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Abstract. In this paper three algorithms of motion planning for two-input, one-chained nonholonomic systems are presented. The classical
Murray-Sastry algorithm is compared with two original algorithms aimed at optimizing energy of controls. Based on the generalized Campbell-
Baker-Hausdorff-Dynkin formula applied to the systems, some observations are made concerning the optimal relationship between amplitudes
and phases of harmonic controls. The observations help to optimize a selection of controls and to design new algorithms for planning a sub-
optimal trajectory between given boundary configurations. It was also shown that for those particular systems the generalized C-B-H-D formula is
valid not only locally (as in a typical case) but also globally. Simulations performed on the five-dimensional chain system facilitate distinguishing
the proposed algorithms from the Murray-Sastry algorithm and to illustrate their features. Systems in a chained form are important from a
practical point of view as they are canonical for a class of systems transformable into this form. The most prominent among them are mobile
robots with or without trailers.
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1. INTRODUCTION
Off-line motion planning of robotic systems is aimed at prepar-
ing a desired trajectory (path) to be executed in on-line mode at
a control stage. In the robotic literature, there are many meth-
ods and techniques developed to solve the task [1] that de-
pends on a model of the robot and its environment. Local meth-
ods achieve the goal of planning via a series of sub-plannings
where an end-state of the current planning becomes initial one
for the next planning. Local methods are computationally not
so involved as global ones that plan a whole motion at once
(but frequently in an iterative manner similarly to local meth-
ods). Moreover, local methods are not so sensitive to changes
in robot environment. Methods can be divided with respect to
a quality of obtained solutions (not optimized, sub- or optimal
ones) and how they incorporate extra constraints (on controls,
state, obstacle avoidance) – explicit constraints or introduced
via penalty into a cost function [2]. A model of a robot plays a
crucial role in planning algorithms [3, 4]. Discrete models tend
to consider a robot as an automaton that changes its state at
some asynchronous time stamps while continuous models de-
scribe a robot with differential equations. Continuous models
frequently result from constraints imposed on a robot (for ex-
ample in the Pfaff form like for simple mobile robots: the uni-
cycle or the kinematic car [1] or tractor pulling some trailers, or
free-floating robots [3]). When the constraints are holonomic
one, a dimension of a configuration space can be reduced by
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the number of constraints while for nonholonomic systems the
constraints are not integrable and resulting systems (despite be-
ing controllable) are difficult to control because a number of
controls is smaller than a configuration space dimension. Con-
tinuous models can be considered at the kinematic level and de-
scribed by first-order (nonlinear) differential equations or at the
dynamic level when also torques and accelerations are coupled
in the second-order equations.

The next dichotomy results from the number of systems to
which a planning method can be applied. In this scope we dis-
tinguish general purpose methods [2, 5, 6] and dedicated ones
that work only for a specific model [7, 8] or a small number of
models [9]. General-purpose methods are computationally in-
volved, solved or supported with an extensive usage of numeri-
cal methods and some numerical problems in high dimensional
search spaces are to be expected. Difficulty grows rapidly as
optimization of a cost function is to be performed. Although
the optimal control theory based on the Pontriagin Maximum
Principle or Bellman equations is well established [10] still
very difficult tasks are generated (the two-point boundary value
problem for continuous tasks or solved with the dynamic pro-
gramming technique in a discrete setting). A very popular tech-
nique in solving the optimal control tasks for general systems is
rooted in a continuation method [11]. It relies on a modification
of the current best trajectory (solution) based on a linear ap-
proximation of the system along this trajectory. Unfortunately,
its efficiency strongly depends on an initial trajectory. When
implemented as a local steepest-descent method the current tra-
jectory can easily be trapped at a local optimum. Partially this
disadvantage can be weakened by using a multi-start technique
but computational effort is increased. Dedicated methods can be
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suited into a particular system structure and use it to simplify a
task to be solved. Sometimes even analytical solutions [7] can
be obtained with the methods.

Motion planning tasks can be motivated by practical ne-
cessity to control real objects or just a mathematical curios-
ity [7]. Recently numerous motion planning methods are based
on graph-searching techniques able to find desired trajecto-
ries in obstacle-clutter environments. The most popular among
them are the A? algorithm, rapidly exploring random trees, [12],
probabilistic roadmaps [13], or their numerous versions. Fre-
quently the techniques assume planning for a holonomic (omni-
directional) robot although some can also use continuous mod-
els to find local paths between neighbor nodes while creating
a graph. Graph-based techniques dominate in motion planning
for multi-robot systems.

A very general strategy to deal with a continuous plan-
ning task is to transform uniquely a given system into a sim-
ple (canonical) form, solve the task and move back results into
the original space. In this case solving one problem given in
a canonical form, solves automatically quite a lot of trans-
formable problems. Systems in a canonical form for a sub-class
of nonholonomic ones have been proposed [14] and algorithms
to transform them into this form developed [15]. Contact struc-
tures, one- or two-chained systems are just examples of sys-
tems in a canonical form. In robotics the chained systems fre-
quently appear when mobile robots with or without trailers are
analyzed [16].

When a new class of systems is defined, a few tendencies
are usually observed. The class is being extended to cover more
systems [17] or original systems are varied (to cover inaccu-
racies in modeling, to optimize their behavior, to consider ex-
tra constraints [18]) or the systems form a base for defining
related tasks like control (tracking) problems when a desired
trajectory is given [19]. In this paper energy optimization for
one-chained systems is of the main concern. Since the seminal
Brockett work [14], it is known that optimal controls of chained
systems are to be searched within a mixture of harmonic func-
tions. It is a hard computational problem to find the optimal
solution within this class of controls. Murray and Sastry [9, 20]
proposed a much simpler approach where each control is just
described by a single sinusoidal function. Based on the special
form of canonical systems, clearly visible from a Lie algebraic
perspective, effective steering methods based on sinusoidal con-
trols were proposed [21]. With appropriately selected parame-
ters of controls, consecutive coordinates of a configuration vec-
tor are brought to their desired values, while circling loops in
coordinates already steered. Unfortunately, the Murray-Sastry
algorithm does not admit energy optimization.

In this paper energy sub-optimal controls are searched for
one-chained systems with two controls and presented within the
framework of Lie algebraic methods which proved to be appro-
priate to plan a motion of general driftless systems [22] or trac-
ing their desired trajectories [23]. In Section 2 the generalized
Campbell-Hausdorff-Dynkin (gCBHD) formula is presented in
the context of one-chained systems. Although the formula is
used mainly in a local nonholonomic motion planning [24] but
it is quite general and solutions of global and local methods

should be consistent when boundary configurations are close to
each other. Using the gCBHD formula, it is shown how to gen-
erate control-dependent coefficients of vector fields required to
satisfy a controllability condition and to express them in a close
form as a function of parameters of controls. Afterwards, ap-
plying the Lagrange multiplier technique, the parameters are
selected optimally. In Section 3 a basic algorithm of motion
planning with sinusoidal controls is recalled, then a few mod-
ifications – algorithms are constructed according to rules de-
rived from the gCBHD formula. In Section 4 simulation results
are provided for a two-input one-chained system with a five-
dimensional configuration space. Section 5 concludes the pa-
per.

According to the classifications mentioned in this section the
method is designed for driftless, also high-dimensional, non-
holonomic systems expressed in a canonical form. A motion
planning task is solved with a dedicated, analytical algorithm
able to minimize energy of controls. In the presented version
collision-free environment is assumed. However, this condition
can be released when appropriate sequence of sub-goals is de-
fined to avoid possible collisions with obstacles. Some hints
how to plan a motion of chained systems among obstacles are
presented in [25].

2. A LIE ALGEBRAIC CHARACTERIZATION OF
ONE-CHAINED SYSTEMS WITH THE GCBHD FORMULA

The gCBHD formula describes (locally) a trajectory of a non-
autonomous system of differential equations initialized at a
given configuration

q̇qq(t) =AAA(t)(qqq(t)) {=XXX(qqq)u1 +YYY (qqq)u2}, qqq(0) = qqq0, (1)

where AAA(t)(·) is a family of analytic vector fields parameterized
continuously by t. In equation (1) two-input driftless systems,
considered in this paper, are distinguished by curly parenthe-
ses. The systems are defined by vector fields XXX(qqq), YYY (qqq) called
generators. A solution to equation (1) has the form

qqq(t) = expzzz(t)(qqq(0))' zzz(t)+qqq(0) , (2)

where expzzz(t)(qqq0) is a solution of the equation

dν(s, t)/ds = z(t)ν(s)

with the boundary condition ννν(0,0) = qqq0.

ννν(s, t) = exp(szzz(t))(qqq0) ⇒ qqq(t) = ννν(1, t) = expzzz(t)(qqq0).

For t→ 0, zzz(t) takes a form of the series [26]:

zzz(t)∼
∞

∑
r=1

∑
σ∈Pr

(−1)e(σ)

r2

(
r−1
e(σ)

)
·
∫

Tr(t)

[
. . . [AAA(sσ(1)),AAA(sσ(2))] . . .AAA(sσ(r))

]
dsr, (3)
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where abbreviated notations are used

∫
Tr(t)

=

t∫
sr=0

sr∫
sr−1=0

. . .

s2∫
s1=0

, dsr = ds1 ds2 . . . dsr . (4)

Pr denotes all permutations of the set: {1, . . . ,r}; e(σ∈Pr) is
the number of errors in the permutation: σ = {σ(1),σ(2),
. . . ,σ(r)}, with the error increased by one each time when the
next element in the permutation is smaller than the current one.
In coordinates, the Lie bracket [·, ·], extensively used in (3), is
defined as

[VVV ,ZZZ] =
∂ZZZ
∂qqq

VVV − ∂VVV
∂qqq

ZZZ. (5)

Despite being much more complicated, the gCBHD formula
plays the same role in differential equations as the Taylor se-
ries expansion for functions. It allows us to predict behavior of
the system in a close vicinity of a given configuration based
on characteristics of generator vector fields (and their descen-
dants) at the configuration. The gCBHD formula can be inter-
preted as a shift operator which translates a current state qqq0 of
system (1) to the position qqq0 +zzz(t)(qqq0). While processing for-
mula (3), a lot of Lie brackets should be computed. In order
to simplify the computations and to get a minimal number of
terms, some properties of Lie brackets are used (bi-linearity and
the Jacobi identity). Thus formula (3) is expressed as a series
of independent elements of a basis (the Ph. Hall basis is fre-
quently used) multiplied with control-dependent coefficients.
Elements of the basis, initialized with XXX , YYY generators (1) in
two-input case, can be ordered into layers. Each layer is com-
posed of fixed degree elements and a degree denotes how many
generators are used to describe a given element, for example
deg(XXX) = 1, deg([YYY , [XXX ,YYY ]) = 3. The Ph. Hall basis up to the
fourth layer spanned by generators XXX , YYY is the following

XXX ,YYY , [XXX ,YYY ], [XXX , [XXX ,YYY ]], [YYY , [XXX ,YYY ]],

[XXX , [XXX , [XXX ,YYY ]]], [YYY , [XXX , [XXX ,YYY ]]], [YYY , [YYY , [XXX ,YYY ]]].

Now, the gCBHD formula will be applied to two-input, one
chained systems described in the n-dimensional configuration
space by equations

q̇qq(t)=


q̇1

q̇2

q̇3

. . .

q̇n

=


1
0
q2

. . .

qn−1

u1+


0
1
0
. . .

0

u2 =XXX(qqq)u1+YYY (qqq)u2. (6)

Calculating Lie brackets (5) for generators XXX ,YYY and their de-
scendants, it can be noticed that only non-vanishing brack-
ets are of the form adr

XXXYYY , r = 1, . . . ,n− 2, (where adr
XXXYYY =

[XXX ,adr−1
XXX YYY ] and ad0

XXXYYY =YYY ) and equal to

adr
XXXYYY = (0, . . . ,0,(−1)r,0, . . . ,0)T , (7)

with the value ±1 placed at the (r + 2)-nd coordinate. Thus
in each layer of vector fields with degree at least two, there is

only one nonzero vector field. Moreover, it is independent of all
previous ones and according to Chow theorem [27] the system
is nonholonomic with degree of nonholonomy equal to (n−2).
Taking advantage of enormous decrease in a number of items in
the Ph. Hall basis in this case, a general formula for zzz(t) taken
from [28] gets its simplified form

zzz(t)'ũ1 XXX + ũ2YYY +
1
2
(ũ12− ũ21)ad1

XXXYYY

+
1
6
(ũ112−2ũ121 + ũ211)ad2

XXXYYY

+
1

24
(−4ũ1121 +4ũ1211)ad3

XXXYYY

+
1

120
(−4ũ11112−4ũ11121 +16ũ11211

−4ũ12111−4ũ21111)ad4
XXXYYY + . . . (8)

with the abbreviated notation

ũi1i2...ik =
∫

Tk(t)

ui1(s1)ui2(s2) . . .uik(sk)dsk. (9)

Now, for controls with more flexibility in phases that slightly
extend the classical form [9]

u1(t) = a1 sin(k1t +φ1), u2(t) = a2 sin(k1t +φ2) (10)

their parameters a1, a2, k, φ1, φ2, will be determined to generate
the energy optimal vector field ad1

XXXYYY as the main part of the se-
ries (3). To simplify calculations, the time horizon is fixed and
equal to T = 2π , similarly to [9]). It is worth noticing that co-
efficients of generators in equation (8) vanish for controls (10)
and the parameter k1 is the same for both controls (otherwise
coefficient of ad1

XXXYYY zeroes) and parameters k1, φ1, φ2 are to be
optimized with respect to the energy performance index

T∫
0

(
u2

1(t)+u2
2(t)
)

dt =
T
2
(
a2

1 +a2
2
)
. (11)

Substituting controls (10) into equation (8), with a little assis-
tance of computational algebra packages (like Mathematica),
the following coefficient pre-multiplying ad1

XXXYYY is obtained

1
2

T=2π∫
0

s2∫
0

(u1(s1)u2(s2)−u2(s1)u1(s2)) ds1 ds2

=
a1a2π sin(φ1−φ2)

k1
. (12)

The maximum value of the coefficient is obtained for k1 = 1,
φ1−φ2 = π/2 and |a1|= |a2|. Similar reasoning, but with much
more computations, allows one to get expressions of coeffi-
cients multiplying adr

XXXYYY , r = 2,3,4 with the frequency of the
harmonic term in control u2 increased

u1(t) = a1 sin(k1t +φ1), u2(t) = a2 sin(r · k1t +φ2), (13)
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in the following form

−a2
1a2π sin(2φ1−φ2)

4k2
1

for r = 2,

a3
1a2π sin(3φ1−φ2)

24k3
1

for r = 3,

−a4
1a2π sin(4φ1−φ2)

192k4
1

for r = 4.

(14)

Based on (12), (14), a recursive expression can be guessed for
the coefficient of adr

XXXYYY corresponding to the vector field in the
(r+1)-st layer of the Ph. Hall basis

(−1)r+1ar
1a2π sin(rφ1−φ2)

2r−1r!kr
1

, r = 1, . . . . (15)

with parameters maximizing (15) equal to

k1 = 1, rφ1−φ2 =
π

2
. (16)

Now, amplitudes of controls a1, a2 are to be optimized assum-
ing a fixed value of (15) equal to ∆̃ and Conditions (16) satis-
fied. The standard Lagrange multiplier technique [29] was ap-
plied to minimize (11) subject to equality constraints in a gen-
eral form

ar
1a2−∆ = 0, r = 1,2, . . . , ∆ =

2r−1r!
(−1)r+1π

· ∆̃, (17)

For the Lagrange function, with a multiplier λ ,

L(a1,a2,λ ) = a2
1 +a2

2−λ (ar
1a2−∆) (18)

stationary conditions were formulated

∂L(a1,a2,λ )

∂a1
=

∂L(a1,a2,λ )

∂a2
=

∂L(a1,a2,λ )

∂λ
= 0 (19)

and the optimal relationship between amplitudes obtained

|a1|= |a2|
√

r. (20)

Two possible sets of signs are subordinated to the rules:

sgn(a1) =±1, sgn(a2) = sgn(∆) for even r,

sgn(a1) · sgn(a2) = sgn(∆) for odd r.
(21)

Particular values of a1, a2 are derived from equations (20), (21).
It is worth noticing that manipulating with signs of a1, a2
can be viewed as a modification of initial phases according to
the trigonometric identity asin(α) =−asin(α +π).

Based on the presented derivations, the following conclu-
sions can be formulated concerning mainly optimal values of
parameters that impact the coefficient multiplying adr

XXXYYY :
• base frequency of u1,u2 controls equal to k1 = 1,
• frequency of u2 equal to r,
• phase shifts have to obey (16),

• amplitudes of controls should satisfy (20),
• the number of parameters to optimize is greater than the

number of constraints imposed, thus extra optimization can
be performed to optimize other criteria besides the energy
of motion,

• controls used to steer the coordinate corresponding to the
r-th layer vector field, also impact a motion within all con-
secutive layers.

After a straightforward integration of equation (6) for con-
trols (13), the configuration shifts collected in Table 1 were ob-
tained. Comparing equation (15) with the data obtained, one
can notice that they are the same up to some signs (the multi-
plier −1 in Table 1 results from (−1)r+1 multiplied by (−1)r

due to adr
XXXYYY , (7)). It appears that for chained systems (6) the

local Lie-algebraic method works also globally.

Table 1
Steering the (r+2)-th coordinate to its desired value

r dqr+2(2π) = qr+2(2π)−qr+2(0) =

1 −a1a2π sin(φ1−φ2)

2 −a2
1a2π sin(2φ1−φ2)/4

3 −a3
1a2π sin(3φ1−φ2))/24

Sinusoidal controls are frequently used in Lie algebraic
methods of motion planning due to simple integration rules of
control-dependent data. The same is also valid for polynomial
controls. A motion planner for systems (6) using polynomial
controls is presented in [30].

3. ALGORITHMS
The presentation of algorithms aimed at solving a motion plan-
ning task for two-input, one-chained system begins with a basic
algorithm (as in [9] with slightly modified notations to fit with
those used throughout this paper) which is modified later on. In
algorithms presented ∆∆∆k denotes a vector from a current initial
configuration to the goal one at the k-th stage of a particular
algorithm. In basic Algorithm 1 it is assumed that no extra in-
formation is available, thus amplitudes of controls u1,u2 are as-
sumed to be equal. Detailed steps of Algorithm 1 are presented
in Listing 1.

Modified versions of Algorithm 1 differ from the basic one
with Step 2 only, thus this step is presented. Algorithms 2, 3
share frequencies of controls u1,u2 but differ in a distribution
of amplitudes of controls, phase differences and initial values of
phases. In Algorithms 2, 3 phase shifts (16) and amplitudes (20)
are set optimally. Additionally, in Algorithm 3 initial phase φ2 is
optimized at each stage while in Algorithm 2 it remains fixed.
From a numerical point of view, Algorithms 2 and 3 are ex-
tremely fast. The more demanding one, Algorithm 3, requires
only (n−3) one dimensional optimizations (n = dim qqq).

Analyzing Algorithm 2 and 3, it can be noticed that dis-
continuity of the control u2 appears as the phase φ2 6= φ1 (if
φ2 = φ1 no configuration shift is generated after applying con-
trols on the interval [0,T ]. Consequently, a planning task cannot
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be solved). Controls in planning algorithms play an auxiliary
role as the true input for control algorithms (that follows the
planning stage) is a desired trajectory which is at least contin-
uous even for discontinuous controls that generate it. For some
systems like free-flying robots powered with jet thrusters, dis-
continuous controls are typical. For other systems when dis-
continuity is an issue some standard techniques of penalizing
discontinuity can be applied. For this particular planning task
a kind of φ2 phase modulation could also be tried (its initial
value preserves continuity of the control u2 while its final value
is the optimal one). It is worth mentioning that many classi-
cal methods of motion planning generate discontinuous con-
trols [7]. When a cost function describes an overall time mini-
mization, bang-bang controls are typical.

In Algorithms 1–3 consecutive coordinates are steered to
their desired values applying controls with frequency of the sec-
ond control increased. An interesting question can be posed:
why not steer them in different (permuted) order? The answer
is a direct consequence of the gCBHD formula (8). When one
wants to control the (r + 2)-nd coordinate (motion along the
vector field adr

XXXYYY thus also higher order vector fields are gen-
erated ads

XXXYYY , s > r and they modify remaining coordinates,
(r+3, . . . ,n). It is possible to steer any coordinate first, say the
(r+ 3)-rd before the (r+ 2)-nd, but when the (r+ 2)-nd coor-
dinate will be steered afterwards into its desired value it will
disturb the proper value of the (r + 3)-rd coordinate. Conse-
quently, coordinates should be steered into their desired values
in a strictly determined order.

Algorithm 1 (basic one)

Initial data: system (6), boundary configuration qqq0, qqq f , time
horizon T = 2π .

Step 1. Compute ∆∆∆0 = qqq f −qqq0. Steer coordinates q1, q2 to their
desired values using any controls (for example, constant ones).
With the controls, integrate remaining equations (6), starting
with qqq0, to get a new initial configuration qqq1

0 for t = T . Set
∆∆∆1 = qqq f −qqq1

0 = (0,0,∆1
3, . . . ,∆

1
n). Assign to variable en the en-

ergy expenditure on controls at this stage. Initialize iterator
r← 1.

Step 2. Steer qr+2 coordinate to its final state using controls

u1(t) =±bsin(t), u2(t) =±bcos(r t), (22)

with appropriate values of b (amplitudes and signs) in u1,u2 to
compensate the error ∆r

r+2. Add the energy spent on this stage
to the total energy en← en+2πb2.

Step 3. Check the stop condition:
if (r = n−2) then output the total energy en and complete the
algorithm, otherwise progress with Step 4.

Step 4. Increase the iterator r ← r + 1. For selected controls,
integrate equations (6) to get a new value of qqqr

0, for t = T , and
update

∆∆∆
r = qqq f −qqqr

0 = (0,0, . . . ,0,∆r
r+2, . . . ,∆

r
n)

(with (r+1) leading zeroes). Go to Step 2.

Algorithm 2 (basic improved: amplitudes and relationship of
phases optimized, phase φ2 fixed)

Step 2. Steer qr to its final state with controls

u1(t) =±
√

r ·bsin{t +φ1(= (π/2−φ2)/r)},
u2(t) =±bsin(r t +φ2)

(23)

with φ2 fixed and b (amplitudes and signs) in controls u1, u2
selected appropriately to compensate the error ∆r

r+2. Add the
energy spent on this stage en← en+2πb2(r+1)/2.
Step 2a. (optional) When (r < n− 2) (not the last iteration)
integrate the (r + 3)-rd equation of system (6), correspond-
ing to coordinate qr+1, initialized at qqqr

0 and with selected con-
trols. Let the value qr+1(T ) = ξ1. Repeat the same procedure
with the other admissible set of signs of controls u1,u2, to get
qr+1(T ) = ξ2. Select those controls which result in a smaller
value of |qqqr+1

f −qr+1(T )| where qqqr+1
f denotes the final value of

the (r+1)-st coordinate of qqq f .

Algorithm 3 (Algorithm 2 with phase φ2 optimized)

Step 2. Steer qr to its final state with controls

u1(t) =±
√

r ·bsin{t +φ1(= (π/2−φ2)/r)},
u2(t) =±bsin(r t +φ2)

(24)

with φ2 fixed and b (amplitudes and signs) in controls u1, u2
selected appropriately to compensate the error ∆r

r+2. Add the
energy spent on this stage en← en+2πb2(r+1)/2.
When (r < n−2) (not the last iteration) integrate the (r+3)-rd
equation of system (6), corresponding to coordinate qr+1, ini-
tialized at qqqr

0 and controls (24) with varied φ2 to get qr+1(T ) =
ξ (φ2). Calculate the optimal value of φ ?

2

|qqqr+1
f −ξ (φ ?

2 )|= min
φ2∈[0,2π]

|qqqr+1
f −ξ (φ2)|. (25)

Progress later using controls (24) with φ2 = φ ?
2 .

4. SIMULATIONS
In all tests a motion between the initial configuration qqq0 =
(0,0,0,0,0)T and the goal one qqq f = (0,0,−4,4,4)T is planned
and phases are expressed in grads [◦].

In tables configurations obtained after each iteration of
the tested three algorithms are presented together with data
uniquely determining controls. A five-dimensional system (6)
is selected because the first iteration, r = 1, does not properly
differ amplitudes of controls (in equations (22), (23), (24) am-
plitudes are the same as

√
r = 1), while the last one does not

affect the energy expenditure on controls at all (there is no next
coordinate to optimize), thus n = 5 is the minimal dimension to
notice any difference. In the first simulation, Table 2, basic Al-
gorithm 1 was run and in each iteration either a random of two
possible solutions (21) was selected (top panel) or the better one
(bottom panel). As expected, the latter selection generates en-
ergetically better solution; however, it requires a little bit more
computational effort than the former one.
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Table 2
Basic Algorithm 1: without optimization (i.e. the first admissible set
of two possible values of u1, u2 is selected); with optimization among

the two; φ1 = 0, φ1 = 90◦ are fixed in both cases

r qqqr
0 a1 a2 enr

without

0 (0,0,0,0,0) +1.13 -1.13 8.00

1 (0,0,−4.,4.51,−3.18) -0.87 -0.87 4.73

2 (0,0,−4,4,−3.63) +2.76 +2.76 47.97

(0,0,−4,4,4) ∑r enr = 60.70

with

0 (0,0,0,0,0) +1.13 -1.13 8.00

1 (0,0,−4.,4.51,−3.18) +0.87 -0.87 4.73

2 (0,0,−4,4,−2.74) +2.68 +2.68 45.08

(0,0,−4,4,4) ∑r enr = 57.81

In Table 3 simulation results were collected, for ampli-
tudes (20) and the relationship of phases (16) optimized but
with the phase φ2 fixed. It appears that the initial phase shift
impacts energy expenditure considerably. Results of running
Algorithm 3 were presented in Table 4. The algorithm is the
most computationally involved as it requires one dimensional
optimization in each iteration. It may look strange that, for this
particular set of data, it generated even worse results than Algo-
rithm 2, cf. Table 3 (the bottom panel). A more careful look at
configurations qqq2

0 reveals that the fourth component of qqq gener-
ated with Algorithm 3 (= 4.24) is closer to the qqq4

f = 4 than that
generated with Algorithm 2 (= 2.26). It can be concluded that
the presented algorithms are optimal locally and even the best
local decisions do not necessarily generate the globally best so-
lution.

A selection between two possible solutions (cf. equa-
tion (21)) is tested once again, this time when the best and the
worst selection is made in each iteration. Results are presented

Table 3
Algorithm 2: amplitudes optimized, phases coupled optimally, but

without optimization of an initial phase, φ2 fixed

r qqqr
0 a1 a2 enr

φ2 = 90◦

0 (0,0,0,0,0) -1.13 -1.13 8.00

1 (0,0,−4.,4.51,−3.18) -0.97 +0.69 4.47

2 (0,0,−4,4,−3.18) +3.12 -1.80 40.84

(0,0,−4,4,4) ∑r enr = 53.31

φ2 = 30◦

0 (0,0,0,0,0) -1.13 -1.13 8.00

1 (0,0,−4.,2.26,−1.27) -1.46 -1.04 10.10

2 (0,0,−4,4,0) +2.70 -1.56 30.46

(0,0,−4,4,4) ∑r enr = 48.57

Table 4
Results of running Algorithm 3

r qqqr
0 φ1 φ2 a1 a2 enr

0 (0,0,0,0,0) 200 110 -1.13 -1.13 8.00

1 (0,0,−4.,4.24,−2.89) 180 270 -0.76 +0.53 2.70

2 (0,0,−4,4,−2.70) 0 90 +3.06 -1.77 39.45

(0,0,−4,4,4) ∑r enr = 50.15

in Table 5. It appears that the worst selections can bring a re-
ally energy ineffective motion. In the last test, Table 6, it was
illustrated how badly selected and fixed phases (not satisfying
Rule (16)) impact the energy of motion. A substantial increase
of energy is clearly visible in this case.

Table 5
The amplitude optimization, phases fixed φ1 = 0◦ φ2 = 90◦. The se-

lected solution: either the best or the worst of the two

r qqqr
0 a1 a2 enr

the best

0 (0,0,0,0,0) +1.13 -1.13 8.00

1 (0,0,−4.,4.51,−3.18) +0.97 -0.69 4.47

2 (0,0,−4,4,−2.68) +3.07 1.77 39.39

(0,0,−4,4,4) ∑r enr = 51.86

the worst

0 (0,0,0,0,0) -1.13 +1.13 8.00

1 (0,0,−4.,−4.51,−3.18) +2.48 +1.76 29.08

2 (0,0,−4,4,−24.33) +4.40 +2.54 81.10

(0,0,−4,4,4) ∑r enr = 118.18

Table 6
Algorithm 2: fixed phases φ1 = 60◦, φ2 = 30◦ selected badly, i.e. the

last rule in (16) is not satisfied

r qqqr
0 a1 a2 enr

0 (0,0,0,0,0) +1.60 1.60 16.00

1 (0,0,−4.,3.19,−2.55) -1.13 -0.80 6.05

2 (0,0,−4,4,−2.09) +3.56 -2.06 53.17

(0,0,−4,4,4) ∑r enr = 75.22

5. CONCLUSIONS
In this paper the problem of optimizing energy of motion for
two-input one-chained systems was stated and solved. Based on
the very general Campbell-Baker-Hausdorff-Dynkin formula,
applied to the systems, some equations (constraints) were for-
mulated relating amplitudes and phases of controls. Conse-
quently, a dimension of a search space for a locally optimal
solution was decreased. It appeared that it is desirable to opti-
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mize an energy of motion not only by setting a relationship be-
tween amplitudes and phases optimally for a currently steered
coordinate of a configuration vector but also to use some kind
of prediction of trajectories of a consecutive coordinate. Two
new algorithms were designed and their outputs compared with
the classical one known from the robotic literature. About 20%
decrease in the energy expenditure on controls was observed us-
ing the optimized algorithms. The algorithms are designed for
this special class of systems thus they are extremely fast and
their complexity increases linearly with the configuration space
dimension. Moreover, neither numerical nor singularity prob-
lems are encountered. An interesting fact was also discovered
that for this very special chained-form systems with only one
vector field in each layer (instead of many more predicted by
general considerations) the local Lie algebraic method works
also globally.

In the nearest future, we are planning to extend the presented
method to multi-chained systems and to propose a new cost
function based not only on a predicted evolution of the next
coordinate but also on all coordinates not properly steered yet.
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