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Research paper

Estimate final cost of roads using support vector machine

Musaab Falih Hasan1, Oday Hammody2, Khaldoon Satea Albayati3

Abstract: The cost overrun in road construction projects in Iraq is one of the major problems that face
the construction of new roads. To enable the concerned government agencies to predict the final cost of
roads, the objective this paper suggested is to develop an early cost estimating model for road projects
using a support vector machine based on (43) sets of bills of quantity collected in Baghdad city in Iraq.
As cost estimates are required at the early stages of a project, consideration was given to the fact that the
input data for the support vector machine model could be easily extracted from sketches or the project’s
scope definition. The data were collected from contracts awarded by the Mayoralty of Baghdad for
completed projects between 2010–2013. Mathematical equations were constructed using the Support
Vector Machine Algorithm (SMO) technique. An average of accuracy (AA) (99.65%) and coefficient
of determination (R2) (97.63%) for the model was achieved by the created prediction equations.
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1. Introduction

Success in a company’s project depends on completing pre-agreed tasks within the
predetermined budget. Before agreeing on the contract terms, attention should be paid to
all project implementation stages. Analysis of the costs of road construction projects is a
necessity. To see if the potential project is acceptable to the contractor, which is done during
the pre-contract stage to make a decision about involvement in the project, i.e., by making
an offer. Many projects cost more than originally expected, as evidenced by the fact that
actual project completion costs are almost always higher than initial estimates. Because
the contractor has so little information about the job when forming a preliminary estimate,
modern prediction methods are extremely valuable, and one such method is using a support
vector machine. The important advantage of the support vector machine algorithm is that
it can handle high dimensional data and this proves to be a great help taking into account
its usage and application in the machine learning field, effective in instances where the
number of dimensions is larger than the number of specimens and has better accuracy in
results when compared with other algorithms used to predict.

2. Research methodology

In this paper, the following steps were carried on:
– The bills of quantity for the construction road were obtained from the Mayoralty of
Baghdad and used to develop a Support Vector Machine (SVM) model to estimate
the final cost.

– A model was statistically tested.

3. Literature review

To help owners and planners estimate the cost of a project, the construction conceptual
cost estimate model is developed using Support Vector Machine (SVM). Literature review
and expert interviews are used to identify the factors that influence cost estimations. The
costs of 29 construction projects are used as training examples. Based on the training
results, the average prediction error is less than 10% and the computation time is less
than 5 minutes. The error is met during the planning and conceptual design phase of a
project’s conceptual cost estimate. Case studies have shown that SVM can assist planners
in predicting the construction cost more effectively and more accurately [1]. This paper
investigates the use of SVM to predict the elastic modulus of normal and high-strength
concrete. The elastic modulus predicted by SVM was compared with the experimental
data and those from other prediction models such as Artificial Neural Network (ANN) and
Regression Analysis (RA). SVM demonstrated good performance and has proven to be
better than other models [2]. To estimate steel structure productivity, the researcher used
the SVM development model technique and discovered that among the developed models,
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the Naive Bayes (NB) model was the most appropriate [3]. Using the current state of early
planning as model inputs, the researcher developed artificial neural network ensemble and
support vector machine classification models to predict project cost and schedule success.
Early planning and project performance data from 92 construction projects are gathered
through an industry survey. Project success can be predicted using early planning status
and the proposed artificial intelligence models [4]. One of the most accurate predictive
models, the Support Vector Machine (SVM), was used to forecast construction time. Using
Bromilow’s “time cost” model, a linear regression model was first applied to the data for
75 objects. To improve the accuracy of the prediction, a support vector machine model
was applied to this same data set [5]. This study compares the proposed Support Vector
Regression model to the best-performing alternatives using earned value and schedule
as benchmarks. Cross-validation and grid search procedures are used to adjust the SVM
parameters before a large computational experiment is carried out. This study’s findings
show that support vector machine regression is superior to other methods for predicting the
future.When the discrepancy between training and test sets becomes greater, an experiment
is set up to test the proposed method’s performance [6]. Researched a road construction
project cost estimation model based on a support vector machine. SVM can be used to
improve the ability of construction managers to estimate a road project’s parametric cost
estimate (support vector machine). Collecting historical cases of road executions served as
the foundation for this project. The cost-estimation model was found to be most affected
by these 12 factors. A total of 70 historical data case studies were randomly divided into
three sets: 60 cases for training, 3 cases for cross-validation, and 7 cases for testing. With a
95% accuracy rate, the model could to forecast the project’s costs accurately [7]. This study
developed an AI model using SVM to predict project time and cost indices. This study used
21 tunnel projects in Kurdistan, Iraq. Input data include contract value, duration, change
orders, conflicts, and company classification. WEKA, a machine learning and data mining
software developed at the University of Waikato in New Zealand, was used to build the
SVM model. The collected data were split by default into training, testing, and validation
sets. SVM model I successfully predicted the cost index not only for the trained data, but
also for projects with out-of-range input parameters. MAPE and AA for SVM cost index
prediction were 13.9% and 86.1%, respectively. MAPE and AA for SVM model II were
3.4% and 96.6%, respectively [8].

4. Support Vector Machine

As a new statistical technique, SVM theory of SVMs has received much attention in
the last few years. An alternative training method for polynomial, radial basis function,
and multi-layer percept classifiers can be derived from this learning theory [9]. Based on
Structural Risk Minimization (SRM) induction theory, SVMs are designed to minimize
the generalization error, rather than to minimize squared errors. Regarding solving classi-
fication and regression problems, SVMs have proven to be more effective than traditional
learning machines in many applications. Stated that only the target variables differ from the
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equations of classification problems in SVMs [1]. SVM is widely regarded as a promising
and attractive tool in classification and regression. Optical character recognition and object
recognition are the primary applications of SVM as a classifier thus far. Developed SVM
as one of the computers learning methods based on statistical learning theory.
SVM has three distinct characteristics when compared to conventional artificial Neural

Networks (NN) regression approximation. Linear functions defined in multidimensional
space are used in SVM. To minimize risk, SVM uses loss functions and a risk function that
includes the empirical error and a regularization term derived from the SRM [10]. Support
vectors are defined as the points closest to the separating hyperplane. The hyperplane’s
location is all that they determine. All other factors are irrelevant. The normal vector of
the hyperplane in Fig. 1 is the weighted sum of the support vectors. SVM outperforms
other machine learning algorithms like Neural Networks (NN) in generalization and sparse
representation, making it the better choice. The ability to deal with data that are sparse in
input space is known as a generalization, while the ability to deal with data that are sparse
in output space is known as sparse representation. In essence, a linear or nonlinear mapping
function maps the input space into a higher-dimensional feature space for a set of training
samples. As a result of these mapping functions (kernel functions), SVM creates an optimal
hyperplane for class separation in higher dimensions that minimizes error and maximizes
margin. This measures how far the hyperplane is from the data points in the surrounding
classes. The SVM classifier’s generalization error decreases as the margin increases. There
are a few irrelevant features (dense concept), sparse document vectors (sparse instances),
and text categorization problems that are linearly separable with SVM [11].

Fig. 1. Support vector machine maximal margin hyperplane in feature space [6]

The e-insensitive loss function and a slight modification to equation formation allow
SVM theory to be easily applied to regression problems. It is through the process of
mapping input data into a more complex feature space that SVM learns to do its work. The
kernel function, 𝑘 (𝑥𝑖 ,𝑥 𝑗 ), is used to identify the optimal hyperplane in this feature space,
and various parameters, such as complexity, epsilon, tolerance, and the filtering method
used, are passed on to the SVM. The type of kernel equations as follows [12]:
– Polynomial kernel:

(4.1) 𝑘 (𝑥, 𝑦) = (𝑥 · 𝑦 + 1) 𝑝
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– Radial basis function kernel:

(4.2) 𝑘 (𝑥, 𝑦) = exp(−𝛾 //𝑥 − 𝑦//2)

– Sigmoid kernel:

(4.3) 𝑘 (𝑥, 𝑦) = tanh(𝑘𝑥 · 𝑦 − 𝛿)

where: 𝑝, 𝛾 and 𝛿 are the kernel parameters: An important aspect of SVM regression is
the use of a non-linear mapping to transform input data (𝑥) into an infinitely large feature
space (𝑦), and then perform linear regression in this space (𝑦). This is the regression model
is defined as 𝑦 = 𝑓 (𝑥) + 𝑒, Here, the high-dimensional feature space is used to define 𝑥
and 𝑦 as input and output functions. e: is the independently random error. Given a dataset
𝐺 = {(𝑥𝑖 , 𝑦𝑖) 𝑖 = 1, 2, . . . , 𝑙}, This equation has three variables: 𝑙 is the number of training
data points, 𝑥𝑖 is the input value, and 𝑦𝑖 is the output value. The regression SVM aims to
find an output that deviates by at least from the original. Assumptions about how the best
regression performs are often made:

(4.4) 𝐹 (𝑥) = 𝑤 · 𝜑 (𝑋𝑖) + 𝑏

There are three components to this equation: the weight vector (𝑤), the constant thresh-
old (𝑏), and the high-dimensional feature spaces (𝑥𝑖) represented by 𝜑(𝑋𝑖). Minimizing
the regularized risk function is used to estimate the coefficients 𝑤 and 𝑏:

𝑅reg (𝐶) = 𝐶
1
𝐼

𝐼∑︁
𝑖=1

𝐿𝜀 (𝑦𝑖 , 𝑓 (𝑥𝑖)) +
1
2
| |𝑤 | |2(4.5)

𝐿𝜀 (𝑦𝑖 , 𝑓 (𝑥𝑖)) = {|𝑦 − 𝑓 (𝑥) | − 𝜀, for |𝑦 − 𝑓 (𝑥) | ≥ 𝜀 or 0 otherwise}(4.6)

where: the first term 𝐶
1
𝐼

𝐼∑︁
𝑖=1

𝐿𝜀(𝑦𝑖 𝑓 (𝑥𝑖)) is the empirical error, and the second term(
1
2
| |𝑤 | |2

)
measures the flatness of the function, 𝐿𝜀 (𝑦𝑖, 𝑓 (𝑥𝑖)) is the 𝜀 – insensitive loss

function. The parameter C determines the trade-off between the empirical error and the
flatness of the model. Introducing the slack variables 𝜁𝑖 and 𝜁∗𝑖 into Eq. (4.5), it can be
transformed into the dual optimization problem [12]:

(4.7) minimize : 𝑅
(
𝑤, 𝑏, 𝜁𝑖 , 𝜁

∗
𝑖

)
=

(
1
2
//𝑤//2

)
+ 𝐶

𝐼∑︁
𝑖

= 1(𝜁𝑖 + 𝜁∗𝑖 )

Subjected to:

(4.8)
𝑌𝑖 − 𝑤 · Φ (𝑋𝑖) − 𝑏 ≤ 𝜀 + 𝜁𝑖

𝑤 · Φ (𝑋𝑖) − 𝑏 ≤ 𝜀 + 𝜁∗𝑖 , 𝜁𝑖, 𝜁𝑖∗ ≤ 0, 𝑖 = 1, 2, . . . , 𝑙
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Samples with an error more significant are penalized by the slack variables 𝜁𝑖 and 𝜁∗𝑖 ,
respectively. Since these data points are zero in the loss function, they do not need to be
included in the objective function, which means that any error that is less than does not
need to be included. It is possible to solve Eq. (4.7) and (4.8) of the optimization problem
using Lagrangian multipliers, and the solution is as follows:

(4.9) 𝑓
(
𝑥, 𝑎𝑖 , 𝑎

∗
𝑖

)
=

𝑛𝑠𝑣∑︁
𝑖=1

𝑎𝑖 − 𝑎∗𝑖Φ
(
𝑋𝑖 , 𝑋 𝑗

)
+ 𝑏

where: (𝑎𝑖) and (𝑎∗𝑖 ) are the Lagrangian multipliers, and nsv is the total number of supports
vectors used in the model; There are only a few nonzero values for Lagrangian multipliers
(𝑎𝑖 , 𝑎∗𝑖 ) in the training data, and these data points have error estimates that are at least
as large as. Support vectors are the training data with nonzero Lagrangian multipliers. In
general, the fewer support vectors there are, the larger the. While a larger can reduce the
approximation accuracy of the training data points, it can also reduce the model’s accuracy.
The kernel function 𝐾 (𝑥𝑖 , 𝑥 𝑗 ) = (Φ(𝑋𝑖) ·Φ(𝑋 𝑗 )) has been introduced to avoid computing
explicitly the map Φ(𝑥) [13]. It can be written as follows:

(4.10) 𝑓
(
𝑥, 𝑎𝑖 , 𝑎

∗
𝑖

)
=

𝑛𝑠𝑣∑︁
𝑖=1

𝑎𝑖 − 𝑎∗𝑖𝐾
(
𝑋𝑖 , 𝑋 𝑗

)
+ 𝑏

There are many different types of kernel functions in SVMs, and choosing the right one
for each application is critical to ensuring a successful outcome. This is the main drawback
of SVMs, as the kernel parameters are still determined heuristically [2]. This study will
choose Kernel parameters using the least Root Mean Square Error (RMSE) and highest
correlation (r) approach. It is also possible to solve the quadratic programming problem
that arises during the training of support vector machines using the Sequential Minimal
Optimization algorithm (SMO). In 1998, while working at Microsoft Research, John Platt
came up with the idea. For training support vector machines, SMO is widely used, and a
library for support vector machines tool implements it [14].

5. Data acquisition
Themain precondition for the application of an SVM is the establishment of an adequate

database. Within the framework of the research shown in this paper, data was gathered on
completed projects from the Mayoralty of Baghdad for the construction of roads. It is
important to mention that all of the completed projects were carried out in the same
region under the same climatic conditions since they greatly influence the time taken for
the completion of a project and, therefore, the total cost of its implementation [15]. The
database established consists of (47) completed projects related to the construction of the
new roads. Because of the most important part of the tender documentation, upon which
the preliminary estimate of cost is based, the bill of quantities and works were divided in
the following grouping way.
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– Earthwork (Ew).
– Pavement works (Pw) consist of four layers each layer has a constant thickness, as
shown in Table 1.

– Concrete curbs work (Cc).
– Drainage work (Dw) is taken into account basis on their total cost and divided into
four levels depending on their limited cost of work, as shown in Table 2.

Table 1. Thickness of pavement layer

Layers Thickness in (cm)

A layer of sub-base coarse 30

A layer of base coarse 10

A layer of binder coarse 5

A layer of surface coarse 5

Table 2. Thickness of pavement layer

Limitation (×108 ID∗) Level

Dw < 1 Level 1

1 ≤ Dw < 2 Level 2

2 ≤ Dw < 3 Level 3

Dw ≥ 3 Level 4
∗Iraqi dinar

6. Data preparation
The data are divided into (training, testing, and validation) sets, allocating (70%) of

data to the training set, (25%) to the validation (querying) set, and (5%) to the testing set for
the model. As a result, the records of a total of (29) projects are used for training, (10) for
validation, and (3) for testing this model. The input and output variables are pre-processed
by scaling them to cancel their dimension to confirm that all variables receive equal interest
throughout training. Table 3 shows the input and output data used to build the model with
real and normalized scales. Scaled values are calculated for each variable with a minimum
and maximum of (𝑥min/𝑥max) as part of this technique in Eq. (6.1):

(6.1) Scale Value =
𝑋 − 𝑋min
𝑋max − 𝑋min

A t-test determines the representativeness of the training, testing, and validation sets
about one another. The t-test can be used on any two sets of data, and the null hypothesis



676 M.F. HASAN, O. HAMMODY, K.S. ALBAYATI

Table 3. Intervals of real and normalized input and output data

Input data Symbol Measureunit
Min
(real)

Max
(real)

Min
(normalized)

Max
(normalized) Rang

The number of
earthworks EW m3 2250 125000 7.7187 11.7361 4.0174

The quantity
of sub-base
coarse

SB m2 5000 250000 8.5172 12.4292 3.912

The quantity
of asphalt

concrete (Base
coarse)

BC m2 4500 225000 8.4118 12.3239 3.9121

The quantity
of asphalt
concrete
(Binder
coarse)

ECO m2 0 230000 0 12.3458 12.3458

The quantity
of asphalt
concrete
(Surface
coarse)

SC m2 17500 240000 9.77 12.3884 2.6184

The number of
concrete curbs CC m 4500 66000 8.6125 11.0974 2.4849

Cost of
drainage
works

DW level 1 4 1 4 3

Output data Symbol Measureunit
Min
(real)

Max
(real)

Min
(normalize)

Max
(normalized) Rang

The final cost
of roads FCR ID 1332700

×103
13103500
×103 21.0105 23.2961 2.2857

refers to no difference between the two sets. A significant level is used to investigate
the null hypothesis (0.05). This indicates that the statistical consistency of the training,
testing and validation sets a confidence level of (95%). Table 4 shows the results of the
t-tests. According to these findings, the population represented by the training, testing, and
validation datasets is generally the same. Consistent results were found in all the hypothesis
tests for statistical consistency in Table 4 (accepted).
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Table 4. T-test for the model. SVM input and output variables

Statistical Actual input variables Actual
output

parameters
LN(EW) LN(SB) LN(BC) LN(ECO) LN(SC) LN(CC) (DW) LN(FCR)

Data sets Testing

t-value –0.9447 –0.7824 –0.7603 –0.9477 –0.6364 –0.5616 0.2276 –0.7512

Lower
critical value –2.1130 –1.9546 –1.8832 –11.0756 –1.2614 –1.2579 –1.3289 –1.3196

Upper
critical value 0.7765 0.8718 0.8614 4.0547 0.6620 0.7153 1.6623 0.6099

Sig.(2-
tailed) 0.3524 0.4401 0.4530 0.3509 0.5293 0.5786 0.8215 0.4584

Results Accept Accept Accept Accept Accept Accept Accept Accept

Data sets Validation

t-value –0.0296 –0.3974 –0.2372 –1.9895 –1.8490 –1.6059 –0.6185 –0.6797

Lower
critical value –0.7096 –0.8144 –0.7349 –6.6234 –0.8843 –0.8500 –0.9971 –0.6040

Upper
critical value 0.6892 0.5471 0.5808 0.0575 0.0400 0.0980 0.5304 0.3004

Sig.(2-
tailed) 0.9766 0.6933 0.8138 0.0539 0.0722 0.1166 0.5400 0.5008

Results Accept Accept Accept Accept Accept Accept Accept Accept

7. Developing the SVM model

Table 5 shows the best kernel function model, with the poly kernel chosen in this model
having the lowest root mean square error (0.1103). The kernel is thought to be the best
option. In this model, it was used. SVM Model’s root means square error (0.1074) and
means absolute error (0.0746) are shown in Table 6, where the best value parameter C (5)
and the highest correlation coefficient (98.34%) were used in this model. When it comes to
the range of parameter C, the SVM model’s performance is relatively unaffected (1 to 10).
To illustrate the effect of epsilon on the SVM model, Table 8 shows that 0.001 epsilon had

Table 5. Effects of the kernel function on SVM

Kernel Function MAE RMSE Coefficient Correlation (%)

normalized poly kernel 0.2307 0.2923 88.99

poly kernel 0.0753 0.1103 98.27

RBF kernel 0.1949 0.2378 97.56
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the best correlation coefficient (98.34%) and the lowest root mean square error (0.1074)
with mean absolute error (0.0746) so it was used in this model. According to the results,
the SVM Model’s various parameter epsilon has little effect on the model’s performance,
particularly in the range of epsilon (0.001 to 0.01).

Table 6. Effect of the parameter C in SVM model performance

Parameter C MAE RMSE Coefficient Correlation (%)

1 0.0753 0.1103 98.27

2 0.0750 0.1099 98.29

3 0.0747 0.1090 98.31

4 0.0746 0.1086 98.31

5 0.0746 0.1074 98.34

6 0.0746 0.1079 98.33

7 0.0745 0.1083 98.32

8 0.0744 0.1078 98.33

9 0.0745 0.1081 98.32

10 0.0743 0.1081 98.32

Table 7. Effect of the parameter Epsilon in SVM model performance

Epsilon MAE RMSE Coefficient Correlation (%)

0.001 0.0746 0.1074 98.34

0.002 0.0747 0.1071 98.35

0.003 0.0747 0.1069 98.36

0.004 0.0750 0.1067 98.36

0.005 0.0751 0.1067 98.36

0.006 0.0751 0.1069 98.35

0.007 0.0750 0.1074 98.33

0.008 0.0751 0.1072 98.33

0.009 0.0752 0.1070 98.34

0.01 0.0754 0.1066 98.35

8. Final equation
The optimal SVM model’s connection weights are shown in Table 8 by the Weka

program. There is no need for a scale because the program can choose whether or not to
transform the data.
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Table 8. Weight estimates for model FCR

Input Weights Bias

EW 0.4353

–0.1887

SB 0.1358

BC –0.0772

ECO 0.0168

SC 0.2762

CC 0.3057

DW 0.1178

According to the procedure mentioned above, the following final cost of road estimation
equation was developed using (SVM):

FCRnor = −0.1887 +
{
(0.4353 EW) + (0.1358 SB) − (0.0772 BC)(8.1)

+ (0.0168 ECO) + (0.2762 SC) + (0.3057 CC) + (0.1178 DW)
}

FCRact = ln 𝑣Ln (FCRnor range +min)(8.2)

FCRact = ln 𝑣Ln (FCRnor 2.2857 + 21.0105)(8.3)

Before using Eq. (8.1), it should be noted that all input variables must be converted to
values between (0–1) because Eq. (8.1) was built using Eq. (6.1). To get actual data out of
normalized ones, conversions to actual values were made using Eq. (8.3) and Table 3.

9. Models accuracy and validity

Testing the accuracy and validity of a model is a critical step in its development. Using
some test or validation data, the model is tested and evaluated. The model’s validation data
should include some representative samples from the intended audience that were omitted
during the model’s creation. Eq. (8.1) to (8.3) are used to estimate the final cost of road.
Table 9 shows the results of the experiment. The residual values in this table show that the
model is performing well.
To determine the validity of the SVM model’s estimate of the final road costs, the

coefficient of determination is used (FCR). FCR predictions are plotted against actual
validation data as shown in Fig. 2 using the natural logarithm (Ln).
This figure shows that the SVM model can generalize to this data type. The coefficient

of determination for this model was (97.63%). As a result, it’s safe to say that this model’s
predictions match up well with the data collected.
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Table 9. Comparison of observed and predicted data of model FCR

Ln (FCR) Observed Ln (FCR) Predicted Residual value

22.192 22.198 0.006

21.796 21.853 0.057

22.233 22.186 -0.047

21.287 21.364 0.077

22.419 22.511 0.091

22.659 22.797 0.138

22.717 22.770 0.053

22.532 22.739 0.207

22.052 22.048 -0.004

22.064 22.153 0.090

R² = 0,976
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Fig. 2. Observed vs. Predicted final cost of roads using SVM

10. Model evaluation

Table 10 statistical measures were used to evaluate the performance of prediction
models, according to [16].

Table 10. Statistical tests results for the SVM model (FCR)

Description Statistical Parameters

MPE –0.2990%

RMSE 0.0961

MAPE 0.3454%

AA 99.65%

𝑅 98.81%

𝑅2 97.63%
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Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) mea-
sures of average error are only applied to independent test data. Table 10 shows the statistical
parameters for themodel (FCR), including theMAPE and theAverageAccuracy Percentage
(AA%) generated by the SVM model.

11. Conclusions

The following are the findings of this research:
– The developed model (FCR) showed an excellent performance in estimating con-
struction costs for roads in Baghdad city.

– The generalization and validity of the (FCR) model were realized by applying the
statistical validation measures of Mean Absolute Error (MPE), Root Mean Square
Error (RMSE), Mean Absolute Percentage Error (MAPE), Average Accuracy Per-
centage (AA%), coefficient of determination (𝑅2). The (𝑅2) for SVM model (FCR),
it was 97.63%.

– The application of SVM for the simultaneous conceptual estimation of works to be
carried out based on the analysis conducted and the results obtained proved to be
acceptable. It is acceptable for the conceptual estimation of the real cost to have a
maximum deviation of the estimation output data from real values. It significantly
improves the quality of decision-making and reduces the risk of overspending on
potential projects.
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