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Abstract. With the continuous development of bridge technology, the condition assessment of large bridges has gradually attracted attention.
Structural Health Monitoring (SHM) technology provides valuable information about the existing health of the structure, keeping it safe and
uninterrupted use under various operating conditions by mitigating risks and hazards on time. At the same time, the problem of bridge underwater
structure disease is becoming more obvious, affecting the safe operation of the bridge structure. It is necessary to test the underwater structure
of the bridge. This paper develops a health monitoring system for a bridge underwater structure by combining building information modeling
(BIM) and an underwater structure damage algorithm. This paper is verified by multiple image recognition networks, and compared with the
advantages of different networks, the YOLOV4 network is used as the main body to improve, and a lightweight convolutional neural network
(Lite-yolov4) is built. At the same time, the accuracy of disease identification and the performance of each network are tested in various
experimental environments, and the reliability of the underwater structure detection link is verified.
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1. INTRODUCTION

Bridges are an important part of the transportation system. With
the continuous advancement of technology, the span of bridge
construction is increasing, and the length and width of bridge
construction are constantly breaking new records. This also de-
termines that bridges play an increasingly important role in na-
tional economic construction, bringing considerable economic
and social benefits. Therefore, the owners pay more and more
attention to the safe operation of the bridge and the state of the
bridge. Under the combined action of the natural environment,
external loads, aging structural materials, and other factors, the
sufficient bearing capacity of bridges will be irreversibly re-
duced, thus affecting the safe operation of bridges [1]. In ex-
treme cases, it can lead to serious accidents. The development
of society has put forward higher requirements on the bearing
capacity of bridges.

In most countries, bridges have entered a stage of reinforce-
ment and maintenance. According to America’s Infrastructure
Report Card 2021 [2], there are more than 617,000 bridges
across the United States. Currently, 42 percent of bridges are
at least 50 years old, and 46,154 or 7.5 percent of the national
bridges, are considered structurally defective. The most recent
estimate of the U.S. backlog of bridge repair needs is $125 bil-
lion. In the process of bridge inspection and maintenance, the
traditional inspection and evaluation methods have problems
such as being time-consuming, a large number of participants,
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and complex processes, which lead to huge costs. Structural
health monitoring (SHM) systems are gradually being applied
with more advantageous economic costs and the ability to adapt
to development. For example, various types of sensors, such
as acceleration sensors, strain gauges, and GPS (Global Posi-
tioning System) devices, are installed on bridges such as the
Tsing Ma Bridge [3], the Akashi Kaikyo Bridge in Japan [4],
and the Hong Kong-Zhuhai-Macao Bridge [5]. For long-term
health monitoring services. The SHM system changes the tra-
ditional bridge maintenance method from “short-term based”
to “full life cycle”, in which the sensor network monitors key
structures around the clock, marks the damage location in time
when damage occurs, and provides preliminary solutions [6-9].
In addition to detecting the occurrence of damage at an early
stage, a stable SHM system can monitor certain bridge pa-
rameters, evaluate bridge performance under various operat-
ing loads, validate or update the codes used during the design
phase, and prioritize maintenance and repair classes. However,
the bridge mentioned above health monitoring system needs
to be strengthened in its intuitive visualization. Combining the
highly visualized BIM software with the SHM system can ef-
fectively avoid this defect.

With the advent of SHM systems, bridge maintenance costs
were reduced by avoiding time-consuming inspection and eval-
uation processes, and great progress was made in automatically
detecting surface damage in bridges. Deng et al. [10] proposed
a BIM-based bridge health status safety warning and infor-
mation integration management method. The functional plug-
ins of visual warning and monitoring information management
were integrated into Revit software through the Revit API in-
terface to form a front-end visual carrier. One should associate
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the BIM model with the monitoring database to improve the vi-
sualization and integration of the monitoring system. Brendan
McGuire et al. [11] mentioned the need for a software systems
approach to assist decision-makers in the operation and mainte-
nance (OM) phase of bridge life cycle phases. BIM can benefit
bridge managers as a graphical tool, with its 3D visualization
capabilities and parametric models that can detail the volume
of the disease. Researchers can more intuitively extract the data
they want. Qin et al. [12] applied advanced BIM technology to
a bridge management system (BMS) to simulate repair and test
results, and more efficiently and economically guide the repair
work of bridge structures. The whole life cycle performance
of bridge structures is improved and the collaborative manage-
ment of bridge life cycle information is realized. Boddupalli e?
al. [13] regard Building Information Modeling (BIM) as a com-
puting environment and an integrated data display platform for
SHM, which can store a large amount of sensor data and struc-
tural health information in the database and import it into the
BIM environment. The above research combines the advan-
tages of BIM with the SHM system, solves the problem of in-
sufficient visualization of the SHM system, and improves the
health monitoring problem of the water part of the bridge on
land and the bridge in the water.

The development of the bridge health monitoring system
(SHM) is relatively complete, but there are still some defi-
ciencies. In the underwater structure of bridges, the methods
of bridge health monitoring still lack the external detection of
bridge underwater structures.

Due to initial defects and external loads, there will be dif-
ferent types and degrees of damage in the use of materials,
and cracks are the most common material damage. Concrete is
one of the most commonly used materials in construction engi-
neering. The intelligent identification of concrete cracks is not
only conducive to the health monitoring of the damage degree
of existing structures but also provides a reference for the in-
telligent identification of cracks in other materials. Under the
background of the API development of computer technology,
the method of crack detection begins to develop in the direc-
tion of computer vision images. Due to the powerful capabil-
ities of artificial intelligence, many deep learning algorithms
are applied to the intelligent identification of material defects
and the optimal design of material parameters. Chen and Jahan-
shahi proposed a deep learning framework based on a convolu-
tional neural network (CNN) and a naive Bayesian data fusion
scheme called NB-CNN [14] for analyzing a single video frame
for crack detection, applying a new data fusion scheme is pro-
posed to integrate the information extracted from each video
frame, enhance the overall performance and robustness of the
system, and improve the detection efficiency. Cha et al. pro-
posed [15] a method to detect concrete cracks using a deep
architecture of a convolutional neural network (CNN) with-
out computing defect features. Atha and Jahanshahi [16] intro-
duced different methods for the corrosion assessment of metal
surfaces based on convolutional neural networks. The effects
of different colour spaces, sliding window sizes, and convolu-
tional neural network architectures are discussed. The proposed
smaller architectures Corrosion7 and Corrosion5 can achieve

a similar signal-to-noise ratio to ZF Net, slightly less stable
but faster than VGG-16 and VGG-15. Saeed Moradi and Za-
yed [17] employ a hidden Markov model (HMM) for a propor-
tional data modelling algorithm to automatically detect sewer
defects from the data obtained from CCTV inspection videos,
performing real-time anomaly detection and localization. The
training model size of FCN proposed by Li et al. [ 18] is smaller,
the FCN-based method can provide good damage detection re-
sults, and the number of parameters has a significant advan-
tage compared to SegNet. Liang [19] proposed a post-disaster
bridge detection method based on three-level images. Based
on Bayesian optimization, three corresponding deep-learning
models are sequentially developed and trained with VGG-16.
When the corresponding labeled training data is available, the
proposed method is suitable for identifying damage to other
structural components of bridges. Cao Vu Dung et al. [20] de-
veloped a method that uses the concept of transfer learning
as an alternative to training the original neural network to re-
liably detect cracks. A shallow convolutional neural network
built from scratch, a VGG-16 network architecture trained on
the generic ImageNet dataset, and the top layers of VGG-16
fine-tuning are studied. Combined with data augmentation, the
best crack detection performance is achieved in the gusset plate
joints of steel bridges. To improve the detection accuracy of
blurred cracks, Wenbo Jiang et al. [21] proposed the HDCB-
Net — a deep learning-based network with the hybrid dilated
convolutional block (HDCB) for pixel-level crack detection.
The research of the above-mentioned personnel conforms to
the development of the times and uses deep learning algorithms
and image recognition to improve the efficiency of damage de-
tection. Bridge crack detection methods are gradually increas-
ing, such as drone detection of bridge cracks [22, 23]. How-
ever, most researchers more frequently applied image detec-
tion to damage identification in the above-water structural parts
of bridges, and less often in the underwater parts due to the
complex underwater environment. In this paper, we consider
a variety of complex environments and attempt to apply the
improved YOLOv4 network to underwater structure detection.
At the same time, there are fewer methods for monitoring un-
derwater structures on bridges and some stand-alone inspection
methods are not compatible with the SHM system. Combining
an underwater structure inspection with a BIM system can fill
this gap.

Building information modelling (BIM) technology has been
widely used since it was first introduced in 1974 [24]. BIM is
an open platform with information integration and engineering
features [25]. It can provide a visual and developable digital
expression environment for health monitoring, and effectively
improve monitoring information visualization and information
sharing. In this paper, combining the advantages of BIM tech-
nology and underwater structure damage algorithm, a BIM-
based bridge underwater structure monitoring system is estab-
lished. This article divides into the following parts. First, the
damage identification method and the proposed system frame-
work are introduced in Section 2. A specific case study is then
discussed in Section 3. Finally, research gaps and further re-
search are discussed and conclusions are drawn.
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2.
2.1.

BRIDGE UNDERWATER STRUCTURE MONITORING
Bridge underwater structure monitoring module
system design

The underwater structure of bridges is a part of bridges, and
the importance of underwater structure detection is gradually
increasing. Compared with bridge deck inspection, underwa-
ter structure inspection is more difficult to operate and requires
professional underwater operators. Based on BIM technology,
combined with the underwater structure detection method, the
monitoring function of the underwater structure is realized. The
architecture of the underwater structure monitoring module is
shown in Fig. 1.

The new module mainly includes three contents: bridge in-
formation model, underwater structure detection, and damage
data management; the bridge information model is built with
Revit software and contains certain basic bridge information.
In the underwater structure detection module, the basic infor-
mation on the bridge can be inquired, the bridge Revit model
can be browsed, and the bridge model and the bridge damage
database can be regarded as a whole to carry out the overall
system design. According to the above design requirements,
a plug-in for underwater structure detection based on Revit soft-
ware and C# programming language was developed. The inte-
grated application of Revit and underwater structural damage
monitoring realizes the display of inspection information and
inspection results in the BIM model. The method of realizing
the system main functional modules is as follows.

2.1.1. Bridge underwater structure information model
Bridge foundation structure is an important part of bridges.
A 3D bridge infrastructure model is established in Revit. Af-
ter the bridge disease (cracks, concrete falling off, etc.) detec-
tion information is imported into the system, the selected bridge
infrastructure model can be monitored and analyzed. Bridge
maintenance is performed by querying detection information.
The visual part of detection information includes information
management and information processing. To realize the func-
tion of this module, we developed a visualization plug-in using
Revit API in the Visual Studio development environment. The
bridge damage module allows users to view bridge damage de-
tection data. Through the bridge disease analysis, the evaluation
of the structural state is realized. Through the two data nodes of
bridge name and detection time, the creation of bridge disease
inspection items and bridge disease management is realized.

Bridge Information Model

Underwater Structure Detection
Module

Structural Damage Database

Underwater Structure
Inspection

2.1.2. Structural damage database

SQL SERVER 2012 is used as the software support for the
bridge structural damage database. The communication be-
tween detection data and the REVIT API interface is real-
ized in the C# programming language. The overall architecture
adopts a hierarchical approach to clarify the relationship be-
tween data. The top layer adds disease inspection: including the
bridge name, the bridge disease detection time, and the bridge
model file. The next level of the bridge contains the detection
of the bridge structure, that is, the photos of the bridge struc-
ture damage, the location of the bridge damage, and the con-
crete damage of the bridge structure. After the system identifies
the bridge damage, the structural damage photos will be saved,
downloaded, and uploaded to the bridge damage module.

2.2. Underwater structure detection module

The underwater structure detection module consists of two
parts: underwater structure camera structure data acquisition
and bridge crack damage identification algorithm. The under-
water structure camera scans and extracts the apparent feature
data of the bridge structure and uses the improved damage
identification algorithm (Lite-yolov4) to identify and verify the
collected data. During the identification process, the algorithm
identified the crack damage to the bridge underwater structure
and marked the damaged data. The marked damage data will be
saved to the database.

2.2.1. Underwater image acquisition system

To obtain underwater structure information, this paper adopts
the method of an underwater robot equipped with a binocular
camera. The onboard camera is an ordinary binocular camera,
sealed with a self-designed sealing structure. The underwater
structure image acquisition system is shown in Fig. 2.

2.2.2. Bridge underwater structural damage recognition
algorithm

The mainstream target detection algorithms are broadly classi-
fied into one-stage (e.g. R-CNN [26]) and two-stage (e.g. Yolo
series). The YOLO series, which is part of the regression tar-
get detection network [27], offers higher detection accuracy and
faster real-time detection.

The core idea of the YOLO series is to solve the target detec-
tion as a regression problem and use an end-to-end network to

Bridge Model Display

Structural Scanning With
Underwater Cameras

Scanned Image Recognition

Damage Data Storage And
Presentation

Fig. 1. Structural design of underwater structure detection module
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Fig. 2. Underwater image acquisition system: binocular camera
and underwater vehicle

input the target image into the model, which outputs the target
type and marks the object position in the image [28].

The YOLOvV4 backbone feature extraction network is im-
proved based on the YOLOV3 backbone (darknet-53) and pro-
poses a CSPdarknet-53 feature extraction network. CSPnet di-
vides darknet residual blocks into two parts, one of which con-
tinues to stack residual blocks as the backbone, and the other
is directly connected after simple processing. This improved
method reduces the amount of network computation and avoids
the problem of gradient disappearance.

The YOLOv4 uses SPP and PANet structures as feature fu-
sion networks. The SPP structure maximizes the pooling of fea-
ture maps, converts them into feature maps of different scales,
and then enters them into the PANet network to stitch them

Input

together with the original feature map. This part upsamples
and downsamples the three feature layers extracted through the
backbone feature extraction network to obtain three optimized
features with more generalization.

The prediction network outputs three feature graphs, respec-
tively, to detect a large, medium, and tiny target. Each point
in the feature graph has three prediction boxes, and the offset,
width, and height of the prediction box are set, as well as the
type and position of the final output target.

In summary, based on YOLOv4, this paper studies
a lightweight convolutional neural network Lite-YOLOvA4,
which can be used in mobile devices. The following specific
improvements are made based on the original YOLOv4:

1. Mobilenetv3 replaces CSPDarkent as the backbone feature
extraction network and modifies the feature layer scale of
Mobilenetv3 to connect it with the subsequent network. The
extracted preliminary feature layer is input to the enhanced
feature extraction network for feature fusion.

2. A large number of 3 x 3 ordinary convolutions are used in
the PANet network. This paper replaces ordinary convolu-
tions with 3 x 3 depth wise separable convolutions to reduce
the amount of computation.

3. The prior box is improved. The original three feature output
layers are changed into one output layer.

The structure of the improved YOLO-v4 network model,
namely the lightweight network model Lite-YOLO-V4, is
shown in Fig. 3.
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Fig. 3. Structure of the Lite-YOLO-v4 crack detection algorithm
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3. BRIDGE UNDERWATER STRUCTURE MONITORING
MODULE IMPLEMENTATION

3.1. Experimental environment

Bridge underwater crack detection model experiments use the
TensorFlow framework to build the network. The processor
running deep learning is the NVIDIA Quadro K1200 model
GPU with a video memory of 4 GB and using the deep learning
platform TensorFlow-GPU = 1.13.2, Keras = 2.1.5. The data
set in this experiment mainly comes from materials provided
by a bridge underwater inspection company and collected from
the Internet. After processing, a total of 8,780 pictures were col-
lected. The different underwater crack environments are mainly
divided into the clear water environment, muddy water environ-
ment, and deepwater environment. Among them, the deepwater
environment has an overall greenish image due to the absorp-
tion of light by water. The underwater crack pictures are marked
by Labeling software, and the prepared data set is divided into
a training set and a test machine according to the ratio of 8:2.
Figure 4 shows some photos of the three types of environments.

Turbid water
environment

Clean water
environment

Deepwater
environment

Fig. 4. Partial underwater crack image

3.2. Experiment results and analysis

In this section, to verify the improvement of detection accu-
racy and speed of the model studied in this paper, the model
is compared with CenterNet, YOLO-v4, YOLO-v4-tiny, and
Mobilenetv3-YOLO-v4 algorithms. All models were trained
with the same training parameters and data sets. Figure 5 shows
the loss function curves of the five models. It can be seen that
the training set and validation set loss functions of the five net-
works can converge at 15 epochs. This indicates that the train-
ing parameters of the dataset and model set established in this
paper are appropriate. There is no over-fitting phenomenon in
the training effect of the five models, and each model training
results are reliable. The network can be used for the comparison
experiment of the actual detection effect later.

To more accurately evaluate the training results of the above
five network models, this paper adds common indicators for the
evaluation of convolutional neural networks. The specific eval-
uation index data of the five networks in this paper are shown
in Table 1.
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Fig. 5. Model loss function plot

As shown in Table 1, when conducting underwater crack
detection, the model size of the improved Lite-YOLOv4 net-
work is 20% of the original, and the average detection accuracy
is 7.13% lower than that of the YOLOv4 network. However,
the detection speed is 178% higher than that of the YOLOv4
network. At the same time, the training speed is greatly im-
proved compared with the YOLOv4 network. It can meet the
requirements of real-time detection of mobile equipment with
low computational power. Compared with the CenterNet net-
work, the model size is only 40% of CenterNet. The detection
frame rate increases by 66.7%, and the training speed is also
greatly improved. Compared with the YOLOv4-tiny network,
the average detection accuracy is increased by 10.21%. The de-
tection speed is increased by 78%, the training time is 25% of
the original, and the difference between the other data indica-
tors is very small. The comprehensive comparison shows that
the comprehensive performance of the network in this paper is
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Table 1
Values of the five model indicators under the crack dataset
Model Recall | Precision mAP FPS Slivzlgl(ll\e/:llB Tﬁ?/?;;gch
YOLOv4 53.61% | 95.62% 84.2% 9 244 15 min
CenterNet 48.53% | 94.31% 77.1% 15 125 8 min
YOLOV4-tiny 40.03% | 87.64% | 66.86% | 27 22.5 1.5 min
Mobilenet v3-YOLOv4 41.03% 91.2% 75.13% | 14 152 9 min
Lite-YOLOv4 4798% | 9397% | 77.07% | 25 443 2 min

effectively improved, which is more conducive to small mobile
devices.

The above table proves that the network in this paper has
a noticeable improvement compared with other networks, but
there is no actual detection effect for comparison. To make
the experiment more complete, the detection results of the five
models are compared from different detection environments,
angles, and crack shapes.

3.2.1. Model detection results under three detection
environments

By comparing the crack detection experiments under different
working conditions, it can be proved that this network can im-
prove the overall performance of the network compared with
other networks while improving the detection speed and can
ensure accurate crack detection under complex working condi-
tions. This network can be applied to the actual detection of
underwater cracks in bridges. As shown in Fig. 6, there are
significant differences between the five networks for crack de-
tection in the three underwater environments and the detec-
tion of tiny cracks. YOLOv4 and CenterNet are comparable
for detecting tiny cracks, but there are some missed detec-
tions; YOLOv4-tiny has multiple overlapping detection frames,
Mobilenetv3-YOLOv4 has the worst detection effect and the

Mobilenetv3-
YOLOv4

YOLOv4 Centernet YOLOvVA4-tiny Lite-YOLOv4

Tiny
Cracks

Deepwater
Environment

Turbidity
Water
Environment

Clean Water
Environment

Fig. 6. Comparison of model detection effects in a clean water
environment

most severe missed detection phenomenon, and Lite-YOLOv4
has the best detection effect. In the deep water environment,
the first four networks all have some leakage; CenterNet has
the most severe overlap of detection frames, and the detection
frames heavily obscure the cracks; Lite-YOLOv4 has the best
detection results. In turbid water, CenterNet could not detect
cracks; YOLOv4-tiny and Mobilenetv3-YOLOv4 networks had
some missed detection; YOLOv4 and Lite-YOLOv4 networks
were comparable. In the clear water environment, YOLOv4 and
Lite-YOLOv4 network detection were the best, and YOLOv4-
tiny and Mobilenetv3-YOLO-v4 had some misdetection cases.

3.3. System function verification

In this paper, the developed bridge underwater structure disease
management module, underwater structure model visualization,
and Lite-YoloV4 identification of bridge underwater structure
cracks are applied to bridge underwater structure detection. The
applicability of the bridge structure detection module in the de-
tection process is verified, and the usability of lite-YOLOv4 on
equipment and the universality of underwater structure detec-
tion is verified by experiments. Based on the main pier foun-
dation of Changshan Bridge, this paper carries out systematic
verification, which is divided into the following processes:

Step 1:

Establish the BIM model of the main pier foundation of
Changshan Bridge and realize the visualization function. In
bridge detection, there are certain differences in the primary
data of the tested bridge, so it is necessary to establish the
BIM model of the bridge independently by referring to the data
of each bridge. Because of the differences between the bridge
frames, the basic member family library of each bridge frame
is established. In the process of building the overall model of
the bridge, each part of the bridge is named and numbered ac-
cording to the naming rule to facilitate the subsequent process
to retrieve the corresponding data.

Step 2:

Import the established bridge pier foundation model into the
system. REVIT API provides convenience for the secondary
development of functions with Revit software. Use the API in-
terface to establish a system to realize the visualization of the
bridge model, open the model from the file project, display the
bridge model, and perform some series of operations on the
bridge model. The visualization of the model is shown in Fig. 7.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 2, p. 144602, 2023
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Fig. 7. Visualization of the bridge foundation model

Step 3:

Establish a bridge foundation inspection model database.
The inspection item information is established according to
the inspected bridge name, bridge inspection time, and bridge
model information. The successful establishment of the project
is shown in Fig. 8.

~ N
ouel_Bridge Damage s et e

~ —

R
Fle_Biidge Mode

Fig. 8. Establish a bridge foundation disease inspection database

Step 4:

Structural damage identification. The experimental results in
Section 3.2 fully show the advantages of Lite-Yolov4 in bridge
underwater crack identification. The Lite-Yolov4 network can
adapt to the complex underwater environment, accurately de-
tect the damage to the bridge underwater structure, and save the
detection results.

Step 5:

Damage to the underwater structure of the bridge is added.
The damage addition of bridge structure includes four parts:
detection location, specific damage, detection conclusion, and
photos of bridge underwater structure damage detection in the
fourth step. Fill in the form according to the test results and
store the actual images of the test site in the system. The sys-
tem arranges information according to the filling order, facili-
tating the subsequent test results review. Clicking on the bridge
inspection photo will enlarge it, which helps review the inspec-
tion results. Damage addition is shown in Fig. 9.
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Fig. 9. Damage data import and damage data query

4. DISCUSSION AND CONCLUSION

The bridge structure monitoring system is becoming increas-
ingly perfect, the number of various sensors installed in each
part of the bridge structure is increasing, the bridge monitor-
ing information obtained is more complete, and the structural
status of the bridge can be more accurately judged based on
the monitoring information. With the continuous advancement
of bridge technology, the bridge structure has become increas-
ingly complex. Still, due to the complexity of the underwater
environment, the bridge structure monitoring system has certain
deficiencies in monitoring the underwater structure of wading
bridges. This paper mainly studies how to combine BIM tech-
nology with underwater bridge structural damage identification
to further improve the ability and detection effect of underwater
structure detection.

Based on the Revit software, this paper uses the Revit sec-
ondary development tool Revit API and uses C# as the pro-
gramming language of the system to design the SQL Server
database according to the detection content. Using a special
underwater detection camera, the system integrates the under-
water structure damage identification algorithm to identify the
bridge structure damage and realizes the bridge underwater
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structure health monitoring module. Using the Revit API devel-
opment tool, the bridge model can be visualized in the system,
and the bridge BIM model can be imported into the system.
At the same time, the bridge underwater structure damage data
management module is implemented to effectively manage the
bridge underwater structure monitoring data.

Due to the complexity of the underwater environment, it is
difficult to detect the underwater structure of bridges. Bridge
underwater structure detection is the core link of this system.
To verify the reliability of the core links, a variety of under-
water environments (clear water environment, deep water envi-
ronment, turbid water environment) and three kinds of cracks
(single crack, network crack, and microcrack) are designed
to test the reliability of the network. The damage identifica-
tion algorithm needs to use many computing resources, but
the Lite-YOLOV4 algorithm proposed in this paper can sig-
nificantly reduce the amount of computation. The lightweight
neural network based on YOLOv4 used in this paper removes
the classification layer and output layer from Mobilenetv3, re-
places the CSPDarkent53 network structure, and serves as the
backbone feature extraction network of YOLOV4. In the resid-
ual network, a lightweight attention mechanism is introduced,
and the PANet structure. A large number of ordinary convolu-
tions are replaced by depthwise separable convolutions. Multi-
feature fusion is performed on the prior box. The amount of
parameters and computation of the improved network model is
greatly reduced, and the model size is only 1/5 of the original,
which improves the detection efficiency while ensuring detec-
tion accuracy. By comparing with the commonly used damage
identification algorithms YOLOv4, CenterNet, YOLOv4-tiny,
and Mobilenetv3-YOLOV4, it is found that although the Lite-
YOLOV4 algorithm in this paper reduces the amount of calcu-
lation, the algorithm identification accuracy can be comparable
to the YOLOv4 complete network. In the network identification
speed, the improvement is noticeable, and it can be better ap-
plied to complex underwater environment detection. It can also
ensure accurate crack detection under tough working conditions
and deploy embedded equipment to detect bridge underwater
cracks.

To develop and verify the function of this system, a BIM
model of the bridge is established based on the actual data of
a particular bridge. The BIM model of the bridge is used to ver-
ify the system visualization function. The components of the
bridge are numbered reasonably, which lays the foundation for
the establishment of the bridge damaged database. At the same
time, the secondary development system, under the support of
the underwater camera and the damage identification algorithm
Lite-yolov4, adds the damage identification results to the bridge
damage database to complete the entire process of bridge dam-
age identification and management. The comprehensive results
show that the system runs well and the damage identification
algorithm has certain stability and reliability.

In addition, the Revit API provides many additional inter-
faces for the design and development of the system. Other func-
tions can also be developed on an existing basis to further im-
prove the system functions.
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