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Abstract: This study explains water quality in terms of seven heavy metals in the Upstream Citarum River and analyses 
human health risk (non-carcinogenic risk) for adults and children. Water samples were collected from five sampling 
locations along the Upstream Citarum River, i.e. from Majalaya Sub-District to Dayeuhkolot Sub-District. The contents 
of heavy metals were analysed by the Atomic Absorption Spectrometer (AAS) variant 240 FS. The results of the analysis 
showed that the pollution index value, which was categorised as slightly polluted from the highest to the lowest value, 
was as follows: location 4 (4.220) > location 1 (3.764) > location 2 (3.219) > location 5 (2.967) > location 3 (2.800). 
Values of the hazard index (HI) for adults and children were as follows: Pb > Cr > Cd > Zn > Ni > Co > Cu. Pb and 
Cr have HI values greater than 1. This indicates that these metals can have a negative impact on public health. The HI 
in the ingestion pathway was greater than that of the dermal pathway, and the HI value for children was greater than 
that for adults. Further research is needed regarding the health risks from groundwater around the area which is used 
directly by the community because river water and groundwater systems are interconnected through streambeds.  
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INTRODUCTION 

The Citarum River is the largest and the longest river in West 
Java, Indonesia. The river basin area is 6,614 km2 and the river 
length 297 km. The Citarum River crosses 13 regencies/cities in 
West Java, from Mount Wayang to the mouth of Java Sea, which 
is in Muara Gembong, Bekasi. The Citarum River plays an 
important role as a source of raw water for drinking. It is also 
used in Java-Bali electricity generation and rice field irrigation 
[ROOSMINI et al. 2018]. The Citarum River supplies raw water for 
households, as well as drinking water for urban and industrial 
purposes in the Bandung Area. The use of surface water from the 
upstream Citarum River for domestic  purposes is  
125,500 m3∙day–1 and for industrial purposes 111,300 m3∙day–1 

[ADB, World Bank 2013]. 

Due to its rapid industrial growth and poor waste manage-
ment, the Citarum River was included in the list of the most 
polluted rivers in the world in 2013 [AAM et al. 2019]. Based on 
information from the Governor of West Java, in 2020, the 
Citarum River was still polluted with a light polluted category. 
The water quality improved from the moderately polluted 
category in 2019 to lightly polluted in 2020 due to the Citarum 
Harum Program. The program has been regulated through 
Presidential Regulation Number 15 of 2018 concerning the 
Acceleration of Pollution Control and Damage to the Citarum 
River Basin [Open Data Jabar 2020]. 

MARSELINA et al. [2021] stated that the Citarum watershed is 
dominated by the manufacturing industries, such as chemical, 
textile, leather, paper, pharmaceutical, metal, agriculture, as well 
as animal husbandry, food and beverage production, and others. 
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The level of pollution in the Citarum River is very dangerous for 
people. SHARA [2021] said that there was a very high concentra-
tion of Cd in the River. Heavy metals are dangerous compounds 
because they cannot be degraded, and they can accumulate in the 
environment and the body of living creatures. The accumulation 
of heavy metals in the body has a negative impact on health 
[OGINAWATI et al. 2020], including non-carcinogenic and 
carcinogenic effects. Heavy metal pollution in the Citarum River 
will affect the river ecosystem and harm the health of people who 
use this river to meet their daily needs [SEPTIONO et al. 2015]. 
Heavy metals from the use of water can enter the human body in 
two ways, i.e. drinking contaminated water (ingestion pathway) 
and by dermal contact with water (dermal absorption pathway 
[BRIFFA et al. 2020]. Excessive levels of heavy metal cause 
significant damage to every organ and can present neurological 
defects, respiratory disorders, carcinogenicity, gastrointestinal 
obstruction, osteoporosis, etc. [MITRA et al. 2022]. 

Health risk assessment was a method commonly used to 
evaluate carcinogenic and non-carcinogenic health risks due to 
heavy metal pollution in the environment [GHADERPOORI et al. 
2018]. Health risk assessment was a study to determine 
environmental conditions and characteristics that have the 
potential to pose a public health risk. The study was also the 
basis for environmental and health risk management. The 
evaluation of human health risks can be done by calculating the 
level of daily water intake and the hazard quotient of heavy metal 
contaminants [KAUR et al. 2020]. Currently, studies and publica-
tions related to heavy metal concentrations in the Upstream 
Citarum River area still mostly focus on heavy metal qualitative 
analysis without being equipped with a health risk assessment 
analysis. There have been health risk analyses of water in 

Indonesia but these have not been carried out in the Upstream 
Citarum River [ASHAR 2007; INDIRAWATI 2018; PAHRUDDIN et al. 
2017; TARIGAN 2015; WIBOWO 2013]. Therefore, the health risk 
assessment needs to be carried out in the Upstream Citarum 
River. Such a study was conducted to assess heavy metals 
concentration (Pb, Cd, Co, Cr, Cu, Ni, and Zn) and human health 
risk. This study was included with the spatial distribution of risk 
levels of heavy metals. 

MATERIALS AND METHODS 

SAMPLING COLLECTION 

This study was carried out on April 20, 2018 at 08:00 a.m until 
17:00 p.m. in sunny conditions (no rain). Water samples were 
collected from five sampling locations along the Upstream 
Citarum River, i.e. from Majalaya Sub-District to Dayeuhkolot 
Sub-District (Fig. 1). These locations were chosen for the 
industrial and agricultural activities around the Majalaya and 
Dayeuhkolot Sub-Districts that are the source of heavy metals in 
water. Hence, we can see the pattern of heavy metal concentra-
tions in river water ranging from areas with small agricultural 
activity and a small number of industries to large agricultural 
areas and many industries. Water samples were collected without 
regard to seasonal variations. Water samples (500 cm3) were 
collected from the depth of approximately 50 cm below the water 
surface. Water samples were preserved by adding 8 drops of 
HNO3 with pH < 2. Then, they were put into a cool box 
containing blue ice (4°C). 
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154 Nurul Fahimah et al. 



HEAVY METALS ANALYSIS 

Water samples taken from the river were analysed for their heavy 
metal content, i.e. Cd, Cu, Co, Ni, Pb, Cr, and Zn. The analysis of 
heavy metals was carried out in the Integrated Laboratory, 
Agricultural Environment Research Institute, Pati, Central Java 
which had been accredited by SNI ISO/IEC 17025: 2008 by 
National Accreditation Committee (KAN). Water samples were 
analysed using the Atomic Absorption Spectrometer (AAS) 
variant 240 FS. Before being injected into the AAS, water samples 
were digested. The digestion process was carried out to test the 
dissolved heavy metals after water samples were filtered. 

The digestion process started by inserting 100 cm3 of 
homogenised water samples into a 250 cm3 Erlenmeyer flask, 
then adding 5 cm3 of HNO3. The samples were heated using a hot 
plate until almost dry (remaining volume 15–20 cm3). The 
samples were put into a 25 cm3 volumetric flask and aquadest 
added until it reached 25 cm3 size limit. The samples contained in 
the volumetric flask (sample + aquadest) were homogenised. 
Furthermore, the samples were filtered using filter paper (SNI 
6989.16:2009 for Cd; 6989.6:2009 for Cu; SNI 6989.68:2009 for 
Co; SNI 6989.18:2009 for Ni; SNI 6989.8:2009 for Pb 6989; SNI 
6989.17:2009 for Cr; SNI 6989.7:2009 for Zn). After being filtered, 
the samples were injected into the AAS variant 240 FS. 

WATER QUALITY ASSESSMENT 

Water quality assessment was carried out using the Pollution 
Index Method in accordance with Regulation of Environmental 
Minister Indonesia No. 115 of 2003. The pollution index (PI) 
method was used to determine the level of water quality pollution 
based on permitted quality standards with Equation (1) [FAHIMAH 

et al. 2020]. 

PIj ¼
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where: PI = pollution index for designation j, Ci = parameter 
water quality concentration i, Li = water quality parameter 
concentration i listed in the designation standard of quality j, 
while M = maximum, and R = average. Index class of PI consisted 
of four classes, with a score of 0 ≤ PI < 1.0 indicates good water 
quality (comply with quality standard); 1.0 ≤ PI < 5.0 indicates 
slightly polluted; 5.0 ≤ PI < 10.0 indicates moderately polluted, 
and PI ≥ 10.0 indicates heavily polluted. 

HUMAN HEALTH RISK ASSESSMENT 

The US EPA human health risk assessment method [US EPA 
2004] was used to quantify the level of public health risk in the 
Upstream Citarum River. Two pathways assessed for human 
health risks included the ingestion pathway and dermal absorp-
tion pathway, and two different age groups included adults and 
children [SHIL, SINGH 2019]. The level of non-carcinogenic human 
health risk (also known as hazard quotient – HQ) is quantified by 
dividing the value of chronic daily intake (CDI) with chronic 
reference dose (RfD) [AHMED et al. 2021; JOLODAR et al. 2021; SHIL, 
SINGH 2019]. Furthermore, the hazard index (HI) is the sum of 
HQ values for various heavy metals (i.e. Pb, Cd, Co, Cr, Cu, Ni, 

and Zn) and various exposure pathways (i.e. ingestion pathway 
and dermal absorption pathway) [ZAKIR et al. 2020]. The values of 
CDI for both adults and children were predicted by the equation 
[AHMED et al. 2021; JOLODAR et al. 2021; SHIL, SINGH 2019; USEPA 
2004] as follows: 

CDIingestion ¼
Ci � EF � ED � IRW

BW � AT
ð2Þ

CDIdermal ¼
Ci � SA �KC � EF � ET � ED �ABS

BW �AT
ð3Þ

where: Ci = concentration of heavy metals in water (mg∙dm–3), 
IRW = ingestion rate (2.5 dm3∙day–1 for adults and 0.64 dm3∙day–1 

for children) [SHIL, SINGH 2019]; BW = body weight (60 kg for 
adult and 15 kg for children) [US EPA 2002], EF = exposure 
frequency (365 days∙y–1) [US EPA 2020], ED = exposure duration 
(70 years for adults and 30 years for children [US EPA 2020], 
AT = average time for non-carcinogenic substance (EF∙ED, in 
days) [US EPA 2020], SA = skin surface area for water contact 
(5700 cm2 for adults and 2800 cm2 for children) [US EPA 2020], 
KC = dermal permeability factor (0.001 cm∙h–1) [AHMED et al. 
2021]; ET = exposure time (0.58 h∙day–1 for adults and 1 h∙day–1 

for children) [SHIL, SINGH 2019], and ABS = fraction of dermal 
absorption (0.001 for all types of heavy metals except arsenic) [US 
EPA 2020]. 

Hazard quotient (HQ) helps to assess the health risk level 
(non-carcinogenic) from heavy metals in river water. In the 
current study, it is used to determine the non-carcinogenic health 
risk from heavy metals in the river water by Equation (4) [JOLODAR 

et al. 2021; KAUR et al. 2020; OGINAWATI et al. 2021]: 

HQ ¼
CDIingestion or dermal

RfD
ð4Þ

where: RfD = reference dose (mg∙kg–1∙day–1). 
If the analysed HQ < 1, a community using water or having 

direct contact with water will not face a potential health risk. In 
addition, the community is potentially at non-carcinogenic risk, if 
HQ ≥ 1, with the potential level increasing with increasing value 
[SAHA et al. 2016]. 

In addition, the cumulative hazard index (HI) was measured 
by adding up HQ for all types of heavy metals using Equation (5) 
[MOHSENIBANDPI et al. 2018]. 

HI ¼
Xn

i

HQi ð5Þ

The total hazard index (HItotal) is estimated by summing more 
than one HI from several pathways, i.e. ingestion pathway and 
dermal contact (dermal absorption), which are calculated by 
Equation (6) [MOHSENIBANDPI et al. 2018; ODUKOYA et al. 2017]. 

HItotal ¼ HIingestion þ HIdermal ð6Þ

HI ≥ 1 indicates the potential for adverse non-carcinogenic 
effects. Therefore, environmental management actions are needed 
to minimise the level of risks. 

The assessment of water quality and human health risk from pollution of chosen heavy metals... 155 

© 2023. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/) 



SPATIAL DISTRIBUTION PATTERNS AND DATA ANALYSIS 

Spatial distribution patterns of heavy metals hazard index were 
described using ArcGIS 10.2 developed by ESRI. Recently, 
ordinary kriging and inverse distance weight (IDW) have been 
commonly used interpolation methods to describe the spatial 
distribution of heavy metals [MENG et al. 2019]. Interpolation 
kriging was drawn for the non-carcinogenic HI distribution 
pattern for adults and children. Kriging interpolation has been 
widely used to determine the accurate spatial distribution of 
heavy metals and the level of health risks in humans. The kriging 
method is an accurate method for describing heavy metal 
contamination [WU et al. 2021]. The spatial distribution pattern 
of heavy metals HI was obtained by integrating five sampling 
points in the GIS kriging geostatistical procedure. For data 
analysis, the raw data were processed using Microsoft Excel to get 
the resulting pollution index and risk level. 

RESULTS AND DISCUSSION 

WATER QUALITY IN TERMS OF HEAVY METALS 

Data regarding the concentration of seven types of heavy metals 
in river water and their comparison with quality standards are 
shown in Figure 2. Pb, Cd, and Zn exceeded the quality standards 
at all sampling points, while Co and Ni did not exceed the quality 
standards at all sampling points. The highest concentrations of Cr 
and Cu exceeding the quality standard are at point 4. 

The data are analysed to determine the pollution index. The 
pollution index for Pb, Cd, Co, Cr, Cu, Ni, and Zn in five 
sampling points is shown in Table 1. As presented in the table, the 
mean pollution index for seven heavy metals in five sampling 
points was 3.394, which indicated that the Upstream Citarum 
River around the Majalaya and Dayeuhkolot Sub-District was 
slightly polluted. The pollution index value from the highest, 

Fig. 2. Concentration distributions of heavy metals in the Citarum River; source: own study 
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which indicates moderate pollution, to the lowest value, which 
indicates compliance with the quality standard, was sorted as 
follows: location 4 (4.220) > location 1 (3.764) > location 2 (3.219) 
> location 5 (2.967) > location 3 (2.800). 

The variation in the level of pollution index, which indicates 
the occurrence of pollution, was caused by various factors, one of 
which was the management factor in the vicinity of the study site. 

Apart from agricultural land and settlements around the study 
location, there were also industries that could be a source of heavy 
metal pollution in the Upstream Citarum River. In inhabited 
areas, heavy metals can be released from shampoos used by local 
communities. This is supported by ISLAM et al. [2019], who stated 
that Fe, Co, Ni, Cu, Zn, Cd, Cr, Al, Mg, Pb, Mn, Hg, As, and Ag 
are found in shampoos, with high concentrations of heavy metals 
in synthetic shampoos compared to herbal shampoos. Heavy 
metals were also contained in household detergents, soaps, and 
environmental cleaning and health products because they were 
discharged directly into the environment without processing 
[IWEGBUE et al. 2019]. In agricultural areas, heavy metals can 
originate from fertilizers and pesticides used by farmers [GIMENO- 
GARCÍA et al. 1996]. There was a significant association of heavy 
metal concentration in the soil and fertilizer application in 
agriculture [ATAFAR et al. 2009]. 

Furthermore, the industries in the vicinity of the study 
location are suspected of contributing to the high heavy metal 
pressure in the Upstream Citarum River. The highest concentra-
tion of heavy metals was found in the college tanning industry 
and the textile industry [DAS et al. 2011]. The industry uses more 
heavy metal chemicals during the production process and this 
may affect human health [TADESSE, GUYA 2017]. 

Therefore, some heavy metal concentrations that signifi-
cantly exceeded the quality standard in the Upstream Citarum 
River need attention before accumulating in the sediment. They 
are very difficult to degrade and have a negative impact on aquatic 
animals and human health through the food chain or by direct 
contact with environmental media polluted by heavy metals. 

HUMAN HEALTH RISK ASSESSMENT 

Exposure factors and reference values used to predict intake levels 
and levels of health risk from heavy metal exposure are listed in 
Table 2. The reference dose (RfD) of chosen heavy metals for 
ingestion and dermal pathways are shown in Table 3. 

The calculation of the CDIingestion and CDIdermal for non- 
carcinogenic risk using the reference value, i.e. ingestion rate, 
exposure frequency, exposure duration, body weight, average 

Table 1. Water quality assessment 

Sampling point Pollution index of chosen seven 
heavy metals Category 

1 3.764 slightly polluted 

2 3.219 slightly polluted 

3 2.800 slightly polluted 

4 4.220 slightly polluted 

5 2.967 slightly polluted 

Pollution index 
mean 3.394 slightly polluted  

Source: own study. 

Table 2. Exposure factors and reference values for health risk assessment 

Factor’s name Symbol Adult Children Unit Reference 

Ingestion rate IRW 2.50 0.64 dm3∙d–1 SHIL and SINGH [2019] 

Exposure frequency EF 365 365 d∙y–1 US EPA [2020] 

Exposure duration ED 70 30 y US EPA [2020] 

Body weight BW 60 15 kg US EPA [2002] 

Average time AT 25,550 10,950 h US EPA [2020] 

Skin surface area for water contact SA 5,700 2,800 cm2 US EPA [2020] 

Dermal permeability factor KC 0.001 0.001 cm∙h–1 AHMED et al. [2021] 

Exposure time ET 0.58 1 h∙d–1 SHIL and SINGH [2019] 

Fraction of dermal absorption1) ABS 0.001 0.001 – US EPA [2020]  

1) For all types of heavy metals except arsenic (As). 
Source: own study. 

Table 3. Reference doses (RfD) of chosen heavy metals for major 
pathways 

Heavy metal RfDingestion RfDdermal 

Pb1) 0.0014 0.000524 

Cd1) 0.001 0.000025 

Co2) 0.02 0.0576 

Cr1) 0.003 0.003 

Cu1) 0.04 0.012 

Ni1) 0.02 0.0054 

Zn1) 0.02 0.06  

Source: own elaboration based on the literature: 1) ADIMALLA [2019], 
2) LANIYAN and ADEWUMI [2019]. 
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time, skin surface are for water contact, dermal permeability 
factor, exposure time and the fraction of dermal absorption 
presented in Table 2. The HQ value can be found by dividing the 
HQ value by the RfDingestion or RfDdermal shown in Table 3. 

CDI values, HQ values, and HI values from the ingestion 
pathway and dermal absorption pathway in children and adults 
were used to estimate the level of non-carcinogenic risk. The 
results of the CDI and HI for adults and children on the ingestion 

pathway are presented in Table 4 and the dermal absorption 
pathway are presented in Table 5. 

According to Tables 4 and 5, the mean HQ values for adults 
and children were sorted as follows: Pb > Cr > Cd > Zn > Ni > Co 
> Cu. The highest value of HQingestion was detected in Pb, which 
contributed 3.2262 for adults and 3.306 for children. The highest 
values of HQdermal were also detected in Pb, which contributed 
0.0043 for adults and 0.0145 for children. The HQ value of the 

Table 4. Chronic daily intake (CDI) and hazard index (HI) for adults and children ingestion pathway 

Location 
CDIingestion (mg∙kg–1∙d–1) 

HI1) 

Pb Cd Co Cr Cu Ni Zn 

Adult 

1 0.0039 0.0005 0.0007 0.0050 0.0007 0.0011 0.0051 5.37 

2 0.0045 0.0005 0.0008 0.0000 0.0006 0.0007 0.0038 3.96 

3 0.0045 0.0005 0.0010 0.0000 0.0004 0.0007 0.0020 3.91 

4 0.0052 0.0005 0.0007 0.0164 0.0013 0.0026 0.0027 10.01 

5 0.0045 0.0005 0.0008 0.0056 0.0002 0.0008 0.0029 5.84 

Mean HQ (CDI/RfD) 3.2262 0.5083 0.0408 1.8025 0.0158 0.0598 0.1646 – 

Children 

1 0.0040 0.0005 0.0007 0.0052 0.0007 0.0011 0.0053 5.49 

2 0.0046 0.0005 0.0008 0.0000 0.0006 0.0007 0.0039 4.05 

3 0.0046 0.0005 0.0011 0.0000 0.0004 0.0008 0.0020 4.00 

4 0.0053 0.0005 0.0007 0.0168 0.0013 0.0027 0.0027 10.25 

5 0.0046 0.0005 0.0008 0.0057 0.0002 0.0009 0.0029 5.98 

Mean HQ (CDI/RfD) 3.306 0.5205 0.0417 1.8458 0.0161 0.0612 0.1685 –  

1) HI = HQPb + HQCd + HQCo + HQCr + HQCu+ HQNi + HQZn. 
Explanation: HQ = hazard quotient. 
Source: own study.  

Table 5. Chronic daily intake (CDI) and hazard index (HI) of adult and children for dermal absorption pathway 

Location 
CDIdermal (mg∙kg–1∙d–1) 

HI1) 

Pb Cd Co Cr Cu Ni Zn 

Adult 

1 0.000005 0.000001 0.000001 0.000007 0.000001 0.000001 0.000007 0.007 

2 0.000006 0.000001 0.000001 0.000000 0.000001 0.000001 0.000005 0.005 

3 0.000006 0.000001 0.000001 0.000000 0.000001 0.000001 0.000003 0.005 

4 0.000007 0.000001 0.000001 0.000022 0.000002 0.000003 0.000004 0.023 

5 0.000006 0.000001 0.000001 0.000007 0.000000 0.000001 0.000004 0.008 

Mean HQ (CDI/Rfd) 0.0043 0.0007 0.0001 0.0024 0.0000 0.0001 0.0002 – 

Children 

1 0.000018 0.000002 0.000003 0.000023 0.000003 0.000005 0.000023 0.024 

2 0.000020 0.000002 0.000004 0.000000 0.000003 0.000003 0.000017 0.018 

3 0.000020 0.000002 0.000005 0.000000 0.000002 0.000003 0.000009 0.018 

4 0.000023 0.000002 0.000003 0.000073 0.000006 0.000012 0.000012 0.045 

5 0.000020 0.000002 0.000003 0.000025 0.000001 0.000004 0.000013 0.026 

Mean HQ (CDI/Rfd) 0.0145 0.0023 0.0002 0.0081 0.0001 0.0003 0.0007 –  

1) HI as in Tab. 4. 
Explanation as in Tab. 4. 
Source: own study. 
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ingestion pathway was higher than that of the dermal absorption 
pathway, and the HQ value of the ingestion pathway was greater 
than 1 which indicates a health risk unacceptable to the dominant 
community from the ingestion pathway than from the dermal 
absorption pathway. The contribution of HQ from the ingestion 
pathway to total HI was the highest in the exposure pathway and 
accounted for more than 99% of the total risk. Similar results 
were illustrated in the Bangladesh Gomti River where the HQ 
value in the ingestion pathway was higher than the dermal 
absorption pathway, but the HQ value in the river was still 
categorised as safe (HQ < 1) even though there were differences in 
values between the two-exposure pathway [AHMED et al. 2021; 
CHONOKHUU et al. 2019]. The risk of ingestion pathway is higher 
than that of the dermal absorption of heavy metals because water 
is drunk directly so that in a short time heavy metals contained in 
water can enter the human body, whereas if heavy metals enter 
the body through skin absorption, it takes time for heavy metals 
to enter the body. In addition, in the ingestion pathway, heavy 
metals that enter the body can be in the form of dissolved and 
particulate heavy metals, while in the absorption pathway, heavy 
metals that enter the body may only be dissolved heavy metals. 

However, different results were presented by SHIL and SINGH 

[2019], namely the value of HIadult was higher than that of 
HIchildren, while this study showed that the HI for children was 
higher than that for adults. Hazard index (HI) measured for 
different age groups is shown in Figure 3. Suppose the value of HI 
(HIingestion + HIdermal) is compared in two different age groups, 
namely adults and children. In that case, as presented in Figure 3, 
the HI value for children is greater than that for adults. Higher HI 
scores in children can make them more vulnerable [ANYANWU, 
NWACHUKWU 2020]. Children tend to be at higher risk than adults, 
as their relatively lower body weight implies that the impact of 
water contaminated with heavy metals can be relatively higher. 

For more details, the spatial distribution patterns of heavy 
metals HI regarding Pb, Cd, Co, Cr, Cu, Ni, and Zn for adults and 
children are shown in Figure 4. The measured HI of Pb ranged 
from 2.818 to 3.726 for adults and from 2.894 to 3.827 for 
children. The maximum HI of Pb was observed in sampling 
point 4 (around Ciparay and Solokanjeruk Sub-District). The 
measured HI of Cd ranged from 0.494 to 0.526 for adults and 
from 0.507 to 0.540 for children. The maximum HI of Cd was 
observed in sampling point 3 (around Bojongsoang and 
Rancaekek Sub-District). The measured HI of Co ranged from 

0.036 to 0.052 for adults and from 0.037 to 0.054 for children. The 
maximum HI of Co was observed in sampling point 3 (around 
Bojongsoang and Rancaekek Sub-Districts). The measured HI of 
Cr ranged from 0.026 to 5.433 for adults and from 0.027 to 5.580 
for children. The maximum HI of Cr was observed in sampling 
point 4 (around Ciparay and Solokanjeruk Sub-District). The 
measured HI of Cu ranged from 0.006 to 0.031 for adults and 
from 0.006 to 0.032 for children. The maximum HI of Cu was 
observed in sampling point 4 (around Ciparay and Solokanjeruk 
Sub-District). The measured HI of Zn ranged from 0.109 to 0.251 
for adults and from 0.112 to 0.258 for children. The maximum HI 
of Zn was observed in sampling point 1 (around Bojongsoang and 
Baleendah Sub-District). These results indicate that HI values of 
Pb and Cr are more than 1 (HI > 1), which means that the 
presence of heavy metals Pb and Cr, which were categorised as 
slightly polluted, can pose a risk to the health of people living in 
the vicinity of the study area, especially the area that has the 
highest level of risk was at sampling point 4. 

The high concentration of Pb and Cr around Ciparay and 
Solokan Jeruk (sampling point 4) may be due to the influence of 
the textile industry waste, where the Upper Citarum area is an 
area that has a high density of companies, mainly the textile 
industry. Industries that do not comply with wastewater quality 
standards can contribute to high levels of Pb and Cr pollutants at 
sampling point 4. Heavy metals, such as Pb and Cr, are found in 
textile industry effluents with concentrations exceeding the 
quality standard [TOLUIZTE et al. 2020]. In addition, based on 
data from the Bandung Regency Statistics Center (2019), the 
number of textile industries in the Ciparay Sub-district is 83 and 
in Solokan Jeruk is 22, while in the regions above, namely 
Baleendah and Rancaekek Sub-districts, the number of textile 
industries is higher, 83 and 76 respectively. The high number of 
industries in the previous area can also affect the high 
concentration level at sampling point 4 because heavy metals 
are cumulative and heavy metals can flow with the river from 
upstream to downstream and undergo the process of deposition 
in other areas. With a weak flow rate and large particle sizes, the 
deposition process will take place quickly and with a close 
distance from the source of contamination. However, when the 
flow velocity is high, the deposition process will take longer and 
further away from the source [FAHIMAH et al. 2020]. Furthermore, 
apart from industry, heavy metals can also be sourced from 
agricultural practices [COSTA, LIA 2022] as well as mixed sources 
of irrigation and transportation activities [WANG et al. 2021]. 

Water use has been identified as the main pathway 
associated with heavy metal exposure to humans [NAG, CUMMINS 

2022] and has a negative impact on health. Pb can affect the 
nervous system, kidneys, and blood circulation, especially in 
children, infants, and fetuses [GUO et al. 2018]. Pb can also affect 
brain and intellectual development in children, induce apoptosis 
in organ tissues [MANI et al. 2019] and in some cases, irreversible 
neurological damage [NAG, CUMMINS 2022]. Moreover, Cr(VI) 
damages cells in several ways, such as increased oxidative stress, 
DNA adduct formation, and chromosomal breakdown. Cr(VI) 
also causes toxicity in various ways, namely it reduces the activity 
or efficiency of the immune system, competing with cofactor 
fixation sites for enzyme activity, suppressing important enzymes, 
such as oxidative phosphorylation, and causing changes in cell 
architecture, especially in the lipoprotein region of the membrane 
[SHARMA et al. 2022]. 

Fig. 3. Measured hazard index (HI) for different age grouped people; 
source: own study 
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CONCLUSIONS 

This research was conducted to determine the water quality in 
terms of heavy metals and hazard index (HI) in Upstream 
Citarum River around the Majalaya and Dayeuhkolot Sub- 
Districts. The pollution index value, which was categorised as 
slightly polluted from the highest to the lowest value, was sorted 
as follows: location 4 (4.220) > location 1 (3.764) > location 
2 (3.219) > location 5 (2.967) > location 3 (2.800). The HI values 
for adults and children were sorted as follows: Pb > Cr > Cd > Zn 
> Ni > Co > Cu. Pb and Cr metals have HI values greater than 1, 
which indicates that these metals have the potential to have 
a negative effect on public health. The value of HI in the ingestion 
pathway is larger than that of the dermal pathway, and the HI 
value for children is larger than that for adults. The findings of 
this study can provide insight to stakeholders and the public 
about water quality and the level of risk to health when water is 
used for daily life. Moreover, it can support the government in 
making regulatory policies and priority programs for the 
prevention of metal contamination in water systems. Further 
research is needed regarding the health risks from groundwater 
around the area which is used directly by the community because 
river water and groundwater systems are interconnected through 
streambeds. 
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