
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2023, VOL. 69, NO. 2, PP. 253–259
Manuscript received February 26, 2023; revised April, 2023. DOI: 10.24425/ijet.2023.144358

Energy Saving Chaotic Sequence Based Encryption,
Authentication and Hashing for M2M

Communication of IoT Devices
Bartosz Kościug, and Piotr Bilski

Abstract—In this paper, the secure low-power Internet of
Things (IoT) transmission methods for encryption and digital
signature are presented. The main goal was to develop energy-
efficient method to provide IoT devices with data confidentiality,
integrity, and authenticity. The cryptograph energy efficient and
security algorithms modifications for IoT domain were made. The
novelty in our solution is the usage of encryption method popular
in the image processing in the domain of the Internet of Things.
Proposed modification improves immunity for the brute-force and
plain-text attacks. Furthermore, we propose the modifications for
hash calculation method to transform it into digital signature
calculation method that is very sensitive to input parameters.
The results indicate low energy consumption of both methods,
however it varies significantly depending on the architecture of
the devices.

Keywords—Power optimization; Security protocols; Applica-
tion layer protocols; Machine to machine communication; IoT

I. INTRODUCTION

CYBER security has been increasingly studied in recent
years regarding methods of providing information sys-

tems with data confidentiality, authenticity, and integrity. In
the modern world, inventions in the field of algorithms such
as encryption, hashing, or digital signature help to protect data
privacy in the IP networks.

The idea of secure transmission protocols is the same for
the Internet of Things networks with different challenges.
Especially, in environments that connect small low-power
sensor devices into networks - LPWAN (Low-Power Wide-
Area Network). These devices in many cases are used to
perform critical tasks such as monitoring and controlling
industrial processes or healthcare systems, transmit sensitive
information such as personal, financial, and medical data.
They are powered by small batteries and operate with low
throughput on long distances (see Fig. 1). Therefore any
method that offers secure transmission of data in an IoT
environment must minimize the consumed energy. One should
also ensure that the introduced protocol has as small payload
overhead over the data to transmit as possible. In practice,
this stipulates that developed algorithms utilize a negligible
amount of CPU processing time. LPWANs connect together a

Authors are The Faculty of Electronics and Information Technol-
ogy on Warsaw University of Technology, Warsaw, Poland (e-mail: bar-
tosz.kosciug.dokt@pw.edu.pl, piotr.bilski@pw.edu.pl).

vast variety of the IoT devices. This includes small units, such
as PIC18F25K50 microcontroller (with an 8-bit processor and
2kB of RAM) as well as large and complex systems (such
as ESP-WROOM-32D with a 32-bit processor and 520KB of
RAM) - see Fig. 2. Therefore there is the need to level down
the usage of dynamic and static memory during the design and
implementation of data transmission protocols for IoT systems.

Fig. 1. Example of LPWAN. N1, N2 and N3 are LoRaWAN nodes

Fig. 2. PIC18F25K50 and ESP-WROOM-32D

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


254 B. KOŚCIUG, P. BILSKI

Data confidentiality is the first principle of the IoT system’s
security. Multiple algorithms currently provide data privacy
(RSA, DES, AES, etc.). An efficient encryption system is
expected to be cost-efficient and compact [1].

The RSA is still the standard of the public key infrastructure
in the Internet, operating on two keys: private and public.
Usually the former is mused to encrypt data, while the latter
aims at decryption. This system requires the infrastructure to
manage private keys, distribute them through nodes, and store
them safely. It also has been proven that RSA is resilient to
attack using the quantum computer.

On the other hand, AES and DES are symmetric systems,
so only one key is needed for decryption and encryption.
Storing variables and constants used by the algorithms con-
sumes the memory of the device. For example, in the AES
at least 128 bits (16 bytes) must be allocated in memory
for node-to-node communication. The encryption requires the
utilization of the Initialization Vector (IV) to ensure that
the same input data processed multiple times with the same
secret key does not result in an identical cipher. The IV
generation requires additional 16 bytes. Devices share the
same key, but this increases the probability of compromising
the communication scheme (therefore to distribute it over the
network the additional scheme must be used). This way the
secure connection of one thousand devices in the machine-
to-machine mode will require the allocation of 3200-bits of
memory only for key handling. This is about 160% of RAM
in PIC18F25K50, which drastically decreases the resource
availability for microcontroller tasks.

Data confidentiality and data integrity are the core security
paradigms. It is strongly recommended to introduce data in-
tegrity validation mechanisms, such as hash functions. Popular
hashing methods such as MD5, SHA1/2, and Keccack are
characterized by high computation load, as they were not
designed for IoT devices. For example, the MD5 running on
the Mica2 MOTE development board equipped with the 8-
bit ATmega128 computer requires 36360 CPU clock cycles to
calculate the hash value [2]. The calculated hash values from
MD5 and SHA families are generally long - more than 100
bits. In particular, the MD5 hash value is 128-bit long, SHA-2
uses 256/512-bits, while SHA-3 utilizes up to 1600-bits [3].
This further decreases the amount of memory accessible for
the programmable tasks of IoT devices.

Hash functions are also used for data authenticity. They
ensure that the information exchange is executed between
two valid devices (eliminating all penetration attempts by
external nodes). Digital signatures such as RSA, ECDSA, DSA
or Shnnor combine the data integrity and data authenticity
validation functionalities. The performance of such algorithms
has also a high impact on the accessible resources of IoT
devices. For instance, to provide the minimum level of security
RSA requires at least a 2048-bit key [4], while the ECDSA’s
key requires at least 224-bits.

In the following paper, the simple and energy-efficient meth-
ods to provide IoT machine-to-machine communication with
data confidentiality, integrity, and authenticity are presented.
In the II section, we described the selection and proposed
modifications of chosen cryptographical algorithms. In the

III section, the readers will find out about the performance
results of examined algorithms. Finally, in the last section IV,
the authors conclude the work. The novelty of the presented
solution regarding confidentiality is that we modified and
simplify the usage of the chaotic neural network encryption.
By introducing the feedback factor with cipher xor type, the
control of the minimum length of the plain text, and the
changes of initial encryption parameters per each transmission.
That as a result makes it difficult for attackers to apply brute-
force and plain-texts attacks. Regarding data integrity and
authenticity, we introduced the modification for the one-way
hash function. Which now takes additional input parameters
that work in the form of a message signing key and could be
easily changed in each transmission.

II. PROPOSED ALGORITHMS

A. Encryption

Considering the constraints of IoT devices, the appropriate
cryptographic algorithm for the IoT devices should utilize
minimal possible hardware resources.

The interesting approach of low-power data encryption
based on the chaotic sequence and Artificial Neural Network
(ANN) was initially presented in [5]. Later [6], [7] it was stated
that compared to popular algorithms, such as DES, RSA or
AES, the Chaotic ANN (CNN) are worth considering as a tool
for data encryption regarding their low-computation overhead.

In [5] the symmetric stream cipher based on CNN was
proposed. The latter is the neural network with weights and
biases determined by the chaotic sequence [6]. The coding of
neuron parameters is calculated with the usage of so-called
chaotic maps. The idea is to incorporate the nondeterminis-
tic characteristics of chaotic sequence into the ANN output
function. In the result, the CNNs have a strong sensitivity
to the initial conditions (input values). Such a configuration
of ANN appears to behave randomly, where the randomness
results from its structure [6].

The proposed chaotic encryption algorithm is depicted
in Algorithm 1. During the encryption, the while loop is
executed, in every iteration, the subsequent elements of the
chaotic sequence are calculated. The number of iterations is
determined by the length of the byte arrays data that hold
the secret values (plaintext) to be encrypted. In most works
devoted to the chaotic encryption problem, the authors use
the logistic map (see 1) to obtain the next elements of the
chaotic map. In the proposed algorithm, the tent map (see 2)
is used instead due to its better performance regarding speed
and entropy values compared to other examined chaotic maps
(see I).

x(n+ 1) = µ·x(n)·(1− x(n)) (1)

x(n+ 1) =

{
µ·x(n), x(n) < 1

2
µ·(1− x(n)), x(n) ≥ 1

2

(2)

The elements of the chaotic sequence are real floating point
numbers. After the calculation of the next chaotic sequence
element, the least significant byte of its mantissa is retrieved.



ENERGY SAVING CHAOTIC SEQUENCE BASED ENCRYPTION, AUTHENTICATION AND HASHING FOR M2M COMMUNICATION OF IOT DEVICE 255

In [8] it was shown that the least significant 32 bits of the
logistic map’s mantissa elements are actually pseudo-random.
In the proposed solution the least significant 8 bits of the
mantissa are used to encrypt the data stream. They are next
stored in the seqElemLSB variable. The encryption is done
through iteration over each byte of the element of the plain
text array data and by applying the XOR operation with each
byte of the least significant byte of the seqElemLSB. The
idea of the XOR-based encryption is motivated by [9], where
it was proposed to simplify the encryption procedure. In that
solution, the combination of XOR and addition replaces the
ANN.

As stated in [10], the XOR operation is vulnerable to
cryptographic attacks such as brute force and plain text. In
which the attacker tries to find out the cipher key used in
the encryption process to reveal message content. According
to [11], to resist such a threat the length of the encryption
key should be increased to at least 64 bits. For that purpose,
the validateDataLength method (see Algorithm 1) is used
to add extra padding if the data length is less than 16
elements/characters (1 byte multiplied by 16 equals 64 bits).

In the plain-text attack, the intruder knows or tries to guess
the data intercepted from the transmission. He then tries to
retrieve the encryption key mostly by performing the XOR
operation on the data. In the proposed solution we change the
encryption key for each transmission. The new value of the
first element of the chaotic sequence is calculated after data has
been encrypted. The new value is set by calculating k elements
of the chaotic sequence beginning from its last element that
was used for encryption. For example, while processing 16
bytes-long data, all 16 elements of a chaotic sequence are
calculated. Next, 16 + k elements are computed and a new
value of x(0) is set up. The k, x(0) and µ are the secret values,
shared between devices that wish to communicate. This way
even if the attacker intercepts the data and discovers the key,
the next transmission will be done in different conditions. To
make the job more difficult for the plain-text attack scheme,
the proposed algorithm introduces the rec variable. It works
as a feedback factor. To decrypt the byte k every previous
element of the chaotic sequence must be known. Knowledge
of its single element is useless, as presented in [5].

B. Data integrity and authenticity

To achieve data integrity and authenticity modification of
the LOCHA - A Light-weight One-way Cryptographic Hash
Algorithm [2] is proposed to transform it into a digital signa-
ture. Two factors were taken into account while selecting the
algorithm.

• The number of CPU cycles required to perform the
hashing operation on the input data. It is also the amount
of energy consumed by the hashing algorithm.

• The size of the obtained hash value.
There are multiple hashing algorithms. Based on their compar-
ison [2], [12], [13] LOCHA was considered the best candidate
for a hash algorithm that consumes a minimum amount of
energy. The algorithm demands only 2952 clock cycles and
9.4464 µJ of energy estimated for the Mica2 MOTE sensor

Algorithm 1 Proposed chaotic encryption
Precondition: x(0) ∈ (0, 1), µ ∈ [1.99, 2), k ∈ N

function ENCRYPT(data[], x, µ, k)
i← 1
rec← getLSB(0)
validateDataLenght(data) ▷ If less than 16 add

padding
while i ̸= length(data) do

if x(i) < 0.5 then
x(i)=µ·x(i− 1)

else
x(i)=µ·(1− x(i− 1))

end if
seqElemLSB=getLSB(x(i)) ▷ Receive the 8

least significant bits from Mantissa
seqElemLSB=seqElemLSB ⊕ rec
for k ← 1 to 7 do

data[i][k]′=data[i][k]⊕ seqElemLSB[k]
end for
rec=seqElemLSB
i=i+ 1

end while
while k ̸= 0 do

if x(i) < 0.5 then
x(i)=µ·x(i− 1)

else
x(i)=µ·(1− x(i− 1))

end if
i=i+ 1
k=k − 1

end while
x(0)=x(i)
return x(0), data’ ▷ New initial value for next rounds

of encryption and encrypted byte array

board equipped with ATMega128 computer [2]. The LOCHA
generates a relatively small fixed-size 24-byte hash digest.

The idea behind the LOCHA hashing procedure is that the
values of the ASCII characters are mapped from the byte
array to the prime numbers, then subsequent conversions are
calculated and finally mapped to hex values. As indicated
in [2], the algorithm’s advantages are preimage resistance,
collision resistance, and second preimage resistance.

The modified version of LOCHA is presented in Algorithm
2. The main difference in comparison to its original version
is that values for sTable1 and sTable2 arrays are not constant.
These two arrays are used to keep values for prime numbers
used in the hash calculation process. In presented version the
needed values are calculated at the begin of each algorithm
run (see Algorithm 2 calcPrimesTab - bond font). This way
our solution of LOCHA can now be parameterized. In other
words, each round of the algorithm run can generate different
values of hash/digital signature - if we want it.

The arguments of the calcPrimesTab function (see Al-
gorithm 3) allow for the generation of custom sets of prime



256 B. KOŚCIUG, P. BILSKI

Algorithm 2 Proposed chaotic digital signature calculation
Precondition: x1, x2 ∈ (−1, 1), p1, p2 ∈ N

function LOCHASIGNATURE(data[], x1, x2, p1, p2)
cf1← 1
cf2p1← 0
cf2p2← 0
cf2p3← 7
acf ← 0
subHex[3]← [0, 0, 0]
hexDecimal← 0
sTable1← calcPrimesTab(x1, p1, 96)
sTable2← calcPrimesTab(x2, p2, 63)
for i← 0 to 7 do

for j ← 0 to 7 do
▷ ——— Caclulate conversion factors ———–
if data[8·i+ j] ̸= 0 then

pk=castToInt(data[8·i+ j]− 31)
else

pk=1
end if
cf1=sTable1[pk] · cf1
if cf1 > 65535 then

cf1=cf1 (mod 65535)
end if
cf2p1=cf1 (mod 67)
if data[1][7] == 1 then

cf2p2=cf2p1−67
else

cf2p2=cf2p1
end if
cf2p3=(cf2p3 + (cf2p1 + cf1) (mod 256))
▷ ——- Caclulate after conversion factor ——–
acf=(cf1 (mod cf2p3))+cf1
acf=acf+sTable2[cf2p2 - 1]
acf=acf (mod 255)
acf=acf+int(data[j·8] (mod 127))
hexDecimal=hexToDec(subHex)
acf=acf+int(data[j·8+2])+hexDecimal
▷ ——- Caclulate part of the hash value ——–
subHex = intToHex(afc)
hash[j·3]=subHex[0]
hash[j·3+1]=subHex[1]
hash[j·3+2]=subHex[2]
swap(subHex[1], subHex[2])
subHex[0]=0

end for
end for

return hash

numbers. This way hash values calculated with different
parameters will be highly different from each other.

Let’s assume devices A and B have the same values for
parameters x1, x2, p1 and p2. Device A sends the signature
with the message to device B. Then device B calculates the
signature on the received message and compares it with the
received signature from device B. If signatures are the same,
Device A is authenticated, because secret parameters can be

shared with it. This way both devices are synchronized to
communicate with each other.

In Algorithm 3 we decided to use the so-called primes gap
pattern that appears in Logistic Map [14]. That allows for
generating multiple prime numbers in a short period of time
(see Fig. 4).

Algorithm 3 Proposed chaotic prime numbers generation
Precondition: x ∈ (−1, 1), pow ∈ N

function CALCPRIMESTAB(x, pow, n)
isPrime← 0
p← 0
counter ← 0
prime← 0
coeff ← 10pow

table[n]
while counter < n do

prime=castToInt(x× coeff)
prime=(1024+(prime (mod 1024)))

(mod 1024)
if prime > 1 then

for i← 2 to
√
prime+ 1 do

if prime (mod i) == 0 then
isPrime=1

else
isPrime=0

end if
end for

end if
if isPrime == 0 ∧ isPrime < 1000 then

table[counter] = prime
counter=couter + 1

end if
x← 1− x2·1.5437

end while
return table

III. EXPERIMENTS

The goal of this section is to present the experiments re-
garding the proposed algorithm’s performance in the following
scope:

• Confirmation that the proposed key-generation method
(using pseudo-random values) will pass the NIST (Na-
tional Institute of Standards and Technology of the U.S.
Government) test suite (section A).

• Verification of the computational complexity for the
prime number generation operation (section B). The
solution will be accepted, if at most O(n) or O(n log n)
time complexity is obtained.

• Validation of the sensitivity of the proposed digital signa-
ture calculation (section C). A high sensitivity regarding
input parameters is expected.

• The energy consumption of proposed encryption and
digital signature calculation methods (section D). This
is important to estimate the run-out time of the battery
that powers IoT devices. The energy consumption mea-
surement strategy is as follows:



ENERGY SAVING CHAOTIC SEQUENCE BASED ENCRYPTION, AUTHENTICATION AND HASHING FOR M2M COMMUNICATION OF IOT DEVICE 257

1) Program the device in a way that it is possible to
capture the algorithm duration.

2) Capture the current and voltage values in the active
mode of the device using TC66 measurer. The setup
of the circuit used for measuring voltage and current
values is presented in 3.

3) Estimate the energy consumption with 3.

E = ∆T · I · U (3)

Fig. 3. Scheme of the measurement circuit

A. PRNG with the tent map

The decision on the tent map utilization was dictated by the
results of the tent map in comparison with other maps such as
logistic, cubic, sine, etc. (see Tab. I). The average generation
time of chaotic sequence elements and entropy were examined.
Entropy is well-known in cyber security, as a measure of
data randomness. The elements of the sequence are used in
the process of creating the cipher key, therefore we want the
entropy value to be as high as possible. Results of evaluating
1 million samples for each evaluated chaotic map are depicted
in I.

TABLE I
RESULTS OF TENT MAP COMPARISON

Map Avg. Gen. time [µs] Entropy Ref. Choice

Logistic 0.251 19.577 [15] No

Tent 0.241 19.685 [15] Yes

Cubic 0.344 19.609 [15] No

Sine 0.360 19.614 [15] No

Digital Cosine 0.373 19.472 [16] No

Arcsine 0.433 19.671 [17] No

Amplified 0.765 19.577 [18] No

The tent map in the proposed algorithm acts as a key gen-
erator tool. Ideally, the encryption key should be as random as
possible. To examine the pseudo-random generation properties
of the proposed key construction method the statistical tests
suite - NIST was used. It includes a set of tests that could be
applied to the binary sequences [19]. Results presented in II
show the quality of the generated bytes sequences by the tent
map. Each byte of the tested sequence was the least significant
byte of the chaotic sequence element mantissa (as we stated
in the section II). The ”test passed” status is reached when its
p-value is greater than 0.05 (p− value > 0.05).

TABLE II
RESULTS OF NIST TEST FOR TENT MAP

Statistical test P-value Passing rate

Frequency 0.55 0.98

Block frequency 0.85 1.0

CumulativeSums 0.49 0.98

Runs 0.08 0.99

LongestRun 0.13 1.0

Rank 0.94 0.99

FFT 0.28 0.99

NonOverlappingTemplate 0.20 0.97

OverlappingTemplate 0.22 0.99

Universal 0.81 1.0

ApproximateEntropy 0.45 1.0

Serial 0.59 0.99

LinearComplexity 0.20 0.97

B. Primes generation complexity

To validate the proposed method for prime number genera-
tion (see 3), the time complexity has been examined. Figure 4
shows the obtained results. The proposed method of prime
numbers generation (despite some noise samples) can be
classified as having linear time complexity. The orange curve
represents the ”raw” results of captured time generation. The
blue curve represents the first-level polynomial approximation.
These results are satisfactory, producing 1 million prime
numbers below 5 seconds.

Fig. 4. Time complexity of Algorithm 3

C. Signature sensivity

Table III shows the sensitivity of the generated signature in
relation to input parameters. While comparing the first sample
with the subsequent ones, significant changes in the output
value of the signature are observed. The level of security in
such a signature system is high because of the low probability
of sharing 4 variables (128 bits) by two non-familiar devices.

https://gotronik.pl/images/tc66-User%20Maual.pdf
https://www.sciencedirect.com/topics/computer-science/entropy?fbclid=IwAR2R5CUcxjzcks01Hc05xrOBF-1637IMcuofrYfrwqRtioyN5IyZzz_Ub5k


258 B. KOŚCIUG, P. BILSKI

That means if an attacker wants to compromise such a digital
signature system, he or she needs to know those variables.

TABLE III
DIGITAL SIGNATURE INPUT PARAM. SENSITIVITY OF ’HELLO WORLD!’

x1 x2 pow1 pow2 signature value

0.7 0.7 6 10 0f9268157133072109108118

0.7 0.71 6 10 11e1ed1550ed1430f9113085

0.71 0.7 6 10 1a91f30d204f1250cf15c128

0.7 0.7 7 10 0d219d1081391851410b6098

0.7 0.7 6 11 15c25f1950b207d18c0ff171

0.7000001 0.7 6 10 1771fd15b0d406c0e507d0f6

D. Energy consumption measurements

The proposed algorithm was tested regarding energy con-
sumption by different microcontrollers from the top five pop-
ular brands. The list of examined devices with their hardware
resources is presented in Table IV. The selected boards are
of different architectures, covering a wide range of accessible
solutions.

TABLE IV
EXAMINED DEVICE HARDWARE PARAMETERS

Device Arch. f [MHz] RAM [kB] Flash [kB]

ESP-WROOM-32 32-bit 240 520 16

ATMEGA32U4 32-bit 16 2.5 32

MSP-EXP430F5529LP 16-bit 8 8 128

PIC18F25K50 8-bit 24 2 32

STM8S207K8T6C 8-bit 24 6 64

Table V shows the result of the energy consumption for
the calculation of the 97 prime numbers array - sTable1 (see
Algorithm 2 calcPrimesTab). This process is the first part
of the digital signature calculation. In comparison to hash
calculation (see Table VI) or encryption (see Table VIII),
sTable’s calculation is much more energy consuming. In the
proposed scheme sTable1 and sTable2 arrays are calculated
for each signature (see 2). However, to reduce the energy
utilization the calculations for sTable1 and sTable2 could be
done - just per communication session, before hash calculation
part.

TABLE V
STABLE N=97 CALC. ENERGY PER DEVICE

Device Energy of STable values calc. [J]

ESP-WROOM-32 0.0263

ATMEGA32U4 0.8213

MSP-EXP430F5529LP 0.0003

PIC18F25K50 3.0625

STM8S207K8T6C 0.2011

Table VI shows the results of the second part of digital
signature calculation (without calculation of sTables). The
lowest amount of energy needed to calculate hash value was

noticed for ESP-WROOM-32 microcontroller, while the most
energy-demanding was PIC18F25K50. In comparison to [2]
higher levels of energy needed to calculate the hashes were
observed. In [2] the amount of energy needed by the algorithm
was estimated only theoretically - based on the ATmega128
datasheet, while this section shows the real-world outcomes.
These are satisfactory, as, for instance, the energy needed
for the hash calculation on ATmega32U4 is lesser than for
SHA1 hash. We calculated that our hash calculation algorithm
requires 47% less energy in comparison to SHA1 algorithm.
Which is assumed to be one of the most power-safety hash
algorithms implemented for IP networks.

TABLE VI
HASH CALCULATION ENERGY PER DEVICE

Device Energy of digital signature [uJ]

ESP-WROOM-32 6.144

ATMEGA32U4 517.017

MSP-EXP430F5529LP 3946.875

PIC18F25K50 16116.408

STM8S207K8T6C 60093.601

By comparing Table VII with Table VIII it can be stated
that the proposed version of the simplified chaotic encryption
is more energy efficient. The reason behind this is the amount
and type of operations needed to implement the encryption
method proposed in [5]. Instead of just calculating XOR to
encrypt the data, CPU needs to calculate the weights and
biases of CNN. This requires many conditional statements
(if , else) in the code and mathematical operations such as
addition, substitution, and multiplication. This extends the
encryption duration.

TABLE VII
CHAOTIC NEURAL NETWORK ENCRYPTION ENERGY PER DEVICE

Device Energy of encryption calculation [uJ]

ESP-WROOM-32 41.164

ATMEGA32U4 3816.345

MSP-EXP430F5529LP 29133.710

PIC18F25K50 118962.648

STM8S207K8T6C 474310.210

TABLE VIII
XOR ENCRYPTION ENERGY PER DEVICE

Device Energy of encryption calculation [uJ]

ESP-WROOM-32 0.410

ATMEGA32U4 166.810

MSP-EXP430F5529LP 1273.412

PIC18F25K50 5199.768

STM8S207K8T6C 17169.601

In each examined algorithm the pattern is the same. The
less powerful microcontrollers utilize more energy for both
encryption and digital signature. This could be assumed as the



ENERGY SAVING CHAOTIC SEQUENCE BASED ENCRYPTION, AUTHENTICATION AND HASHING FOR M2M COMMUNICATION OF IOT DEVICE 259

strict drawback of smaller devices. Their sleep mode energy
consumption is also important during long-time operation. In
the active mode, the ESP-WROOM-32 works for a longer time
period than PIC18F25K50. However, based on Table IX it can
be said that in the active-sleep mode, the PIC18F25K50 has
a longer duration. Here the fractions of the active-sleep mode
are important. It is not true that smaller devices drain less
energy from batteries. For instance, 8-bit STM8S207K8T6C
in sleep mode consumes about 323 times more energy than
8-bit PIC18F25K50.

TABLE IX
ENERGY CONSUMPTION DURING SLEEP MODE

Device Energy of sleep mode [uJ]

PIC18F25K50 0.102

MSP-EXP430F5529LP 0.513

ATMEGA32U4 0.768

STM8S207K8T6C 33.215

ESP-WROOM-32 51.201

IV. CONCLUSIONS

In this paper, two lightweight methods for providing security
to IoT programmable devices were presented. Their confiden-
tiality, integrity, and authenticity were examined. Considered
algorithms can be used during machine-to-machine end-to-
end communication and subsequently provide different devices
with low computation and memory overhead. Both proposed
methods are strongly sensitive to initial parameters. This
security feature could be used in future research regarding
IoT power-safety communication protocol, for instance by
implementing the initial parameters agreement method with
the usage of the Diffie–Hellman algorithm or similar. In future
research, it will be important to examine the energy overhead
of the proposed methods in real-world scenarios. We assume
that the scope of such tests would be to set up the Sigfox and
Lora networks and investigate the run-out of batteries time in
different weather and environmental conditions.

REFERENCES

[1] A. Baalaaji and R. Bevi, “Design of a novel chaotic neural network
based encryption system for security applications,” Journal of the
Chinese Institute of Engineers, vol. 44, no. 5, 2021. [Online]. Available:
https://doi.org/10.1080/02533839.2021.1919558

[2] A. Roy Chowdhurya, T. Chatterjeeb, and S. DasBit, “Locha: A
light-weight one-way cryptographic hash algorithm for wireless
sensor network,” Procedia Computer Science, vol. 32, 2014. [Online].
Available: https://doi.org/10.1016/j.procs.2014.05.453

[3] A. Maetouq, S. Mohd Daud, N. Azurati Ahmad, N. Maarop, N. N.
Amir Sjarif, and H. Abas, “Comparison of hash function algorithms
against attacks: A review,” International Journal of Advanced Computer
Science and Applications, vol. 9, no. 8, 2018. [Online]. Available:
https://dx.doi.org/10.14569/IJACSA.2018.090813

[4] D. Berendsen, “A comparative study on signature schemes for iot
devices,” Tu Delft, 2021. [Online]. Available: http://resolver.tudelft.nl/
uuid:5d7ffd26-6576-4316-bc4f-81858be48018

[5] H. Kaur and T. S. Panag, “Cryptography using chaotic neural network,”
International Journal of Information Technology and Knowledge Man-
agement July-December, vol. 4, no. 2, 2011.

[6] L. Chen, Q. Zhang, J. Ma, and K. Li, “Research on neural
network chaotic encryption algorithm in wireless network security
communication,” EURASIP Journal on Wireless Communications and
Networking, no. 1, 2019. [Online]. Available: https://doi.org/10.1186/
s13638-019-1476-3

[7] M. Wang, X. Wang, Y. Zhang, S. Zhou, T. Zhao, and N. Yao, “A novel
chaotic system and its application in a color image cryptosystem,”
Optics and Lasers in Engineering, no. 121, 2019. [Online]. Available:
https://doi.org/10.1016/j.optlaseng.2019.05.013

[8] F. Michael, D. David, and N. Christophe, “A fast chaos-
based pseudo-random bit generator using binary64 floating-
point arithmetics,” Scholarly Journal, 2014. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01024689

[9] L. Chengqing, L. Shujun, Z. D, and C. GR, “Chosen-plaintext cryptanal-
ysis of a clipped-neural-network-based chaotic cipher,” pp. 630–636, 01
2005.

[10] C. Li, S. Li, D. Zhang, , and G. Chen, “Cryptanalysis of
a chaotic neural network based multimedia encryption scheme,”
Lecture Notes in Computer Science, 2004. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-30543-9 53

[11] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source
Code in C, 20th Anniversary Edition. Wiley, 2015.

[12] Z. Al-Odat, E. Al-Qtiemat, and S. Khan, “An efficient lightweight
cryptography hash function for big data and iot applications,” 10 2020,
pp. 66–71.

[13] A. Alfrhan, T. Moulahi, and A.-a. Abdulatif, “Comparative study on
hash functions for lightweight blockchain in internet of things (iot),”
Blockchain: Research and Applications, vol. 2, p. 100036, 11 2021.

[14] L. Wang, “Describe prime number gaps pattern by logistic mapping,”
06 2013.

[15] N. Pareek, V. Patidar, and K. Sud, “Cryptography using multiple
one dimensional chaotic maps,” Communications in Nonlinear Science
and Numerical Simulation, vol. 10, no. 7, 2005. [Online]. Available:
https://doi.org/10.1016/j.cnsns.2004.03.006

[16] M. Alawida, A. Samsudin, J. Teh, and W. Alshoura, “Digital cosine
chaotic map for cryptographic applications,” IEEE Access, vol. 7, 2019.
[Online]. Available: https://doi.org/10.1109/ACCESS.2019.2947561

[17] R. Boriga, A. Dsscslescu, and A. Diaconu, “A new one-dimensional
chaotic map and its use in a novel real-time image encryption
scheme,” Hindawi, 2014. [Online]. Available: https://doi.org/10.1155/
2014/409586

[18] A. Mansouria and X. Wang, “A novel one-dimensional chaotic map
generator and its application in a new index representation-based image
encryption scheme,” Information Sciences, vol. 563, 2021. [Online].
Available: https://doi.org/10.1016/j.ins.2021.02.022

[19] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical
test suite for random and pseudorandom number generators for crypto-
graphic applications,” NIST Special Publication 800-22, Gaithersburg,
MD, US,, vol. 800, p. 163, 05 2001.

https://doi.org/10.1080/02533839.2021.1919558
https://doi.org/10.1016/j.procs.2014.05.453
https://dx.doi.org/10.14569/IJACSA.2018.090813
http://resolver.tudelft.nl/uuid:5d7ffd26-6576-4316-bc4f-81858be48018
http://resolver.tudelft.nl/uuid:5d7ffd26-6576-4316-bc4f-81858be48018
https://doi.org/10.1186/s13638-019-1476-3
https://doi.org/10.1186/s13638-019-1476-3
https://doi.org/10.1016/j.optlaseng.2019.05.013
https://hal.archives-ouvertes.fr/hal-01024689
http://dx.doi.org/10.1007/978-3-540-30543-9_53
http://dx.doi.org/10.1007/978-3-540-30543-9_53
https://doi.org/10.1016/j.cnsns.2004.03.006
https://doi.org/10.1109/ACCESS.2019.2947561
https://doi.org/10.1155/2014/409586
https://doi.org/10.1155/2014/409586
https://doi.org/10.1016/j.ins.2021.02.022

	Introduction
	Proposed Algorithms
	Encryption
	Data integrity and authenticity

	Experiments
	PRNG with the tent map
	Primes generation complexity
	Signature sensivity
	Energy consumption measurements

	Conclusions
	References

