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Abstract: The increasing salinity of water in reservoirs is caused by climate change. On the other hand, an increase in
salinity promotes the group species, halophytes that tolerate or need NaCl for growth. The aim of this study was to
identify the response of facultative halophytes’ photosynthetic apparatus efficiency (PE) to water salinity. The study
covered the spiny water nymph (Najas marina L.) population in four mining subsidence reservoirs. Najas marina is
a facultative halophyte which means that it can occur in both fresh and salt water. This plant has the characteristics of the
species invasive, such as rapid biomass growth, and wide ecological tolerance. Water salinity, described by conductivity, in
the reservoirs ranged from 646 to 3061 µS∙cm–1. PE was expressed in terms of chlorophyll a fluorescence parameters,
which were collected in situ using a Pocket PEA device. Water parameters using a YSI ProDSS probe were identified. Data
analysis was performed using OJIP test and s the non-parametric Spearman’s rank test (p ≤ 0.05). The relationship
between chlorophyll a fluorescence parameters and water parameters showed that conductivity, salinity, water clarity, and
nitrate content statistically significantly affected PE (p <0.05). Generally, the higher salinity e.g. more than 3000 µS∙m–1,
supports PE of facultative halophyte at the stage of optimum development in the vegetation season.
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INTRODUCTION

Progressing global climate change, less rainfall [JEPPESEN et al.
2014], and higher air temperatures [SIERKA, PIERZCHAŁA 2022] will
lead to increased salinity of soils [MISHRA, TANNA 2017] and water
reservoirs [ABD ELLAH 2020]. It is predicted that by the end of the
century, evaporation from water reservoirs will increase by as
much as 16% [WANG et al. 2018] towards to years 2006–2015
[WOOLWAY et al. 2020]. Change in the physical properties of
surface waters and an increase in the content of chemical
compounds, including NaCl [JEPPESEN et al. 2015; VINEIS et al.
2011]. These phenomena will cause changes, among others, in
the nature of lakes from fresh water to salt water [CHEN et al.
2018] and probably will launch the reactions of aquatic
organisms [BRUCET et al. 2009; HALABOWSKI, LEWIN 2020;
KAŠOVSKÁ et al. 2014; LAM-GORDILLO et al. 2022] to this

environmental factor. Groups of organisms that tolerate
increased salinity of water, e.g. algae. The response to salinisation
was to replace dominant diatoms in 1988 with dominant
cyanobacteria and green algae after 20 years [CHEN et al. 2018].
The increase in salinity water significantly decreased species
diversity, e.g. of zooplankton, destabilising ecosystems’ entire
food web [GUTIERREZ et al. 2018; JEPPSEN et al. 2015].

However, different organism’s inherently possessed various
measures and other capacities to cope with exposure to high
salinity, and salt stress responses and tolerance vary between
species [JAMPEETONG, BRIX 2009].

In nature, there are species – halophytes – that have adapted
to the salinity of the habitat even salinity above 200 nM NaCl
[FLOWERS, COLMER 2008], which supports their growth [KHAN et al.
2015]. Halophytes include Najas marina L., species of invasive
traits [GHAZANFAR et al. 2014].
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However, different species of plants inherently possess
various ways and other capacities to cope with exposure to high
salinity, and salt stress responses and tolerance vary between
species [JAMPEETONG, BRIX 2009]. Understanding physiological
solutions used by the halophytes (facultative too) can contribute
to will allow for the studies of traits development resistant species
to abiotic stress such as salinity e.g. in the group of crops
[UDAWAT et al. 2016].

The phenomena of surface water salinization are often
associated with industrial human activities. This occurs in regions
where underground mining of hard coal accompanies pumped
salinity waters to the surface [LI et al. 2014; PIERZCHAŁA, SIERKA
2020; TIMPANO et al. 2015]. These waters are deposited in land
deformations [WOJCIECHOWSKI 2007] and the resulting reservoirs
are shallow lakes not more than a few meters deep [SCHEFFER

1998].
The result of years of searching for tools to identify plant

responses to environmental factors is chlorophyll fluorescence
parameters. Because photosynthesis is one of the fundamental
processes in plants and is extremely sensitive to environmental
changes so its course is used to quickly diagnose in situ the state
e. g. of aquatic macrophytes cells under the influence of factors
directly in their environment, non-destructive, and in real-time
[DĄBROWSKI et al. 2021; KALAJI et al. 2017]. The increase in
fluorescence during the first second of exposure for light from
initial values (F0) to maximum values (Fm) is represented as
a curve with more than a few points (denoted as O, K, J, I, P)
[STRASSER, STRASSER 1995].

So far, chlorophyll a fluorescence has been used to identify
the condition of plants under conditions of artificial [DĄBROWSKI

et al. 2021] or natural salinity [XIA et al. 2004]. In situ studies on
water halophyte species in areas created as a result of human
industrial activity have not been conducted. Scientists have
concluded that salinity is not compulsorily required for the
growth of halophytic species [GRIGORE et al. 2012].

On the other hand, the study of the efficiency of the
photosynthetic apparatus of halophytes [GHAZANFAR et al. 2014;
KRAWCZYK et al. 2016] in reservoirs with different salinity will
answer the following questions: 1) does different salinity of
the habitat affect the changes in photosynthetic activity of facul-
tative halophytes?; 2) what salinity of water reservoirs will be
conducive to the spread of halophytes in the era of climate
change?

MATERIALS AND METHODS

THE STUDY SPECIES

Spiny water nymph (Najas marina L.) is an annual facultative ha-
lophytic plant [AGAMI et al. 2006] found in ponds, lakes, and
marine bays. The plant has characteristics of an invasive species
such as rapid biomass growth, wide ecological tolerance, and high
seed production. Despite being a submerged plant, it grows very
shallowly, in water depths of 1–3 m, and by means of simple,
unbranched roots of varying lengths (from a few centimetres
to half a meter) it attaches itself to the bottom of the body of
water in which it is found [RÜEGG et al. 2017].

THE STUDY AREA

Study objects (Photo 1) were located in the southern part of
Poland, in the area of the Silesian Upland [KONDRACKI 2002].
Underground hard coal mining led to the lowering of the ground
surface by as much as 18 m in relation to its original position
[WOJCIECHOWSKI 2007]. In the resulting depressions – subsidence
basins – water accumulation precipitation and groundwater
[CHYLAT et al. 2003]. Those waters are generally saline because
are pumped out while already salinised in the dewatering of hard
coal deposits and due to reservoir edge stabilisation by waste
materials that follow hard-coal mining [SIERKA et al. 2009].
Reservoirs were selected for the study that: 1) were formed as
a result of land subsidence and surface water accumulation,
2) with presence of Najas marina, 3) had water salinity (Tab. 1).
The reservoir with the lowest salinity was treated as the reference
one.

SAMPLING AND ANALYSIS TECHNIQUES

The research in the terrain was carried out in transects at right
angles to the shore of the reservoir. Field studies were conducted
in transects perpendicular to the shore of the reservoir, located at
a distance of at least 10 m from each other. The functioning of the
photosynthetic apparatus was assessed on selected chlorophyll a
fluorescence parameters. Data were collected two times in 2019:
I – the 2nd week of July (optimal development of the study
species) and II –the last week of August (seed sowing stage time)
[RÜEGG et al. 2017]. In I and II collection terms, 640
measurements of chlorophyll fluorescence parameters in study
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Photo 1. Object of the study – mining water subsidence reservoirs; N = Nieborowice, K = Książenice, S = Świętochłowice, L = Lignozy (phot. M. Bujok)
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species were made in situ. The plant was taken out of the water,
without losing contact with water through the roots, and then
clips were applied for 20 min to quench the photosynthetic
process and then measurements were made using Hansatech’s
Pocket PEA.

The Hansatech Pocket PEA fluorimeter uses a LED diode
with an intensity of 3500 µmol∙m–2∙s–1 and a wavelength of
627 nm to excite the fluorescence. It collects data at the rate of
1 measurement every 10 µs for the first 300 µs and then performs
one measurement every 100 µs which gives a total of
118 measurements. For the measurement of chlorophyll a
fluorescence, non-overlapping leaves were selected, without signs
of disease, while trying to be as random as possible
in the selection. Physicochemical parameters of water were
carried out by YSI ProDSS probe in the places where Najas
marina occurs. A total of 160 measurements were taken on
6 parameters.

CHLOROPHYLL FLUORESCENCE PARAMETERS

Fluorescence parameters (after STRASSER et al. [2004; 2010])
showed in Table 2 were measured in situ. Parameters t(Fm), PItotal,
Fv/F0, Area, F0 Fv/Fm, Fm were used for detailed analyses.

The t(Fm) parameter determines the time to reach
maximum Fm fluorescence. It is usually in the range of 500–800
ms. The PI is an indicator of photosystem II (PSII) functioning
and relates to overall PSII performance. The lower the PI value
the worse the PSII functioning [KALAJI 2011].The is maximum
fluorescence variation, FV = FM – F0. The Fv/F0 ratio indicates the
maximum efficiency of oxygen release (due to water splitting) on
the donor site of the PSII. The Area parameter is defined as the
product of the fluorescence signal (measured in bits) by the
transition time from minimum (F0) to maximum (Fm) fluores-
cence. The Fo parameter represents the minimum fluorescence,
measured before photosynthesis starts, under weak red light and
open PSII reaction centres (darkened leaf). The parameter Fv/Fm
is the parameter of the maximum photochemical efficiency of
PSII. It is the ratio of the difference between the maximum and
minimum fluorescence to maximum fluorescence –(Fm – F0)/Fm.
The Fm parameter defines the maximum fluorescence when
exposed to high-intensity light and all PSII reaction centres are
closed.

PHYSICO-CHEMICAL PROPERTIES OF WATER

The YSI ProDSS probe was used to measure selected physico-
chemical parameters such as electrical conductivity (µS∙cm–1),
SALT (ppt), TDS (mg∙dm–3), pH, and ammonium content
(NO3

+N), and the total amount of dissolved substances
(mg∙dm–3).

The varying salinity of the water in the studied reservoirs
allowed the arrangement of an experimental system in situ with
a salinity gradient. Reservoir N, with the lowest salinity, was taken
as the reference object. In reservoirs formed in mining subsidence
basins, fortify water with soluble chemical compounds by hard
coal mining waste material, including NaCl. The waste material is
used to firm up the edges of the reservoir [SIERKA et al. 2012] from
which chemicals flow into the water.

STATISTICAL ANALYSIS

The analysis of the physicochemical parameters of the water was
performed using the Statistica 13 package, by means of which the
significance of the differences between the water parameters of
the reservoirs was determined by ANOVA (Welch’s F test) and
the post hoc test of the reasonable significant difference (RIR) by
Tukey. For the results assumed that p ≤ 0.05. Correlations
between water parameters and the efficiency of the photosyn-
thetic apparatus was verified with the non-parametric Spearman’s
rank test p ≤ 0.05.

The program Microsoft Excel 2016 (Microsoft, Inc., Red-
mond, WA, USA) was used to present the main parameters of
chlorophyll a fluorescence. Data is presented using radar, tables,
and histograms.

RESULTS

CHLOROPHYLL FLUORESCENCE PARAMETERS ANALYSIS

Najas marina photosynthesis parameters are statistically signifi-
cantly different between plant populations performed at I term
optimum growth phase and II term seed release phase in terms of
t(Fm) (F = 5.2327, p < 0.0275), PItotal (F = 26.1147, p < 0.0000), Fv/
F0 (F = 9.9664, p < 0.0016) (Fig. 1). The trend is the same in other
parameters, such as Area. The response of plants varies according

Table 1. Characteristics of the study reservoirs

Parameter

Reservoir

Nieborowice
(N)

Książenice
(K)

Martyn II
(M)

Lignozy
(L)

Coordinates of measuring points N 50°19'1"
E 18°62'07"

N 50°18'34"
E 18°62'60"

N 50°29'72"
E 18°89'24"

N 50°20'07"
E 18°63'68"

Conductivity of water (µS∙cm–1) 646.2 743.6 2005.4 3061.1

Area (ha) 20 8.45 2.74 1.22

Cover of Najas marina (%) 40 40 40 40

Shores of the reservoir fortified with waste
rock (%) 27 4,5 28 46

Source: own study.
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Table 2. Measurable fluorescence parameters1)

Parameter’s symbol and formula Parameter’s explanation

VJ = (FJ – F0)/(Fm – F0) relative variable fluorescence at the J-step

VI = (FI – F0)/(Fm – F0) relative variable fluorescence at the I-step

φPo = 1 – F0/Fm maximum quantum yield of primary photochemistry (at t = 0)

φEo = (1 – F0/Fm)(1 – VJ) quantum yield of electron transport (at t = 0)

φRo = (1 – F0/Fm)(1 – VI)
quantum yield of reduction of end electron acceptors at the photosystem I (PSI)
acceptor side (RE)

φDo = F0/Fm quantum yield (at t = 0) of energy dissipation

ΨEo = 1 – VJ
probability (at I = 0) that a trapped exciton moves an electron into the electron
transport chain beyond QA

δRo = (1 – VI)/(1 – VJ)
efficiency/probability with which an electron from the intersystem electron
carriers moves to reduce end electron acceptors at the PSI acceptor side (RE)

t(Fm) time to reach the maximal fluorescence intensity Fm

PIabs = γRC/(1 – γRC) ∙ φPo/(1 – φPo) ∙ ΨEo/(1 – ΨEo)
performance index (potential) for energy conservation from exciton to the
reduction of intersystem electron acceptors

PItotal = PIABS ∙ δRo/(1 – δRo)
performance index (potential) for energy conservation from exciton to the
reduction of PSI end acceptors

ABS/RC = (1 – γRC)/γRC absorption flux (of antenna Chls) per reaction centre (RC)

TRo/RC = Mo(1/VJ) trapping flux (leading to QA reduction) per RC

ETo/RC = Mo[1/VJ]Ψo electron transport flux (further than QA
–) per RC

REo/RC = Mo(1/VJ)(1 – VI) electron flux reducing end electron acceptors at the PSI acceptor side per RC

DIo/RC = (ABS/RC – TRo/RC) dissipated energy flux per RC (at t = 0)

φPo = 1 – F0/Fm maximum quantum yield of primary photochemistry (at t = 0)

φEo = (1 – F0/Fm)(1 – VJ) quantum yield of electron transport (at t = 0)

φRo = (1 – F0/Fm)(1 – VI)
quantum yield of reduction of end electron acceptors at the PSI acceptor side
(RE)

φDo = F0/Fm quantum yield (at t = 0) of energy dissipation

ΨEo = 1 – VJ
probability (at t = 0) that a trapped exciton moves an electron into the electron
transport chain beyond QA

–

δRo = (1 – VI)/(1 – VJ)
efficiency/probability with which an electron from the intersystem electron
carriers moves to reduce end electron acceptors at the PSI acceptor side (RE)

Area area above the induction curve

1) All parameters are expressed in relative units.
Source: own elaboration based on STRASSER et al. [2004; 2010].

Fig. 1. Radar charts showing changes in the values of seven selected parameters of chlorophyll fluorescence in July (I) and in
August (II); N, K, S, L as in Photo 1; source: own study
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to the number of mineral salts in the water. The Fv/Fm parameter
considered a reliable measure of photosynthetic apparatus
photochemical activity [CETNER et al. 2016] indicates that
photosynthetic activity was the best in I term in the most saline
reservoir. On the other hand, in II term photosynthetic activity
was the best in more reservoirs, with lower salinity.

The OJIP test values indicate that the efficiency of
photosynthetic apparatus (EPA) decreases with plant develop-
ment in vegetation season I – K reservoir vs II, L reservoir
(Fig. 2). Lower salinity sustains EPA in II term, K reservoir.

WATER PARAMETERS ANALYSIS

The statistical analysis results showed that the differences between
the water parameters of the studied reservoirs are statistically
significant on the level p ≤ 0.0000. They differ in electrical
conductivity (µS∙cm–1), SALT (ppt), TDS (mg∙dm–3), pH,
ammonium content (NO3

+N), and the total amount of dissolved
substances (mg∙dm–3) both in I and II terms.

DISCUSSION

Halophytes have developed many ways to cope with excess
dissolved ions in water, including their removal by roots,
accumulation of ions in shoots and vacuoles, and shedding and
dropping of specialised leaves [VOLKOV 2015]. Another mechan-
ism for coping with high concentrations of Na+ and Cl– ions are
in the osmoprotectant or SOS (salt overly sensitive) signalling

pathway and antioxidant regulation [GUPTA, HUANG 2014]. In the
case of Najas marina, as a facultative halophyte, it is not fully
understood [RÜEGG et al. 2017]. This is also because aquatic plant
research, e.g. on chlorophyll fluorescence, has been gaining
momentum in recent years [PETJUKEVICS, SKUTE 2022; ROSZKOWSKA

2019]. Assuming that the salinity of water in reservoirs formed in
subsidence basins is a stress factor for organisms [SILVA et al.
2010] the efficiency of the photosynthetic apparatus of Najas
marina was studied.

The examined chlorophyll fluorescence parameters and
in the case of reservoir S – higher salinity, such as Fm, Area or
Fv/Fm had low values. Thus, this indicates a weakened physio-
logical condition of the tested plant, which persisted during the
two months of the study. In the other reservoirs, the condition
was much better assessed. The visualisation of the OJIP test
results showed, as indicated in the results, that salinity contributes
to better performance in the optimum development of Najas
marina [RÜEGG et al. 2017] and lower salinity in the final phase.
According to studies, it develops best in waters with salinity
between 2 and 20‰ [SILVA, WIJEYARATNE 2017].

From the Fm values, it can be seen that in I term the level of
maximum fluorescence under high-intensity light irradiation and
with all PSII reaction centres closed was the same for all
populations studied regardless of salinity. Stress was recorded in
the optimal phase of plant growth in reservoirs with lower
salinity. Perhaps the high salinity of the water resulted in its
higher transparency [PIERZCHAŁA, SIERKA 2020] and maintenance
of better light conditions in the reservoir.

In the case of photosynthesis parameters, F0, the values
indicate an increase in the efficiency of excitation energy transfer
between individual dye molecules at the PSII antenna. Thus, high
water salinity (reservoir L) contributes the least to thylakoid
damage and inactivation of PSII, whose value increases with
seasonal plant growth. The parameter t(Fm) determines the time
to reach maximum Fm fluorescence. It is usually in the range of
500–800 ms under laboratory conditions [KALAJI, LOBODA 2007].
In our study, it did not exceed 140 ms. It may have been the
action of stress factors on the studied object, which may have
translated into slowing down the transport of electrons from the
reaction centres towards the plastoquinones. The value of the
Area parameter fluctuated between the most saline reservoirs at
the studied times. Thus, the transport of electrons to the
plastoquinone may have been blocked as a result of the salinity
factor [BIBER 2009].

The reason for the differences between the OJIP test values
in I and II terms for Najas marina fluorescence may be due to the
fact that at the end of II term the water temperature decreases
(shorter insolation time during the day) and the physiological
state of Najas marina is temperature dependent. The higher the
temperature, the better the plant development [HOFFMANN et al.
2014]. The statistically significant correlations found between the
studied fluorescence parameters of photosynthesis and water
(salinity and transparency) indicate that facultative halophytes
respond to the presence of salts in the living environment. HAO

et al. [2021] have studied these responses’ spectrum and
mechanisms. Studies in situ allow small reference to the results
obtained. Results from the fact that the individuals for the
measurements had to be taken out of the water each time, which
could cause stress resulting in the disturbance of the efficiency of
the photosynthetic apparatus. Nevertheless, the results obtained

Fig. 2. Statistically significant differences (p < 0.05) between the salinity of
water (expressed by conductivity in µS∙cm–1) in reservoirs, both in I and II
terms; N, K, S, L as in Photo 1; source: own study
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do not provide a basis for generalising the response of plants,
which are facultative halophytes, to a factor such as salinity.
Salinity increase it contributes to further deprivation of mechan-
isms of occurrence in environments with significant salt content,
which will become more common due to climate change
[WOOLWAY et al. 2020].

Statistical analyses showed that the amount of nitrate
dissolved in the water can affect plant performance according
to HOFFMANN et al. [2014] the more nitrate, the better the plant
grows. However, this does not provide a basis for generalisation
to all species of aquatic environments, as the study was conducted
within a narrow range of salinity, within a specific range of water
conductivity, and on a single taxon.

CONCLUSIONS

1. Photosynthesis efficiency of facultative halophytes increases
with increasing water salinity.

2. Optimum efficiency of the photosynthetic apparatus is the
highest in waters with salinity above 3000 µS∙cm–1 in plants
in the full phase of vegetative development.

3. Water salinity below 1000 µS∙cm–1 supports the photosynthesis
of facultative halophytes during the sowing period.

4. With progressing climate changes and the increasing salinity
of water reservoirs, the spread of facultative halophytes will
increase is not clear.
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