of the relationship between predicted and observed APn based on simple linear regression 
(SlR: nC) and general linear models (GlM: nC, SC) for all data (A and C, respectively) and for individual 

types of size fraction distribution FD (B and D, respectively)  
(for the training set, regression models are summarized in Table 4)

Rys. 7. Wykresy punktowe zależności między przewidywaną a obserwowaną APn na podstawie prostej regresji 
liniowej (SlR: nC) i ogólnych modeli liniowych (GlM: nC, SC) dla wszystkich danych (odpowiednio A i C)  

oraz dla poszczególnych typów rozkładu frakcji wielkości FD (odpowiednio B i D)  
(dla zestawu treningowego modele regresji podsumowano w tabeli 4)
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Table 5.  Regression models between nodule abundance (APn) and seafloor nodule coverage (nC) supported  
 by the categorical (ordinal) variables: the level of sediment coverage of nodules (SC) and size fraction  
 distribution (FD) or supported by quantitative variables: median of nodule area (MeA) and median  
 of the long axis (Mela) based on photographs (count of data = 37)

Tabela 5.  Modele regresji między zasobnością konkrecji (APn) a pokryciem konkrecjami dna morskiego (nC)  
 wsparte zmiennymi jakościowymi (porządkowymi): poziomem pokrycia konkrecji osadami (SC)  
 i rozkładem wielkości frakcji (FD) lub wsparte zmiennymi ilościowymi: medianą powierzchni  
 konkrecji (MeA) i medianą osi długiej (Mela) na podstawie zdjęć (liczba danych = 37)

Regression 
Method

Independent 
Variables equation of estimated Model R2

adj 
(p-value) See MAe MPe MAPe

SlR

nC APn (kg/m2) = 
= 7.91 + 0.14( nC (%))

13.7
(0.0140)

3.35 2.78 –8.2 25.2

ln(nC) APn (kg/m2) = 
= –1.92 + 4.25ln(nC (%))

12.0
(0.0203)

3.38 2.82 –8.4 25.5

nCxMela APn (kg/m2) = 
= 5.55 + 0.055 MelaxnC

44.9
(0.0000)

2.68 2.13 –5.4 19.0

MR nC, MeA APn (kg/m2) = 
= –0.24 + 0.18( nC (%)) + 0.80MeA

52.3
(0.0000)

2.49 1.95 –4.6 17.2

GlM nC, MeA, 
SC (I2)

APn (kg/m2) = 
= –2.42 – 1.61 I2(1) + 0.03 I2(2) +  

+ 0.23(nC (%)) + 0.90MeA

55.5
(0.0000)

2.41 1.75 –3.9 14.8

MR nC, Mela APn (kg/m2) = 
= –5.64 + 0.17(nC (%)) + 3.26Mela

51.9
(0.0000)

2.50 1.94 –4.6 17.1

GlM nC, Mela, 
SC (I2)

APn (kg/m2) = 
= –8.02 – 1.44 I2(1) – 0.11 I2(2) +  

+ 0.22(nC (%)) + 3.60Mela

54.0
(0.0000)

2.45 1.74 –3.9 14.7

GlM

ln(nC),  
FD (I1)

APn (kg/m2) = 
= –12.69 – 5.09 I1(1) – 2.40 I1(2) +  

+ 1.77 I1(3) + 6.95 ln (nC (%))

73.3
(0.0000)

1.87 1.51 −2.4 12.9

ln(nC),  
FD (I1), 
SC (I2)

APn (kg/m2) = 
= –21.17 – 6.14 I1(1) – 2.65 I1(2) +  

+ 2.40 I1(3) – 2.32 I2(1) –  
– 0.65 I2(2) + 9.59 ln(nC (%))

84.8
(0.0000)

1.41 1.04 −0.9 7.9

SlR – simple linear regression, MR – multiple regression, GlM – general linear models, R2
adj – adjusted 

coefficient of determination, See – standard error of estimation, MAe – mean absolute error, MPe – mean percentage 
error, MAPe – mean absolute percentage error. The values of indicator variables in GlM were determined based on 
the values of categorical (ordinal) variables according to the following scheme: I1(1) = 1 if FD = 1, −1 if FD = 4,  
0 otherwise; I1(2) = 1 if FD = 2, −1 if FD = 4, 0 otherwise; I1(3) = 1 if FD = 3, −1 if FD = 4, 0 otherwise; I2(1) = 1 
if SC = 1, −1 if SC = 3, 0 otherwise; I2(2) = 1 if SC = 2, −1 if SC = 3, 0 otherwise.
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In the case of using images from photo profiling (neptune), over the larger area (in the 
IOM area it is on average about 4.5 m2), a positive result in determining the quality param-
eters (FD and SC) is expected. This is due to fact that there is a greater risk of incorrect 
classification of nodules to types of size fraction distribution or mistakes in determining the 
level of sediment coverage in the case of smaller images due to the influence of local varia-
tions on these parameters.

In the case of the models listed in Table 4 and Table 5, the variance inflation factor (VIF) 
is always less than 2, so there is no serious multicollinearity of the variables used.

In the next stage of the study, the quality of the GlM regression models (APn = f(nC, 
FD, SC)) and MR models, were compared (Table 5) with consideration to the geometric 
features of the nodules (in the form of mean areas and longer nodule axes, which are an 
expression of nodule fraction distributions). Because of the different sizes of the qualitative 
data sets (FD and SC) and the geometric features of the nodules (MA, Mla), the GlM 
model (APn = f(nC, FD, SC)) was repeated to obtain the comparability of the results. The 
statistics of the used geometrical features of nodules for the dataset containing thirty-seven 
samples from the H22 exploration block are presented in Table 3.

The results of the research in the form of estimation errors presented in Table 5 suggest 
that the mean area or the mean longer axis of nodules within the seafloor photo is less useful 
information (with lower predictive ability) because it has a lesser impact on the accuracy of 
the APn estimation than the information on the type of nodule fraction distribution included 
in the GlM method. This is proved by a similar R2

adj of 52% and See equal to 2.5 kg/m2 
for the MR (APn = f (nC, MA)), and MR (APn = f (nC, Mla) models, significantly lower 
than the obtained R2

adj equal to 73% for GlM (APn = f (nC, FD)). However, these results 
are noticeably better compared to the SlR model (APn = f (nC)), and slightly better than 
the SlR model, which includes information about Mla in the ncxMla form of the product 
(R2

adj 12% and 45%, respectively). The obtained results can be associated with a different 
degree of nodule coverage with sediment, which results in biasing the estimates of the mean 
geometric features of the nodules with an unknown error. The levels of errors in the APn 
estimation for both consideration of the geometric variables (MR (APn = f(nC, MeA)) and 
MR (APn = f(nC, Mela)) are comparable (Table 5); however, they are slightly better for 
the median nodule area. Taking into account the MA and Mla variables in the GlM method 
and supporting them with the qualitative variable SC, did not significantly strengthen the 
correlation relationship and did not eliminate errors in the assessment of the average ge-
ometric parameters resulting from the nodule coverage with sediments (an increase in R2

adj 
to the value of 54–55% from the value of 52% and a reduction of the See error to the value 
of 2.41 kg/m2 from of 2.5 kg/m2).

In addition to the presented MR models (Table 5), other characteristics of the nodules 
were also taken into account in the model specification and estimation process, namely mean 
short axis and mean perimeter. However, their inclusion in the regression model was pre-
vented due to collinearities between them. Moreover, simple correlations linking the mass 
of individual nodules separately to their short axis and circumference turned out to be much 
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weaker than the analogous correlations with the long axis and the nodule area. Summarizing 
the presented research results, the regression model may only include the mean area of the 
nodules or their mean long axis.

The best results of the APn assessment were obtained for the GlM model (APn = f  
(nC, FD, and SC)), where quantitative and qualitative parameters explain as much as 87% of 
the variability of APn in the data set from the H22 area, with an acceptable See error 
of 1.68 kg/m2 (Table 4). Figure 8 is a graphical presentation of the dependence of the esti-
mated APns based on the GlM model (APn = f (nC, FD, SC)) for various assumed values 
of quantitative and qualitative parameters (nC, FD, SC). However, attention should be paid 
to the limited applicability of the model depending on the FD and nC values. For example, 
when FD = 1, the model can be used for nC > 21%, and when FD = 3, the model can be used 
for nC > 8%. However, this limitation of the model seems to be irrelevant because it applies 
to low nodule abundances (APn) that are much less than 5 kg/m2, i.e. parts of the nodule 
deposit that are unlikely to be exploited.

Fig. 8. Plot of the predicted APn values based on the GlM model (APn = f (nC, FD, SC))  
for different values of quantitative and qualitative parameters (nC, FD, and SC)

Rys. 8. Wykres przewidywanych wartości APn na podstawie modelu GlM (APn = f (nC, FD, SC)) 
dla różnych wartości parametrów ilościowych i jakościowych (nC, FD i SC)
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6. Summary 

A prediction of polymetallic nodule abundance based solely on data obtained from sea-
floor images gives much better results using the general linear model (GlM) compared to 
the simple linear regression model (SlR) (Wasilewska-Błaszczyk and Mucha, 2021) and 
the multiple regression model (MR). The advantage of GlM over SlR and MR lies in the 
simultaneous consideration of quantitative variables (seafloor nodule coverage in images 
(nC), mean lengths of the main axes or nodule areas) and qualitative variables (the level of 
nodule coverage with sediments (SC), and the type of size fraction distribution of nodules 
(FD)). The codes (variants) of the qualitative variables are assigned to seafloor images on an 
ordinal scale based on expert judgment. An issue that needs to be investigated in advance is 
the determination of the correct number of SC and FD codes. The analysis of these factors, 
conducted in the presented study, showed that the optimal solution is to adopt 3 (SC) and 4 
(FD) variants. Under these assumptions, the lowest abundance prediction errors in the areas 
of the seafloor covered by the photographs were obtained from the GlM equations. The 
results of the error assessment for different variants of regression models, separately for the 
training and test datasets, are summarized in Table 6.

Table 6.  Comparison of mean absolute and relative errors in estimating the abundance of nodules using various  
 regression models

Tabela 6.  Porównanie średnich błędów bezwzględnych i względnych w szacowaniu zasobności konkrecji 
 za pomocą różnych modeli regresji

Regression model, number of data

Training dataset Test dataset

MAe 
(kg/m2)

 ·100%MAE
APN

MAe 
(kg/m2)

 ·100%MAE
APN

SlR (APn = f(nC)), n = 66
SlR (APn = f(nC) separately for FD, n = 66

SlR (APn = f(nCxMela), n = 37

3.48
1.82
2.13

25.8%
13.5%
15.8%

2.85
1.75
np

21.9%
13.5% 

np

MR (APn = f(nC, MeA) n = 37
MR (APn = f(nC, Mela) n = 37

1.95
1.94

14.4%
14.4%

np
np

np
np

GlM (APn = f(nC, FD, SC), n = 66
GlM (APn = f(nC, FD, SC), n = 37

GlM (APn = f(nC, MeA, SC), n = 37
GlM (APn = f(nC, Mela, SC), n = 37

1.24
1.04
1.75
1.74

 9.2%
 7.7%
13.5%
13.5%

1.67 
np
np
np

12.8% 
np
np
np

MAe – mean absolute error, – arithmetic mean nodule abundance in the data set (training or test), APn – 
mean nodule abundance, SlR – simple linear regression, MR – multiple regression, GlM – general linear model,  
nC – nodule coverage, SC – nodule coverage with sediments, FD – the type of size fraction distribution, MeA and 
Mela – medians of the area and longer nodule axes, n – number of data in the training set, np – not performed.
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The mean absolute error (MAe) was adopted as the measure of the average absolute 
error in the prediction of the abundance of nodules. This error related to the average abun-
dance of nodules in the data set and was expressed as a percentage and treated as a measure 
of the relative error.

The smallest errors in estimating nodule abundance (depending on the data set) were ob-
tained from the regression models for GlM using nC, FD, and SC as independent variables 
(in the range of 1.0–1.7 kg/m2, which is 7–13% of the mean abundance in the data set). The 
same model, using the geometrical features of nodules (median area or longer axis of nod-
ules) instead of FD, gives worse estimation results with an error of about 1.75 kg/m2 (13.5%). 
Similar error values of about 1.8 kg/m2 (13.5%) but determined separately for different types 
of fractions (FD) also give simple linear models; this proves a greater influence of this ordi-
nal variable on the results of nodule abundance estimation than SC. less accurate estimates 
of the nodule abundance are provided by multiple regression models (MR) based solely on 
quantitative variables (nC, MeA, and Mela) with an error of approximately 1.95 kg/m2 
(14.4%) and a simple linear model, where the independent variable is the product of nC and 
Mela with an error of 2.13 kg/m2 (15.8%). The least accurate estimate of the abundance of 
nodules is obtained using a simple linear model with nC as the independent variable with 
errors in the range of 2.85–3.48 kg/m2 (21–26%).

Conclusions

The variables determining the effectiveness of GlM to predict the abundance of nod-
ules based on bottom images are the seafloor nodule coverage and the type of size frac-
tion distribution. The second ordinal variable, namely the coverage of the nodule with 
sediments, plays a minor role. This is confirmed by the relatively satisfactory abundance 
prediction results based on simple linear models linking the abundance of nodules with 
the seafloor nodule coverage, provided that they are determined separately for different 
types of nodule fraction distribution. The simple linear regression model (SlR), deter-
mined for a full data set without breaking it down into types of size fraction distribution, 
gives the prediction of the abundance with the greatest error compared to other models  
(GlM, MR).

The best prediction results obtained using the GlM, with an average error in the range 
of 1.0–1.7 kg/m2, can be considered acceptable to estimate the abundance of nodules based 
on the results of the photographic survey.

The possibilities of obtaining smaller prediction errors of nodule abundance by using 
other variants of ordinal variables in GlM models seem to be exhausted. These may seem 
a bit high on a case-by-case basis, but one should be consider that within the calculation 
blocks, there is a large set of data determined from the photos. Therefore, the error in deter-
mining the mean abundance decreases, albeit only to a certain level due to the autocorrela-
tion of abundance at a smaller scale of observation.
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A certain reduction of the error, which is difficult to quantify, can be expected if an addi-
tional ordinal variable related to the dominant morphological form of the nodules is included 
in the model. The main morphological types of nodules present in the CCz are discoidal, 
ellipsoidal, tabular, polynucleic aggregate, irregular shaped, and fragments (Szamałek et al. 
2016). These terms are not strictly defined, but it can be assumed that they differ in the length 
of the vertical axis. With identical nodule areas determined from the photographs, they differ 
in mass depending on the morphotype.

This research was financed from AGH University of Science and Technology grant no. 
16.16.140.315.
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RegReSSIOn MeThODS In PReDIcTIng The abunDance OF nODuleS FROM 
SeaFlOOR IMageS – a caSe STuDy FROM The IOM aRea, PacIFIc Ocean

K e y w o r d s

nodule abundance, regression methods, nodule coverage of seafloor,  
fraction distribution, Clarion-Clipperton zone (CCz)

A b s t r a c t

The main source of information on the abundance of polymetallic nodules (APn) is the results 
of direct seafloor sampling, mainly using box corers. Due to the vast spread of nodule occurrence in 
the Pacific, the distances between successive sampling sites are significant. This makes it difficult to 
reliably estimate the nodule resources, especially in parts of the deposit with small areas correspond-
ing to the areas scheduled for extraction in the short term (e.g. within one year). It seems justified to 
try to increase the accuracy of nodule resource estimates through the use of information provided by 
numerous photos of the ocean floor taken between sampling stations. In particular, the percentage 
of nodule coverage of the ocean floor (nC), the data on fraction distribution of nodules (FD) and the 
coverage of nodules with sediments (SC) are important here. In the presented study, three regression 
models were used to predict the nodule abundance from images: simple linear regression (SlR), mul-
tiple regression (MR), and general linear model (GlM). The GlM provides the most accurate predic-
tion of nodule abundance (APn) due to the ability of this model to simultaneously take into account 
both quantitative variable (nC) and qualitative variables (FD, SC). The mean absolute errors of APn 
prediction are in the range of 1.0–1.7 kg/m2, which is 7–13% of the average nodule abundance de-
termined for training or testing data sets. This result can be considered satisfactory for predicting the 
abundance in ocean floor areas covered only by photographic survey.

MeTODy RegReSjI w SzacOwanIu zaSObnOścI kOnkRecjI POlIMeTalIcznych 
ze zDjęć Dna OceanIcznegO – STuDIuM PRzyPaDku z ObSzaRu IOM, Ocean SPOkOjny

S ł o w a  k l u c z o w e

zasobność konkrecji, metody regresji, pokrycie konkrecjami dna oceanicznego,
rozkład frakcji konkrecji, strefa Clarion-Clipperton (CCz)

S t r e s z c z e n i e

Podstawowym źródłem informacji o zasobności oceanicznych konkrecji polimetalicznych (APn) 
są wyniki bezpośredniego opróbowania dna najczęściej za pomocą próbników skrzynkowych. 
z uwagi na ogromne rozprzestrzenienie wystąpień konkrecji w strefie Clarion-Clipperton na Pacy-
fiku odległości między kolejnymi stacjami opróbowania są znaczne. Utrudnia to wiarygodne osza-
cowanie zasobów konkrecji w oparciu o uśrednione zasobności konkrecji stwierdzone w próbnikach  
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skrzynkowych, szczególnie w obszarach o relatywnie małych powierzchniach odpowiadających 
przykładowo obszarom planowanej, przyszłej eksploatacji w okresach rocznych. W tej sytuacji uza-
sadnione wydają się próby zwiększenia dokładności oszacowań zasobów konkrecji przez wykorzy-
stanie informacji jakich dostarczają liczne zdjęcia dna oceanicznego wykonywane między stacjami 
opróbowania. Istotne są tu w szczególności procentowe pokrycie dna oceanicznego konkrecjami 
(nC), możliwe do ustalenia ze zdjęć dane dotyczące liczby, dane dotyczące rozkładu frakcji konkre-
cji (FD) oraz przysypanie konkrecji osadem (SC). W prezentowanych badaniach zastosowano trzy 
modele regresji: prostą regresję liniową (SlR), regresję wieloraką (MR) oraz ogólny model liniowy 
(GlM). GlM zapewnia najdokładniejsze przewidywanie zasobności konkrecji (APn) ze względu na 
zdolność tego modelu do jednoczesnego uwzględniania zarówno zmiennych ilościowych (nC), jak 
i zmiennych jakościowych (FD, SC). Średnie absolutne błędy predykcji mieszczą się w przedziale 
1,0–1,7 kg/m2, co stanowi 7–13 % średniej zasobności konkrecji określonej na podstawie opróbo-
wania bezpośredniego w zbiorze danych (treningowym lub testowym). Wynik ten można uznać za 
satysfakcjonujący w praktyce prognozowania zasobności konkrecji w miejscach dna objętych jedynie 
rejestracją fotograficzną.
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