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Multi-scale modelling of brick masonry using a numerical
homogenisation technique and an artificial neural network

Aleksander Urbański1, Szymon Ligęza2, Marcin Drabczyk3

Abstract: A new method of creating constitutive model of masonry is reported in this work. The model
is not an explicit orthotropic elastic-plastic one, but with an artificial neural network (ANN) giving an
implicit constitutive function. It relates the new state of generalised stresses Σ𝑛+1 with the old state Σ𝑛

and with an increment of generalised strains Δ𝐸 (plane-stress conditions are assumed). The first step is
to run a strain- controlled homogenisation, repeatedly, on a three-dimensional finite element model of
a periodic cell, with elastic-plastic models (Drucker–Prager) of the components; thus a set of paths is
created in (Σ,Δ𝐸) space. From these paths, a set of patterns is formed to train the ANN. A description of
how to prepare these data and a discussion on ANN training issues are presented. Finally, the procedure
based on trained ANN is put into a finite-element code as a constitutive function. This enables the
analysis of arbitrarily large masonry systems. The approach is verified by comparing the results of the
developed model basing on ANN with a direct (single-scale) one, which showed acceptable accuracy.
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1. Introduction
In this paper, the report of the successful attempt to model masonry structures using

finite-element method (FEM), with an artificial neural network (ANN) driver acting as
a constitutive procedure, is given. Brick masonry is an example of a medium possessing
a periodic microstructure, while its components (brick and mortar) have highly nonlinear
material properties. The direct finite element modelling of such media is limited to only
small structural details. Larger structural systems require the introduction of an equivalent,
homogenised material model.
In the last 30 years, different researchers have made many attempts to create such

a model, see [1, 2], where state-of-the art reports may be found. However, owing to the
complexity of the problem, there is no commonly accepted one. Thus, the main concern of
the authors was to recognize practical possibility of building constitutive models of wider
class of masonry-like media by ANN, but not a detailed investigation of specific masonry
behaviour.
In this study, all modelling stages were performed using the Hybrid FEM-ANN (HFE-

MANN), to run finite element computations at micro- and macro-levels. The AppANN
was used to train and optimise topology of the artificial neural network. Both are original
software products developed by Idealogic Ltd.

2. Theory / calculation

2.1. General concept of multi-scale masonry modelling
using artificial neural networks

In this work the masonry structure modelling is limited to the plane-stress conditions.
This is the simplest choice for masonry, as indicated by many previous studies [3–5]. The
desired model is in the form given by Eq. (2.1), consistent with an incremental solution
algorithm for any problem with a strain-driven nonlinear constitutive relation:

(2.1) 𝚺𝑖+1 = 𝐹
(
𝚺𝑖 , Δ𝐸

)
where 𝚺𝑖 = { 𝑁𝑋𝑋 , 𝑁𝑌𝑌 , 𝑁𝑋𝑌 }𝑇 , 𝚺𝑖+1 are membrane forces (macro-stresses) in the
subsequent instants 𝑖, 𝑖 +1, related to an {𝑋, 𝑌 } coordinate system in which the 𝑋 direction
coincides with the mortar layer ΔE = {Δ𝐸𝑋𝑋 , Δ𝐸𝑌𝑌 , ΔΓ𝑋𝑌 }𝑇 are the corresponding
average incremental strains.
Most of the in-plane macro-constitutive masonry models to be used in finite-element

codes have the formal structure of an elastic-plastic model, with orthotropic elastic and
plastic parts. The elastic part of the model can be described by approximate, simplified
relations [6, 7] or by exact formulae obtained by homogenisation [8]. In plastic masonry
behaviour, the plasticity condition, as well as the flow-rule potential, is not a function of the
stress invariants, but of all macro-stress components, [1, 9]. Other model enhancements,
e.g. a description of softening or damage behaviour can also be introduced, considering the
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orthotropy of the media [10]. All of these factors are sources of difficulty when creating
a strictly empirical data set for the given model, as a full identification would require
multiple runs up to and including damaging the sample.
Another method of creating such a model, without assuming its particular form, which

will be examined later in this paper, is to build an artificial neural network, trained on a large
numerically generated set of paths in the macro-stress-strain space. Obviously, this idea is
a general one, and has been used by other researchers with similar problems [11–18]. Nowa-
days, ANN are successfully used in other area of civil enginering, like shown in [19]. The
theoretical background for this is provided by the mathematical theory of artificial neural
networks, with the universal approximation theorem [20,21]. It has been proven that amulti-
layered, unidirectional perceptron neural network is capable of approximating an arbitrary
multi-dimensional nonlinear function e.g. 𝚽 : X ∈ 𝑅𝑛 → Y ∈ 𝑅𝑚. The artificial neural
network used in our attempts at masonry modelling is shown schematically in Figure 2.
Obviously, the optimal artificial neural network parameters for anymasonrymodelmust

be established, e.g. the number of layers and neurons in each, the neuron activation function
and the weight and bias coefficient values. This will be briefly described in Section 2.3.
The complete approach to numerically analyse masonry structures using an artificial

neural network as the constitutive driver is shown in Figure 1. To verify the approach, the
obtained results are compared with direct (single-scale) model.

Fig. 1. Application schema for using an artificial neural network in a FE analysis
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Fig. 2. Artificial neural network of multilayer perceptron type as a constitutive function for masonry
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2.2. Micro-level masonry analysis

To gather data needed by an identification procedure of the masonry constitutive macro-
model, i.e. the set of relations between the membrane forces and in-plane strains, a nu-
merical homogenisation analysis is performed on a periodic, repetitive, three-dimensional
(3D) masonry cell. It is worth to note that in similar circumstances Drosopoulos et al. [16]
perform homogenization on 2D plane stress masonry cell. The starting data are the cell
morphology and the constitutive properties of the components. The technique used is
a generalised homogenisation with applied strain-control. Then, the total strain fields are
decomposed into the control strains E(𝜆), which are given as constant within the periodic
cell, with 𝜆 – the pseudo-time parameter. The periodic fluctuation of the strain field 𝜺𝑝 are
the result of the microstructure:

(2.2) 𝜺(x) = 𝐿E(𝜆) + 𝜺𝑝 (x)

The fully 3D fluctuation of the strain field 𝜺𝑝 is related to the periodic displacement
field 𝜺𝑝 (x) = 𝐵u𝑝 (x) where 𝐵 is the differential operator of Cauchy’s compatibility
equations (in matrix form). The displacement field u𝑝 (x) is a primary unknown, which
can be determined numerically from the equilibrium equations:

(2.3) 𝐵𝑇𝝈
(
𝐿E(𝜆) + 𝐵u𝑝 (x)

)
= 0

The details of the incremental finite element formulation of the homogenisation with
general material nonlinearity can be found in [8]. The output of the one run of the ho-
mogenisation procedure is a path in the space of generalised stresses and strains:

(2.4) 𝜆 → {E(𝜆), 𝚺(𝜆)} , 𝚺(𝜆) = 1
𝑆𝐶

∫
𝑉𝐶

𝐿𝑇𝝈d𝑉

In Eqs. (2.2)–(2.4), 𝐿𝑇 = [𝐼3×3, 03×3] is a 3 × 6 matrix selecting in-plane components,
𝑉𝐶 is the periodic cell volume, and 𝑆𝐶 = 𝑎 · 𝑏 is its in-plane area. Figure 3 shows a finite
element model of a periodic masonry cell. To minimise the computational effort, only half
of a schema is built. This is sufficient because symmetry of the cell and the imposed strains
versus the 𝑋𝑌 plane. Obviously, in this case, the resulting membrane forces should be
multiplied by a factor of two. It has a periodic boundary condition imposed on the opposite
planes 𝑥 = ±𝑎/2 and 𝑦 = ±𝑏/2. The easiest implementation method is the following: given
a list of nodal pairs, it is sufficient to modify the routine attaching the equation numbers
to the nodes, such that each node 𝑗 , which is coupled to node 𝑖 by the periodicity relation,
𝑗 > 𝑖, inherits the degrees of freedom (DOF) numbers already set for node 𝑖.
For both masonry components, i.e. brick and mortar, a Drucker–Prager (DP) elastic-

plastic model is assumed. The DP model data, i.e. cohesion 𝑐 (.) and friction angle 𝜙 (.) , are
derived from the compressive 𝑓𝑐 (.) and tensile 𝑓𝑡 (.) strengths, being standard material data
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Fig. 3. FE model of a periodic cell

for ceramics. The formulae given in Eq. (2.5) are used:

sin 𝜙 (.) =
1 − 𝑓(.)
1 + 𝑓(.)

⇒ 𝜙 (.) = arcsin
(1 − 𝑓(.)
1 + 𝑓(.)

)
,

𝑐 (.) = 𝑓𝑐 (.)
1 − sin 𝜙 (.)
cos 𝜙 (.)

(2.5)

In the considered example, the data roughly correspond to masonry built of class B10
bricks and lime-cement mortar. The specific values are as follows:
– Brick: 𝐸𝑏 = 9000 MPa, 𝜈𝑏 = 0.167, 𝑓𝑐𝑏 = 7.5 MPa, 𝑓𝑡𝑏 = 0.75 MPa
( 𝑓𝑏 = 𝑓𝑡𝑏/ 𝑓𝑐𝑏 = 0.10),

– Mortar: 𝐸𝑚 = 900 MPa, 𝜈𝑚 = 0.167, 𝑓𝑐𝑚 = 0.75 MPa, 𝑓𝑡𝑚 = 0.075 MPa
( 𝑓𝑚 = 𝑓𝑡𝑚/ 𝑓𝑐𝑚 = 0.10).

The exemplary results of themicro-level homogenisation analysis are shown in Figure 4.
The stress level (SL) is understood as the relative distance, in the radial (deviatoric)
direction, of a stress point from the yield surface.
Note, that from the viewpoint of the effectiveness of the entire three-step procedure (in

Figure 1), important is a way of creating large data sets to run homogenisation analysis
repeatedly, with different imposed strains. As the first step a range of each component
of the strains E should be established, as physically justified. In a considered case, the
cube in the strain space, with 𝐸0 = 0.01, is set: {−𝐸0 ≤ 𝐸𝑋𝑋 ≤ 𝐸0, −𝐸0 ≤ 𝐸𝑌𝑌 ≤ 𝐸0,
0 ≤ Γ𝑋𝑌 ≤ 𝐸0}. Assuming a division in each direction at 𝑀 intervals, starting from 0 to
point

{
𝐸𝑋𝑋𝑖 , 𝐸𝑌𝑌 𝑗 , Γ𝑋𝑌 𝑘

}
, NPATH = 4 · 20 · 11 = 880 different paths are created:

(2.6)
𝐸𝑋𝑋𝑖 = 𝐸0 · 𝑓𝑖 (𝜆), 𝑖 = 1, . . . , 𝑀 = 20
𝐸𝑌𝑌 𝑗 = 𝐸0 · 𝑓 𝑗 (𝜆), 𝑗 = 1, . . . , 𝑀 = 20
Γ𝑋𝑌 𝑘 = 𝐸0 · 𝑓𝑘 (𝜆), 𝑘 = 1, . . . , 𝑀 = 10

Two types of control function 𝑓 (𝜆) are applied:
1. Smooth, linear: 𝑓𝑖 (𝜆) = 𝐴𝑖𝜆, 𝐴𝑖 = 2𝑚/𝑀 , 𝑚 = {0, 1, . . . , 𝑀/2} ∪ {−1, . . . ,−𝑀/2}
for 𝐸𝑋𝑋 , 𝐸𝑌𝑌 , for Γ𝑋𝑌 : 𝐴𝑖 = 𝑚/𝑀 , 𝑚 = {0, 1, . . . , 𝑀}; and 𝜆 = (0, 1).
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Fig. 4. Stress level and deformation for imposed strains (a)–(c).
Visualisation of imposed strain space (d)

2. Noisy, randomised (Figure 5): 𝑓 RAND
𝑖

(𝜆) = 𝑓 𝑖 (𝜆) · RAND(𝛼, 𝛽), with 𝑓 𝑖 (𝜆) = 𝑓𝑖 (𝜆)
as in 1), 𝛼 = 0.5 and 𝛽 = 1.5.

λ

λ

RANDf

( f ) β · f ( λ ) 

( λ ) =   f ( λ ) · RAND(α, β) 

 f ( λ )

α ·  f ( λ )

Fig. 5. Randomised control function

For each of the path divisions, NSTEP = 20 equal increments of the imposed strains
were performed. Note that to minimise the computational effort, the results obtained
for positive values Γ𝑋𝑌 > 0 are taken also for imposed shear strains Γ𝑋𝑌 < 0, with
𝑁
neg
𝑋𝑌

= −𝑁pos
𝑋𝑌
; however the normal forces are preserved: 𝑁neg

𝑋𝑋
= 𝑁

pos
𝑋𝑋
, 𝑁neg

𝑌𝑌
= 𝑁

pos
𝑌𝑌
. This

is because the normal forces accompanying the shear emerge due to the dilatancy effect
and are independent of the shear direction. Each converged step generates one record,
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including a pattern for training the ANN which consists of input X = {𝚺𝑛−1,ΔE𝑛} and
output Y = {𝚺𝑛} vectors. Using 2 · 2 · 880 = 3520 paths, 65536 records were obtained; this
was because not for all paths a converged solution in the full range of 𝜆 was reached. The
entire pattern generation lasted about 8 h on a PC with an i7 processor.
In the procedure described above, the number of X, Y patterns obtained from one path

is equal to the number 𝑁 of macro stress-strain points in it, {E (𝜆𝑖) , 𝚺 (𝜆𝑖)}, 𝑖 = 0, 𝑁 ,
leading to:

(2.7) X =
{
𝚺𝑖−1,ΔE𝑖 = E(𝜆𝑖) − E(𝜆𝑖−1)

}
, Y =

{
𝚺𝑖
}
, 𝑖 = 1, 𝑁.

The number of patterns might substantially increase, up to Nmax = 𝑁 (𝑁 – 1)/2, when
for any given stress point, a larger set of strains increments and the corresponding stresses
are included:

(2.8) X =

{
𝚺𝑖−1, ΔE𝑖

𝑗 = E(𝜆 𝑗 ) − E(𝜆𝑖−1)
}
, Y =

{
𝚺 𝑗

}
, 𝑖 = 1, 𝑁, 𝑗 = 𝑖 + 1, 𝑁

This procedure, called “diluting”, is shown in Figure 6. In addition to increasing the
number of patterns, it widens the range of the strain
increments. It may only be performed for smooth paths and with controlled intensity.

This is essential when using a trained ANN as the constitutive function in a boundary value
problem; however, it does not require any additional computational effort. In the presented
example procedure of diluting was performed. The number of records finally used to train
the artificial neural network was about 250,000.
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Fig. 6. Increasing the number of patterns and widening the range of strain increments
by diluting procedure

Figure 7 shows comparison of the exemplary paths obtained from the finite element
homogenisation, with their approximation done by the artificial neural network trained with
the procedures described in Section 2.3 It considers both smooth (left) and randomised
(right) path cases.
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Fig. 7. Paths obtained by the finite element homogenisation and their prediction
by the artificial neural network

2.3. Identification of a macro-level constitutive model
using an artificial neural network

In the following section, the functionality of a developed application, AppANN, is
briefly described. This app allows a user with only basic knowledge of artificial neural
networks technology, efficiently create an artificial neural networks to be implemented
in an finite element code. The multi-layered, unidirectional perceptron neural net (shown
schematically in Figure 3) is a nonlinear function 𝚽 : X ∈ 𝑅𝑁 → Y ∈ 𝑅𝑀 , defined
recursively as:

𝚽 : 𝑅𝑁 3 X = {𝑥𝑖} =
{
𝑦
(0)
𝑖

}
, 𝑖 = 1, 𝑛(0) , 𝑛(0) = 𝑁

𝑦
(𝑘)
𝑖

= 𝛼 (𝑘) ©­«
∑︁

𝑗=1,𝑛(𝑘−1)

𝑤
(𝑘−1)
𝑗

𝑦
(𝑘−1)
𝑗

+ 𝑏 (𝑘−1)ª®¬ , 𝑘 = 1, 𝐿.{
𝑦𝐿𝑖

}
= Y ∈ 𝑅𝑀 , 𝑖 = 1, 𝑛𝐿 , 𝑛𝐿 = 𝑀

(2.9)

In Eq. (2.9), 𝐿 > 1 is the number of layers, and 𝑛(𝑘) is the number of neurons in the
𝑘-th layer. These parameters define the topology of the artificial neural net. 𝑤 (𝑘)

𝑗
are the

coefficients of the linear combination named as the weights, and 𝑏 (𝑘) is the bias, which is
a term that shifts values of linear combinations. 𝛼 (𝑘) is the activation function, which is
generally nonlinear. The activation functions available in our implementation, are presented
in Table 1.

Table 1. Activation functions available in AppANN

Name Linear Sigmoid Tanh Softplus Softsign Relu

𝛼(𝑥) = 𝑥
1

1 + 𝑒−𝑥
tanh(𝑥) ln (1 + 𝑒𝑥) 𝑥

1 + |𝑥 |
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0
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For an assumed set of topological parameters 𝐿 and 𝑛(𝑘) , the values of 𝑤 (𝑘)
𝑗
and 𝑏 (𝑘)

are the results of using an objective loss function to minimise error. The available loss
functions (with their customary names and related acronyms) are listed below the Loss
function item. The back propagation algorithm is used for those optimisation procedures.
It is described in numerous references, e.g. [21]. Using the AppANN application developed
in this project, one can control the creation of an artificial neural network by simply using
a dialog window.When inManualmode, for the one run of training an ANN, the following
options (hyper-parameters), are settable, see Figure 8:

Technology selection. The options are TensorFlow or Keras-TensorFlow.
TensorFlow – is an open-source low-level machine-learning programming library, writ-

ten by the Google Brain Team for machine-learning developments (C++) [22].
Keras – is the front-end overlay that provides a high-level interface to TensorFlow. It

enables the rapid prototyping, configuration, and implementation of neural networks [22].
It works very well with the optimisation library used in the Hyperopt project (Python).

Learning rate. It is a step size of decline used by gradient descent algorithm in
optimization of the neural network weights. The Learning rate is an important parameter,
and its proper selection is crucial for the optimizer to find minima in multidimensional
spaces. A too small step causes a very slow neural networks training, while too-large step
might jump over local minima, thereby decreasing the prediction quality.
The operation of the gradient-optimiser algorithm can be compared to going downhill

the shortest possible path to reach the local or global minimum of the cost function. After

Fig. 8. Dialogs enabling the user to set hyper-parameters in manual and optimization mode
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each epoch, the error value between the real and predicted data is calculated by means
of back propagation. Then, the values of the weights and biases in the neural units are
rectified. The magnitude of the “Learning rate” depends on the selected optimiser.

Optimiser. The user can choose between the following optimisers: Stochastic Gradient
Descent (SGD), Adaptive Moment Estimation (Adam), Root Mean Square Propagation
(RMSprop), Adaptive Gradient (Adagrad), and Adaptive Delta (Adadelta). For their de-
scriptions see [24].

Number of Epochs. With each subsequent epoch, the prediction result is compared
with the actual result. The magnitude of the error between these values is used to correct the
weights in the neural network, which are updated in the next epoch. Hence, the prediction
accuracy increases with the number of epochs. After exceeding a certain quantity (unknown
in advance), the prediction quality ceases to improve, and the risk of over-fitting increases.
Then, the so called “early stopping” method can be used. It interrupts the network-training
process when, after a predetermined number of successive epochs, the loss-function or
success metrics improvement is less than the assumed minimum increase. The model
learning time directly depends on this factor.

Batch Size. This specifies the number of samples from the training data that will pass
through the network simultaneously (in parallel). The algorithm divides the amount of data
by the batch size, thereby obtaining the number of iterations per epoch. Each iteration uses
a different portion of the previously divided data until the entire training set has passed
through the network. This marks the end of one epoch.
The size of one data portion should be dependent on the computing power. The larger

the latter is, the more able the network is to process a larger portion of data in parallel.
Thus it speeds up the calculation process at the expense of a decrease in quality.

Normalisation. Optimisation algorithms require the normalisation or standardisation
of data to eliminate the “gradient explosion” effect. This is because each column represents
a dimension with a scale that is generally different from the scale of the other dimensions.
Hence, all data columns should first be transformed to have the same scale. The user selects
between the following transformation types.

Normalisation: Knowing the minimum and maximum values in the 𝑖-th column, taken
from all of the training-data records, we can replace them with values from the selected
range; e.g. 0 to 1. To do this, we simply scale them linearly according to the following
formula: 𝑧𝑖 = (𝑥𝑖 − min(𝑥𝑖))/(max(𝑥𝑖) − min(𝑥𝑖)). A characteristic feature of min-max
normalisation is the preservation of the original data distribution. Therefore, this method
is not suitable for limiting the impact of outliers [23].

Standardization: The purpose of the method is to change the distribution of data to
obtain a distribution with an average value of 0 and a standard deviation of 1. After
standardisation, values below the average will be negative, and values above the average
will be positive. As a rule, standardised values range from –4 to 4. The standardised value
is calculated from the following formula 𝑧𝑖 = (𝑥𝑖 − 𝑥𝑖) /𝜎𝑖 , where 𝑥𝑖 is the arithmetic
mean and 𝜎𝑖 is the standard deviation of the variable [23]. Note, that the vectors of the
values related to normalisation or standardisation, i.e. (max(𝑥𝑖), min(𝑥𝑖), 𝑥𝑖 , 𝜎𝑖 , 𝑖 = 1, 𝑁),
established while creating the artificial neural network, must be stored. Each time when
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the ANN is invoked (as the representing constitutive model), they will be used to perform
normalise the input X and re-normalise the output Y.

Loss function. The available functions are means squared error (MSE), root mean
squared error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and coefficient of determination (𝑅2). Exact formulae can be found in numerous
references, e.g. [20, 22].

Train/Test data splitting. The user must to decide the percentage of testing and training
data to be used in the learning process. The default value is 70% for training and 30% for
testing.

Configuration of hidden layers. First, the user must select the number of hidden
layers, i.e. 𝐿−1. Then, for each individual layer, the following settings must be configured:
number of neurons 𝑛(𝑘) , type of activation function 𝛼 (𝑘) , and dropout on individual layers.
The number of layers and neurons depends on the number of interrelationships between
the dimensions in the data and the complexity of these correlations.

Dropout factor. This factor takes a value from 0 to 1 and is one of the methods
to combat model over-fitting. In practice, it means the given percentage of neurons is
deactivated for a given epoch. The dropout’s task is to stimulate other neurons, previously
inactivated, which can improve the quality of the model. In the Optimisation mode an
optimal setting of the hyper-parameters is sought. The most important is to optimize the
artificial neural network topology. The main-program algorithm uses the Hyperopt library
for this task. Its optimisation technique (tree structured parzen estimator) is described
briefly in [24]. Figure 10 shows the dialog that controls the of hyper-parameter space.
After completing the optimization, the resulting data describing the artificial neural

network are stored in a binary file, for further usage in the finite element program.Moreover,
the user may trace the result by visualising of the minimisation process for different loss
functions, see Figure 9, or by comparing the paths obtained as FE results and their prediction
by the ANN, given in Figure 7.

Fig. 9. Selected learning-process accuracy measures as a function of the number of epochs

Activated items give the user the opportunity to define the space of the optimised
parameters, by setting the lower range limit, the upper range limit, the step (for numerical
parameters), and by the specification for other items. It should be remembered that setting
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too many parameters and value ranges will result in a huge multi-dimensional space, which
the optimiser will have to search in to find a local minimum. This will increase the number
of trial evaluations and thus the time it takes to find the optimal solution.
In the considered masonry example, with the hyper-parameter setup given in Figure 8

(left), one ANN training run lasted approximately 100 s. However searching for the optimal
topology and the other items in the range specified in Figure 8 (right), overriding the
configuration of hidden layers data, lasted about 8 h on an i7PC. The artificial neural
network used successfully in the finite element analysis of a masonry was built with one
hidden layer 𝐿 = 1, and 𝑛(1) = 16 neuron, with the RELU activation function.

2.4. Macro-level finite element analysis of masonry structures

In the macro-level finite element analysis of masonry structures, a few simplifying
assumptions are made, in this work. They are as follows:
1. The masonry walls are modelled with planar shell elements.
2. At the level of a shell-element cross-section the membrane state is treated as uncoupled
with the bending and transversal shear states. The membrane state is analysed using
the ANN, as described in previous sections. For the latter, purely linear elastic cross-
sectional models are assumed in the following form; i.e. for components with bending
moments and curvature tensors:

M = D𝐵 · 𝜿, 𝜿 =


𝜅𝑋𝑋

𝜅𝑌𝑌

2𝜅𝑋𝑌

 , M =


𝑀𝑋𝑋

𝑀𝑌𝑌

𝑀𝑋𝑌


D𝐵 = 𝐷


1 𝑣 0
𝑣 1 0

0 0
1 − 𝑣

2

 , 𝐷 =
𝐸ℎ3

12
(
1 − 𝑣2

)
(2.10)

and for the shear forces and mean shear angles:

(2.11) Q = D𝑆 · 𝜷, 𝜷 =

[
𝛽𝑋

𝛽𝑌

]
, Q =

[
𝑄𝑋

𝑄𝑌

]
, D𝑆 =

5
6
𝐺ℎ

[
1 0
0 1

]
The above simplification is allowable in the analysis of masonry walls, being the part

of a 3D structural system in a case where no significant transversal loads are applied. For
the membrane state, the artificial neural network provides only a part of the constitutive
model, i.e. the function giving the generalised stress response. The other needed part, the
material stiffness matrix D𝑀 , is taken as initial, orthotropic, and linearly elastic. A module
of the elastic orthotropic material can be easily obtained from a micro-level analysis of the
periodic cell model, with linearly elastic components models. It is sufficient to perform
three homogenisation runs with the imposed strains: E𝑋𝑋 = {1, 0, 0}𝑇 , E𝑌𝑌 = {0, 1, 0}𝑇 ,
𝚪𝑋𝑌 = {0, 0, 1}𝑇 . The corresponding vectors of membrane forces 𝚺𝑋𝑋 , 𝚺𝑌𝑌 , and 𝚺𝑋𝑌

create the initial constitutive matrix of an orthotropic model, which for the considered
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example, takes the following values:

(2.12) D𝑀 =


𝚺𝑇
𝑋𝑋

𝚺𝑇
𝑌𝑌

𝚺𝑇
𝑋𝑌

 =

777.0 72.4 0
72.4 486.0 0
0 0 182.4

 [MN/m]

Although the described method of proceeding with the constitutive matrix of the
membrane model has a limited choice of nonlinear problem-solution algorithms to the
initial stiffness algorithmonly, it ismore convenient than the alternative.Attempts have been
made to introduce a constitutive matrix approximately obtained by a finite differentiation
of the artificial neural network, i.e.:

(2.13) DM_ANN =
Δ𝚺
ΔE

=

[
𝑁𝑖

(
E + {Δ𝐸 𝑗 }𝑇

)
− 𝑁𝑖 (E)

Δ𝐸 𝑗

]
, 𝑖, 𝑗 = 𝑋𝑋,𝑌𝑌, 𝑋𝑌

with small increments of Δ𝐸 𝑗 = 𝜀 · ‖ΔE‖, where 𝜀 = 0.01. However, it turns out to be
inefficient because of the numerical instabilities frequently encountered in Newton-type
solution algorithms. Moreover, the ANN function must be invoked three additional times
for each instance.
If ANN are used as a base of constitutive model, it is hard to set a strict limit between

linear (elastic) and nonlinear range. The displacement-load curve observed in incremen-
tal procedure indicates appearance of nonlinearity of material response. Also iterative
procedure at each incremental step requires an increasing number of iteration to fulfil con-
vergence criteria in terms of norms of residuum and displacement sub-increment vectors.
This indicates grows of the distance between linear and actual, ANN generated response.

3. Results

3.1. Model validation

To verify the correctness of the approach, we analysed the same masonry object using
both of its models, with the same loads and boundary conditions. The first model was
built from shell elements with an artificial neural networks driver as the constitutive
macro-model, see Section 2.4. The second was a direct 3D, single-scale model, with its
micro-structure represented with the same accuracy and constitutive modelling as the
micro-level model used to create the large set of patterns, as described in Section 2.2. Both
models, representing a repeatable fragment of the wall, are shown in detail in Figure 10.
Obviously, the main difference between the two models lies in the size of the model and
subsequent computational effort. It is also evident, that a direct model representing the
entire wall structure, together with micro-level phenomena, would lead to multi-million
DOFs (about 22million, in this case), which is hardly acceptable as a practical situation. The
comparison is straightforward for the displacement field, see Figure 11, where qualitative
and quantitative agreements are visible. For the results of the membrane forces (in MN/m)
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and stresses (in MPa) (Figure 12), only a qualitative agreement may be seen. It is difficult
to do a quantitative assessment because of the 3D fluctuation of the stress field in the direct
model, owing to the presence of the masonry microstructure.

3.0 1.8

3.64 1.56

lintel 

(concrete)

wall thickness

½ brick (0.12m)

Cellar wall

Subsoil

p = 0.05 MN/m

Single-scale model

3D (direct), with identical 

FE meshing as used

in MICRO analysis

ANN shell model

plane stress, with Uz-blocked

157 344 nodes (~450 000 DOF)

116 414 B8 ele.

177 nodes (~500 DOF)

139 shell Q4 ele.

5 MPa ≡

0.6 MN/m

g = 0.02 MN/m3

0.12 m

dead weight: g = 0.02 MN/m3

load from floor:

X

Y

X

Y

Z

X
Z

Y

Fig. 10. FE models representing a fragment of the complete masonry wall

ANN shell el.                                    3D direct

[m]

Fig. 11. Repeatable wall fragment. Displacement magnitude ‖𝑈‖
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Fig. 12. Membrane forces 𝑁𝑖 𝑗 (ANN shell) / Stresses 𝜎𝑖 𝑗 at the outer surface (3D direct)
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(-0.1,0.1)

[MN/m]
m0. 20=Du

Fig. 13. Complete wall – ANN shell (demonstrative example).
Deformation and membrane forces 𝑁𝑖 𝑗

3.2. Demonstrative example

To present the possibilities and performance of the ANN method, the entire masonry
wall, shown in Figure 10, is subjected to displacements applied to its base (cellar) wall. This
might be seen as a simplified modelling of a typical situation when one must to assess the
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influence of some type of subterranean activity, e.g. mining or tunnelling, on the structure.
The model has 7287 nodes. The size of one Q4 shell element representing the masonry is
equal to the size of a periodic cell (0.25 m × 0.15 m). The execution time was 240 s for
a 10-steps analysis performed on a PC with an i7 processor.

4. Discussion and conclusions

During the research on the applicability of an artificial neural network based constitutive
modelling within a finite element analysis, particularly in the context of masonry structures,
a few issues should be considered. Firstly, large patterns set must be created, on which the
artificial neural networks will be trained. The range of these patterns should cover the
range element analysis. When this postulate is not fulfilled, one would hardly expect
correct results. of stress points and strain increments expected to be encountered during
the intended finite
The “diluting” procedure, described in Section 2.2, may be seen as a remedy, at least

whenmonotonic loads are considered, as itwas in the examples assessed.However, applying
a randomised path may be helpful to make the ANN model usable, in cases when some
loading-unloading action takes place. Because of the developed AppANN application,
described in Section 2.3, the user does not need sophisticated knowledge about artificial
neural networks algorithms and their optimisation.
Themodelling ofmasonrywalls subjected not only to in-plane action but also to bending

moments is possible; however, it might require substantially greater computational effort,
related to creating bigger patterns sets during homogenisation. Note that in this case, the
size of the input (X) and output (Y) vectors will be doubled, whichmay have some influence
on the effectiveness of the artificial neural network training procedures.
In this study only elastic-perfectly plastic models of masonry constituents were taken

into account, thus phenomena like appearance of cracks was disregarded. If so, applicability
of our approach is limited to situation not reaching ultimate states of masonry structures.
Enhancements of ANN based modelling seems possible, but would require proper descrip-
tion of damage or softening behaviour for the mortar and brick during micro-level which
should (as expected) be automatically covered by ANN. This may require enlargement of
X (input) vector on total macro strains E, or some macro-damage measures derived from
micro analysis, as basing only on increment ΔE would be insufficient. This, together with
mesh-sensitivity for macro analysis, is an interesting problem which may be undertaken
in future research. Another modelling option for farther investigation is ANN based de-
scription of loading-unloading processes, as only monotonic loading were examined in
this paper. This may be needed for FE analysis of masonry structures subjected to seismic
excitation.
Dealing with other types of masonry, e.g. made of hollow bricks, cavity or cinder

blocks, appears to be possible within the proposed macro-constitutive modelling method.
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Our final conclusion is that the artificial neural network-based constitutive models can
be used in masonry modelling; however, more research is needed to make them a “black
box tool” for general use during the finite element analysis.
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Wielo-skalowe modelowanie muru z cegieł przy użyciu metody
homogenizacji i sztucznych sieci neuronowych

Słowa kluczowe: homogenizacja, konstrukcje murowe, metoda elementów skończonych, sztuczne
sieci neuronowe

Streszczenie:

W pracy przedstawiono sposób tworzenia makro-modelu konstytutywnego muru ceglanego.
Przyjmuje się założenia płaskiego stanu naprężenia. Tworzonymodel nie jest modelem ortotropowym
sprężysto-plastycznym, ale jest zbudowany jako sztuczna sieć neuronowa (SSN) dająca niejawną
funkcję konstytutywną. Wiąże ona nowy stan naprężeń uogólnionych (sił membranowych) Σ𝑛+1

ze poprzednim stanem Σ𝑛 oraz przyrostem odkształceń uogólnionych Δ𝐸 . Forma tak utworzonego
makro-modelu konstytutywnego jest zgodna z analiza przyrostową problemu statyki w przypadku
nieliniowości materiałowych.
Składnikimuru (cegła i zaprawa) są opisanemodelami sprężysto-plastycznymiDruckera-Pragera.

Parametry materiałowe składników muru oraz geometria komórki powtarzalnej stanowią dane wej-
ściowe, służące budowie makro-modelu muru.
Pierwszym krokiem w tworzeniu modelu jest wielokrotne przeprowadzenie procedury uogólnio-

nej homogenizacji sterowanej odkształceniami, opisanej w [8], na trójwymiarowym modelu skoń-
czenie elementowym komórki powtarzalnej muru. W ten sposób tworzony jest duży zbiór wzorców
w przestrzeni (𝑋,𝑌 ), 𝑋 = (Σ𝑛, 𝐷𝐸) → 𝑌 = Σ𝑛+1, które służą do trenowania SSN. Opisano sposób
przygotowania tych danych uwzględniający oprócz standartowego monotonicznego sterowania wy-
muszeniami także i sterowanie przy użyciu losowych funkcji sterujących, oraz specjalną procedurę
nazwaną „rozrzedzaniem” (ang. „diluting”) znacznie zwiększającą zakres i liczność zbioru wzorców,
bez konieczności zwiększania liczby przebiegów procedury homogenizacji.
Krótko omówiono zagadnienie trenowania SSN, oraz opcjonalne możliwości autorskiego opro-

gramowania kontrolującego proces nauczania SSN i optymalizacji jej parametrów takich jak ilość
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warstw i neuronów oraz dobór funkcji aktywacji. Aplikacja ta, o nazwie AppANN, pozwala na
tworzenie efektywnych SSN użytkownikowi posiadającemu jedynie podstawową wiedzę o tym na-
rzędziu.
Jedną z opcji modelowania konstytutywnego, w którą wyposażono autorski program do analizy

statycznej zadań fizycznie nieliniowych (HFEMANN), jest procedura która wartościom wektora
wejściowego 𝑋 = (Σ𝑛, 𝐷𝐸) przypisuje wektor𝑌 = Σ𝑛+1, przy dowolnych parametrach SSN. Na tym
etapie, danymi wprowadzanymi do programu, dla makro-modelu konstytutywnego rozważanego
materiału są parametry wytrenowanej SNN.
Podejście weryfikowane jest poprzez porównanie wyników opracowanego modelu opartego na

SSN z modelem bezpośrednim (jedno-skalowym) fragmentu konstrukcji murowej, które wykazało
akceptowalną dokładność. W rozważanym problemie makro-modelowania muru podejście to umoż-
liwia analizę dowolnie dużych systemów ścian murowych, co pokazano na analizie przypadku ściany
5-pietrowej budynku poddanej wymuszeniom górniczym. Wykazano efektywność w porównaniu
z analizą MES modelu jedno-skalowego. Wyniki silnie zależą od pokrywania się zbiorów uczących
(Σ𝑛,Δ𝐸) z występującymi podczas analizy konstrukcji z makro-modelem opartym o SSN.
Ostateczny wniosek który podaje się w zakończeniu jest taki, że makro-modele konstytutywne

oparte na sztucznych sieciach neuronowych mogą być wykorzystywane w modelowaniu murów.
Potrzebne są jednak dalsze badania, aby uczynić je narzędziem do ogólnego użytku podczas analizy.
Praca powstała w ramach grantu NCBiR nr: POIR 01.01.01-00-0276/16-00, pod tytułem „No-

watorskie zastosowanie sztucznych sieci neuronowych w oprogramowaniu wykorzystującymmetodę
elementów skończonych, przeznaczonym do rozwiązywania złożonych problemów inżynierskich
w budownictwie”.
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