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On the minimum energy compensation for linear
time-varying disturbed systems

El Mostafa MAGRI, Chadi AMISSI, Larbi AFIFI and Mustapha LHOUS

We consider in this work a class of finite dimensional time-varying linear disturbed systems.
The main objective of this work is to studied the optimal control which ensures the remediability
of a disturbance of time-varying disturbed systems. The remediability concept consist to find
a convenient control which bringing back the corresponding observation of disturbed system
to the normal one at the final time. We give firstly some characterisations of compensation
and in second party we find a control which annul the output of the system and we show also
that the Hilbert Uniqueness Method can be used to solve the optimal control which ensure the
remediability. A general approachwas given tominimize the linear quadratic problem. Examples
and numerical simulations are given.
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1. Introduction

Disturbances can cause serious damage to the dynamic system, its distur-
bances can be caused by infections, radiations or pollutions. Studies of dis-
turbed systems have continued to grow in importance in recent years. Un-
known disturbances are detected by observation and several works have been
devoted to their detection and reconstruction from the corresponding observation
(see [6, 9, 12, 13, 17, 21, 22, 24, 26]).
Though, the detection of a disturbance is generally insufficient, it is however

necessary to act by means of controls to attenuate the impact of the disturbances
on the system. The notion of remediability consists in studying the existence
of an adequate control ensuring the compensation of possible disturbances by
attenuating it, and this by bringing back the observation of the disturbed system
towards its state without disturbance.
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The concepts of remediability are developed and treated firstly for a class
of parabolic systems in the case of a finite time horizon, and hence for discrete
systems, hyperbolic systems, regional and asymptotic cases, we can see [1–5,7].
In [25] the authors was defined the gradient remediability of distributed

parabolic systems and the relationship with the gradient controllability. In [23]
the problem of regional remediability for a class of nonlinear distributed systems
was studied, this problem was solved by the fixed-point theorem and the pseudo
inverse techniques. Also the case of multiple input delays for a class of distributed
systems was described in [27]. In [29] the authors was studied the remediability
problem for a class of discrete delayed systems with application to the discrete
version of the wave equation. Also the remediability problem for a category of
hyperbolic perturbed systems with the two case constant and time-varying delays
is described in [28]. And in [8] the authors studied the possibility of finite time
or asymptotic compensation of disturbances for a class of linear lumped systems.
In the case of finite dimensional linear time-varying systems the remediability

is not yet discussed. The goal of this paper is to discus the optimal control problem
of remidiability for such systems. The quadratic control problem has been the
subject of different works for a variety of continuous, discrete, linear, nonlinear
systems, see as examples [11,14,15,19,20]. In this work we investigate a optimal
control which make the linear time-varying disturbed system remediably. The
minimum energy compensation for discrete delayed systems with disturbances
has been studied in [29] and a cheap controls for disturbances compensation in
hyperbolic delayed systems is described in [28] and with multi-input delays in
[27]. In this paperwe give necessary and sufficient conditions for the remediability
for time-varing system, andwe find a control which annul the output of the system.
In second part of this work we show also that the Hilbert Uniqueness Method can
be used to solve the optimal control which ensure the remediability. And a general
approach was given to minimize the linear quadratic problem. To illustrate our
work several examples and numerical simulations are given.
This work is organized as follows: In section 2, we introduce the considered

model of perturbed time varying systems and we define the problem statement
and we give some results to characterize the remediability of system. In section 3,
the minimum energy problem are described and some numerical simulation are
given to illustrate the obtained results. Finally, a conclusion is summarized in
section 4.

2. Problem statement

In this work, we consider a class of finite dimension time-varying control
systems described by a linear state equation as follows:

¤𝑧(𝑡) = 𝐴(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡), 0 < 𝑡 < 𝑇,

𝑧(0) = 𝑧0 ,
(1)
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where 𝐴 ∈ 𝐶∞( [0, 𝑇], 𝑀𝑛 (R)), 𝐵 ∈ 𝐶∞( [0, 𝑇], 𝑀𝑛,𝑝 (R)), 𝑢 ∈ 𝐿2(0, 𝑇 ;R𝑝) and
𝑓 ∈ 𝐿2(0, 𝑇 ;R𝑛).
The system (1) is augmented by the output equation:

𝑦(𝑡) = 𝐶 (𝑡)𝑧(𝑡), 0 < 𝑡 < 𝑇 (2)

with 𝐶 ∈ 𝐶∞( [0, 𝑇], 𝑀𝑞,𝑛 (R)). We have

𝑧(𝑡) = 𝑅(𝑡, 0)𝑧0 + 𝐻𝑡𝑢 + 𝐺 𝑡 𝑓 ,

where 𝑅 is the resolvent of the time-varying linear system ¤𝑥 = 𝐴(𝑡)𝑥. Then

𝑦(𝑡) = 𝐶 (𝑡)𝑅(𝑡, 0)𝑧0 + 𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓 ,

where 𝐻𝑡 and 𝐺 𝑡 are the operators defined by

𝐻𝑡 : 𝐿2(0, 𝑡;R𝑝) −→ R𝑛

𝑢 −→
𝑡∫
0

𝑅(𝑡, 𝑠)𝐵(𝑠)𝑢(𝑠)d𝑠
(3)

and
𝐺 𝑡 : 𝐿2(0, 𝑡;R𝑛) −→ R𝑛

𝑓 −→
𝑡∫
0

𝑅(𝑡, 𝑠) 𝑓 (𝑠)d𝑠.
(4)

In the case without disturbance and control, i.e. 𝑓 = 0 and 𝑢 = 0, the observation
is given by

𝑦0,0(𝑡) = 𝐶 (𝑡)𝑅(𝑡, 0)𝑧0 .
But if the system is disturbed by a term 𝑓 , the observation becomes

𝑦0, 𝑓 (𝑡) = 𝐶 (𝑡)𝑅(𝑡, 0)𝑧0 +
𝑡∫
0

𝐶 (𝑡)𝑅(𝑡, 𝑠) 𝑓 (𝑠)d𝑠 ≠ 𝐶 (𝑡)𝑅(𝑡, 0)𝑧0.

Then we introduce a control term 𝐵𝑢 in order to reduce the effect of this
disturbance at final time 𝑇 , i.e. 𝑦𝑢, 𝑓 (𝑇) = 𝑦0,0(𝑇).

Definition 1 The system (1) augmented with the output (2), or (1) + (2) is said
to be remediable on [0, 𝑇], if for any 𝑓 ∈ 𝐿2(0, 𝑇 ;R𝑛), there exists a control
𝑢 ∈ 𝐿2(0, 𝑇 ;R𝑝) such that

𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 = 0.
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We have the following characterization result.

Proposition 1 The following properties are equivalent

i) (1) + (2) is remediable on [0, 𝑇];

ii) Im(𝐶 (𝑇)𝐺𝑇 ) ⊂ Im(𝐶 (𝑇)𝐻𝑇 );

iii) Im(𝐶 (𝑇)𝐻𝑇 ) = Im(𝐶 (𝑇));

iv) Ker(𝐻∗
𝑇
𝐶 (𝑇)∗) = Ker(𝐺∗

𝑇
𝐶 (𝑇)∗);

v) Ker(𝐻∗
𝑇
𝐶 (𝑇)∗) = (Im(𝐶 (𝑇)))⊥;

vi) Ker(𝐵∗𝐺∗
𝑇
𝐶 (𝑇)∗) = Ker(𝐺∗

𝑇
𝐶 (𝑇)∗);

vii) There exists 𝛾 > 0 such that for every 𝜃 ∈ R𝑞, we have

‖𝑅(𝑇, .)∗𝐶 (𝑇)∗𝜃‖𝐿2 (0,𝑇 ;R𝑛) ¬ 𝛾 ‖𝐵(.)∗𝑅(𝑇, .)∗𝐶 (𝑇)∗𝜃‖𝐿2 (0,𝑇 ;R𝑝) . (5)

Proof. Derive from the definition and the fact that

Ker(𝐻∗
𝑇𝐶 (𝑇)∗) = Ker(𝐵(.)∗𝑅(𝑇, .)∗𝐶 (𝑇)∗),

Ker(𝐺∗
𝑇𝐶 (𝑇)∗) = Ker(𝑅(𝑇, .)∗𝐶 (𝑇)∗)

and also the result [10]. 2

Let us now define the remediability Gramian of the system (1) + (2).

Definition 2 Let 𝑞 > 1, the remediability Gramian of the system (1) + (2) is the
symmetric 𝑞 × 𝑞-matrix

Θ(𝑇) = 𝐶 (𝑇)𝐻𝑇𝐻
∗
𝑇𝐶 (𝑇)∗ =

𝑇∫
0

𝐶 (𝑇)𝑅(𝑇, 𝑠)𝐵(𝑠)𝐵(𝑠)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗d𝑠. (6)

Remark 1 Note that, for every Ψ ∈ R𝑞, we have

Ψ∗Θ̄(𝑇)Ψ =

𝑇∫
0

‖𝐵(𝑠)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗Ψ‖2d𝑠.

Hence the remediability Gramian Θ̄(𝑇) is a nonnegative symmetric matrix.
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3. Minimum energy problem

3.1. The optimal control

Let 𝑧 ∈ 𝐶0(0, 𝑇 ;R𝑛) be the solution of the Cauchy problem
¤̄𝑧(𝑡) = 𝐴(𝑡)𝑧(𝑡) + 𝐵(𝑡)�̄�(𝑡) + 𝑓 (𝑡), 0 < 𝑡 < 𝑇,

𝑧(0) = 𝑧0
(7)

and the system (7) is augmented by the output equation

�̄�(𝑡) = 𝐶 (𝑡)𝑧(𝑡), 0 < 𝑡 < 𝑇. (8)

We assume (7) + (8) is remediable on [0, 𝑇], and let �̄� ∈ 𝐿2(0, 𝑇 ;R𝑝) be
defined by:

�̄�(𝑠) = 𝐵(𝑠)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗Θ̄(𝑇)−1(−𝐶 (𝑇)𝐺𝑇 𝑓 ), 𝑠 ∈ [0, 𝑇] . (9)

Then
�̄�(𝑇) = 𝐶 (𝑇)𝑅(𝑇, 0)𝑧0

+
𝑇∫
0

𝐶 (𝑇)𝑅(𝑇, 𝑠)𝐵(𝑠)𝐵(𝑠)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗Θ̄(𝑇)−1(−𝐶 (𝑇)𝐺𝑇 𝑓 )d𝑠

+ 𝐶 (𝑇)𝐺𝑇 𝑓 = 𝐶 (𝑇)𝑅(𝑇, 0)𝑧0.
We have the following result of uniqueness.

Proposition 2 Let (𝑧, 𝑧0) ∈ R𝑛 × R𝑛 and let 𝑢 ∈ 𝐿2(0, 𝑇 ;R𝑝) be such that the
solution of the Cauchy problem

¤𝑧(𝑡) = 𝐴(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡), 0 < 𝑡 < 𝑇,

𝑧(0) = 𝑧0.
(10)

The system (10) is augmented by the output equation

𝑦(𝑡) = 𝐶 (𝑡)𝑧(𝑡), 0 < 𝑡 < 𝑇. (11)

We assume that (10) + (11) is remediable on [0, 𝑇], and satisfies

𝑦(𝑇) = 𝐶 (𝑇)𝑅(𝑇, 0)𝑧0.
Then

𝑇∫
0

‖�̄�(𝑠)‖2d𝑠 ¬
𝑇∫
0

‖𝑢(𝑠)‖2d𝑠

with equality if and only if

𝑢(𝑠) = �̄�(𝑠) for almost every 𝑠 ∈ [0, 𝑇] .
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Proof. Let 𝑣 = 𝑢 − �̄�. Then, 𝑧 and 𝑧 being the solutions of the Cauchy problems
(7) and (10), respectively, one has

𝐶 (𝑇)
𝑇∫
0

𝑅(𝑇, 𝑠)𝐵(𝑠)𝑣(𝑠)d𝑠 = 𝐶 (𝑇)
𝑇∫
0

𝑅(𝑇, 𝑠)𝐵(𝑠)𝑢(𝑠)d𝑠

− 𝐶 (𝑇)
𝑇∫
0

𝑅(𝑇, 𝑠)𝐵(𝑠)�̄�(𝑠)d𝑠

= (𝐶 (𝑇)𝐻𝑇𝑢) − (𝐶 (𝑇)𝐻𝑇 �̄�) .

Hence

𝐶 (𝑇)
𝑇∫
0

𝑅(𝑇, 𝑠)𝐵(𝑠)𝑣(𝑠)d𝑠 = (𝑦(𝑇) − 𝐶 (𝑇)𝑅(𝑇, 0)𝑧0 − 𝐶 (𝑇)𝐺𝑇 𝑓 )

− ( �̄�(𝑇) − 𝐶 (𝑇)𝑅(𝑇, 0)𝑧0 − 𝐶 (𝑇)𝐺𝑇 𝑓 )
= 0. (12)

We have

𝑇∫
0

‖𝑢(𝑠)‖2d𝑠 =
𝑇∫
0

‖�̄�(𝑠)‖2d𝑠 +
𝑇∫
0

‖𝑣(𝑠)‖2d𝑠 + 2
𝑇∫
0

�̄�∗(𝑠)𝑣(𝑠)d𝑠. (13)

From (9) (note also that Θ(𝑇)∗ = Θ(𝑇)),

𝑇∫
0

�̄�∗(𝑠)𝑣(𝑠)d𝑠 = (−𝐶 (𝑇)𝐺𝑇 𝑓 )∗Θ̄(𝑇)−1
𝑇∫
0

𝐶 (𝑇)𝑅(𝑇, 𝑠)𝐵(𝑠)𝑣(𝑠)d𝑠,

which, together with (12), gives

𝑇∫
0

�̄�∗(𝑠)𝑣(𝑠)d𝑠 = 0. (14)

Then Proposition 2 follows from (13) and (14). 2
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3.1.1. Numerical simulations

Let us define 𝐴 where 𝑛 = 2 by

𝐴(𝑡) =
(
0 0
0 𝑡

)
,

compute the resolvent of ¤𝑧(𝑡) = 𝐴(𝑡)𝑧(𝑡).
One has

𝑅(𝑇, 𝑡) =
(1 0
0 𝑒

𝑇 2−𝑡2
2

)
.

We consider the case where 𝑝 = 𝑞 = 2 and

𝐵(𝑡) =
(
1 0
0 1

)
, 𝐶 (𝑡) =

(
1 0
0 1

)
.

The disturbance term is given as follows

𝑓 (𝑡) =
( 0
𝑒

𝑡2
2

)
.

Using proposition 2, one gets

𝑢(𝑡) =
©­­«

0
−20𝑒 −𝑡2

2
√
𝜋erf(10)

ª®®¬ ,
with the error function (also called the Gauss error function ), often denoted by
𝑒𝑟 𝑓 such that

erf(𝑥) = 2
√
𝜋

𝑥∫
0

𝑒−𝑡
2
d𝑡.

The initial state is considered null 𝑧0 = 0, then 𝑦 (0,0) = 0. Then

𝑦 (𝑢, 𝑓 ) (𝑡) =
©­­«

0
−10𝑒 𝑡2

2 𝑒𝑟 𝑓 (𝑡)
erf(10) + 𝑡𝑒

𝑡2
2

ª®®¬ ,
𝑦 (0, 𝑓 ) (𝑡) =

( 0
𝑡𝑒

𝑡2
2

)
.

We obtain the following numerical results which illustrate the previous devel-
opments.
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Figure 1: Representation of 𝑦 (𝑢, 𝑓 ) and 𝑦 (0, 𝑓 )

Hence, in Figure 1, we give the representation of the observations 𝑦 (𝑢, 𝑓 ) and
𝑦 (0, 𝑓 ) . This figure show the effect of our control, which bringing back the output
the normal one at time 𝑇 = 10. i.e., 𝑦 (𝑢, 𝑓 ) (𝑇) = 𝑦 (0,0) (𝑇) = 0.
In Figure 2, we give the representation of the optimal control 𝑢.

Figure 2: Representation of the optimal control 𝑢

3.2. HUM method

In this section we give an other method for the optimal control ensuring the
compensation by the Hilbert uniqueness method. The HUM method introduced
by J.L. Lions [20] was generalized for different systems [16] and [18].
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We consider the following minimum energy problem:
For 𝑧0 ∈ R𝑛 and 𝑓 ∈ 𝐿2(0, 𝑇 ;R𝑛), does there exist an optimal control 𝑢 ∈

𝐿2(0, 𝑇 ;R𝑝) such that
𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 = 0,

i.e. minimizing the function 𝐽 (𝑣) = ‖𝑣‖2 on the set {𝑣 ∈ 𝐿2(0, 𝑇 ;R𝑝) |
𝐶 (𝑇)𝐻𝑇𝑣 + 𝐶 (𝑇)𝐺𝑇 𝑓 = 0} ?
For this, we use an extension of the Hilbert Uniqueness Method. Indeed, for

𝜃 ∈ R𝑞, let us note:

‖𝜃‖∗ =
©­«

𝑇∫
0

‖(𝐻𝑇 )∗𝐶 (𝑇)∗𝜃‖2R𝑝 d𝑠
ª®¬
1
2

=
©­«

𝑇∫
0

‖𝐵(𝑇)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗𝜃‖2R𝑝 d𝑠
ª®¬
1
2

‖𝜃‖∗ is a semi-norm on R𝑞.
We assume that ‖.‖∗ is a norm on R𝑞. If Ker [(𝐻𝑇 )∗𝐶 (𝑇)∗] = {0}, this is

equivalent to the remediability of the system (1) + (2) on [0, 𝑇]. The correspond-
ing inner product is given by:

< 𝜃, 𝜎 >∗=

𝑇∫
0

< 𝐵(𝑇)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗𝜃, 𝐵(𝑇)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗𝜎 > d𝑠

and the operator Λ : R𝑞 −→ R𝑞 defined by

Λ𝜃 = 𝐶 (𝑇)𝐻𝑇 (𝐻𝑇 )∗𝐶 (𝑇)∗𝜃 =

𝑇∫
0

𝐶 (𝑇)𝑅(𝑇, 𝑠)𝐵(𝑇)𝐵(𝑇)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗𝜃d𝑠

is symmetric and positive definite and then invertible. We give hereafter the
expression of the optimal control ensuring the compensation of a disturbance 𝑓

at the final time 𝑇 .

Proposition 3 For 𝑓 ∈ 𝐿2(0, 𝑇 ;R𝑛), there exists a unique 𝜃 𝑓 ∈ 𝑌 𝑞 such that

Λ𝜃 𝑓 = −𝐶 (𝑇)𝐺𝑇 𝑓

and the control
𝑢𝜃 𝑓

(.) = 𝐵(𝑇)∗𝑅(𝑇, .)∗𝐶 (𝑇)∗𝜃 𝑓

verify
𝐶 (𝑇)𝐻𝑇𝑢𝜃 𝑓

+ 𝐶 (𝑇)𝐺𝑇 𝑓 = 0.
Moreover, it is optimal and

‖𝑢𝜃 𝑓
‖𝐿2 (0,𝑇 ;R𝑝) = ‖𝜃 𝑓 ‖∗.
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Proof. Λ extends uniquely into an isomorphism such that:
1. < Λ𝜃, 𝜎 >R𝑞 = < 𝜃, 𝜎 >∗.

2. ‖Λ𝜃‖R𝑞 = ‖𝜃‖∗.

In particular, if −𝐶 (𝑇)𝐺𝑇 𝑓 ∈ R𝑞, then ∃!𝜃 𝑓 ∈ R𝑞 such that

Λ𝜃 𝑓 = −𝐶 (𝑇)𝐺𝑇 𝑓

one gets

𝑇∫
0

𝐶 (𝑇)𝑅(𝑇, 𝑠)𝐵(𝑇)𝐵(𝑇)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗𝜃 𝑓 d𝑠 = −𝐶 (𝑇)𝐺𝑇 𝑓

from which we have

𝑇∫
0

𝐶 (𝑇)𝑅(𝑇, 𝑠)𝐵(𝑇)𝑢𝜃 𝑓
(𝑠)d𝑠 = −𝐶 (𝑇)𝐺𝑇 𝑓

with 𝑢𝜃 𝑓
(𝑠) = 𝐵(𝑇)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗𝜃 𝑓

that implies

𝐶 (𝑇)𝐻𝑇𝑢𝜃 𝑓
= −𝐶 (𝑇)𝐺𝑇 𝑓 .

We have

𝐶 (𝑇)𝐻𝑇𝑢𝜃 𝑓
+ 𝐶 (𝑇)𝐺𝑇 𝑓 = 0

then 𝑢𝜃 𝑓
∈ {𝑣 ∈ 𝐿2(0, 𝑇 ;R𝑝) | 𝐶 (𝑇)𝐻𝑇𝑣 + 𝐶 (𝑇)𝐺𝑇 𝑓 = 0}.

By assumptions of Lax-Milgram theorem, 𝐽 (𝑣) = 𝑎(𝑣, 𝑣)−2𝐿 (𝑣) has a unique
minimum 𝑢∗ such that

< 𝑢∗, 𝑣−𝑢∗ > ­ 𝐿 (𝑣−𝑢∗), ∀𝑣 ∈ {𝑣 ∈ 𝐿2(0, 𝑇 ;R𝑝) | 𝐶 (𝑇)𝐻𝑇𝑣+𝐶 (𝑇)𝐺𝑇 𝑓 = 0}

with 𝑎(𝑢, 𝑣) =< 𝑢, 𝑣 >𝐿2 (0,𝑇 ;R𝑝) , and 𝐿 ≡ 0 since 𝑎(𝑢, 𝑢) = ‖𝑢‖2.
Let us prove 𝑢𝜃 𝑓

= 𝑢∗.



ON THE MINIMUM ENERGY COMPENSATION
FOR LINEAR TIME-VARYING DISTURBED SYSTEMS 743

Let 𝑣 ∈ {𝑣 ∈ 𝐿2(0, 𝑇 ;R𝑝) | 𝐶 (𝑇)𝐻𝑇𝑣 + 𝐶 (𝑇)𝐺𝑇 𝑓 = 0}, we have

< 𝑢𝜃 𝑓
, 𝑣 − 𝑢𝜃 𝑓

>𝐿2 (0,𝑇 ;R𝑝) =

𝑇∫
0

< 𝑢𝜃 𝑓
(𝑠), 𝑣(𝑠) − 𝑢𝜃 𝑓

(𝑠) > d𝑠

=

𝑇∫
0

< 𝐵(𝑇)∗𝑅(𝑇, 𝑠)∗𝐶 (𝑇)∗𝜃 𝑓 , 𝑣(𝑠) − 𝑢𝜃 𝑓
(𝑠) > d𝑠

=

𝑇∫
0

< 𝜃 𝑓 , 𝐶 (𝑇)𝑅(𝑇, 𝑠)𝐵(𝑇) (𝑣(𝑠) − 𝑢𝜃 𝑓
(𝑠)) > d𝑠

= < 𝜃 𝑓 ,

𝑇∫
0

𝐶 (𝑇)𝑅(𝑇, 𝑠)𝐵(𝑇)𝑣(𝑠)d𝑠 −
𝑇∫
0

𝐶 (𝑇)𝑅(𝑇, 𝑠)𝐵(𝑇)𝑢𝜃 𝑓
(𝑠)d𝑠 >

= < 𝜃 𝑓 , 𝐻𝑣 − 𝐻𝑢𝜃 𝑓
>

= 0

then 𝑢𝜃 𝑓
= 𝑢∗. 2

3.3. Linear Quadratic problem

In this section, we present a more general approach which consists to consider
the compensation problem as minimization one of a cost function defined on
𝐿2(0, 𝑇 ;R𝑝) as follows

𝐽 (𝑢) = < 𝑄(𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 ), 𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 >

+
𝑇∫
0

< 𝑊 (𝑡) (𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓 ), 𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓 > d𝑡

+
𝑇∫
0

< 𝑈 (𝑡)𝑢(𝑡), 𝑢(𝑡) > d𝑡,

where𝑄 ∈ 𝑀𝑛 (R) and𝑊 ∈ 𝐿∞( [0, 𝑇], 𝑀𝑛 (R)) are positive symmetric matrixes,
and𝑈 ∈ 𝐿∞( [0, 𝑇], 𝑀𝑝 (R)) is a positive definite symmetric matrix.
Let’s remember that the map 𝐽 is strictly convex and

∀𝑢 ∈ 𝐿2(0, 𝑇 ;R𝑝),
𝑇∫
0

< 𝑈 (𝑡)𝑢(𝑡), 𝑢(𝑡) > d𝑡 ­ 𝛼

𝑇∫
0

𝑢(𝑡)∗𝑢(𝑡)d𝑡 (15)

with 𝛼 > 0 is the minimal eigenvalue of𝑈.
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We have the following result.

Theorem 1 Under the hypothese (15), there exists a unique control 𝑢 ∈
𝐿2(0, 𝑇 ;R𝑝) such that

𝐽 (𝑢) = inf
𝑣∈𝐿2 (0,𝑇 ;R𝑝)

𝐽 (𝑣).

Proof. Let us prove initially the existence of such control. Let us consider a
sequence minimizing of controls (𝑢𝑛)𝑛∈N on [0, 𝑇] such that

𝐶 (𝑇)𝐻𝑇𝑢𝑛 + 𝐶 (𝑇)𝐺𝑇 𝑓 = 0, (16)

i.e. the sequence 𝐽 (𝑢𝑛) converges to the lower bound of the costs, in particular
this sequence is bounded. By assumption,

∃ 𝛼 > 0, ∀𝑢 ∈ 𝐿2(0, 𝑇 ;R𝑝), 𝐽 (𝑢) ­ 𝛼‖𝑢‖2
𝐿2 (0,𝑇 ;R𝑝)

then, the sequence (𝑢𝑛)𝑛∈N is bounded on 𝐿2(0, 𝑇 ;R𝑝), which implies, the sub-
sequence of (𝑢𝑛)𝑛∈N converges weakly to 𝑢 ∈ 𝐿2(0, 𝑇 ;R𝑝), using (16), one gets

𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 = 0.

Hence 𝑢𝑛 → 𝑢 on 𝐿2(0, 𝑇 ;R𝑝) implies that
𝑇∫
0

< 𝑈 (𝑡)𝑢(𝑡), 𝑢(𝑡) > d𝑡 ¬ lim inf
𝑇∫
0

< 𝑈 (𝑡)𝑢𝑛 (𝑡), 𝑢𝑛 (𝑡) > d𝑡

from which we get
𝐽 (𝑢) ¬ lim inf 𝐽 (𝑢𝑛).

In particular, (𝑢𝑛)𝑛∈N is a sequence minimizing of controls on [0, 𝑇], then
𝐽 (𝑢) is equal to the lower bound of the costs, we then have the existence of such
a control optimal 𝑢.
Since 𝐽 is strictly convex we deduce uniqueness of such a control optimal 𝑢.
In the following result, we give a necessary and sufficient condition for our

optimal control problem.

Theorem 2 The control 𝑢 is optimal such that

𝐽 (𝑢) = inf
𝑣∈𝐿2 (0,𝑇 ;R𝑝)

𝐽 (𝑣),

if and only if there exists a certain row vector 𝑝(𝑡) ∈ R𝑛\{0}, called adjoint
vector satisfying

¤𝑝(𝑡) = −𝑝(𝑡)𝐴(𝑡) + (𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓 )∗𝑊 (𝑡)𝐶 (𝑡), ∀𝑡 ∈ [0, 𝑇] (17)
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such that
𝑝(𝑇) = −(𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 )∗𝑄 (18)

or
𝑢(𝑡) = 𝑈−1(𝑡)𝐵(𝑡)∗𝑝(𝑡)∗. (19)

Proof. Let 𝑢 the optimal control such that

𝐽 (𝑢) = inf
𝑣∈𝐿2 (0,𝑇 ;R𝑝)

𝐽 (𝑣).

Let 𝑢 ∈ 𝐿2(0, 𝑇 ;R𝑝) be such that

𝑢pert(𝑡) = 𝑢(𝑡) + 𝛿𝑢(𝑡)

and
𝑧pert(𝑡) = 𝑧(𝑡) + 𝛿𝑧(𝑡) + ◦(‖𝛿𝑢‖𝐿2),

with
𝛿𝑧(0) = 0.

𝑧pert is the solution of the system ¤𝑧(𝑡)pert = 𝐴(𝑡)𝑧pert+𝐵(𝑡)𝑢pert, and it is augmented
by the output equation

𝑦pert(𝑡) = 𝐶 (𝑡)𝑧pert(𝑡), 0 < 𝑡 < 𝑇

then
𝛿 ¤𝑧(𝑡) = 𝐴(𝑡)𝛿𝑧(𝑡) + 𝐵(𝑡)𝛿𝑢(𝑡), 0 < 𝑡 < 𝑇,

𝛿𝑦(𝑡) = 𝐶 (𝑡)𝛿𝑧(𝑡)

one has

𝐶 (𝑡)𝛿𝑧(𝑡) = 𝐶 (𝑡)𝐻𝑡𝛿𝑢 =

𝑡∫
0

𝑀 (𝑡)𝑀−1(𝑠)𝐵(𝑠)𝛿𝑢(𝑠)d𝑠. (20)

with
𝑀 (𝑡) = 𝑅(𝑡, 0).

We have the cost function 𝐽 is Frechet differentiable, and 𝑢 is optimal control,
then

𝑑𝐽 (𝑢) = 0.
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In particular,

𝐽 (𝑢pert) = < 𝑄(𝐶 (𝑇)𝐻𝑇𝑢pert + 𝐶 (𝑇)𝐺𝑇 𝑓 ), 𝐶 (𝑇)𝐻𝑇𝑢pert + 𝐶 (𝑇)𝐺𝑇 𝑓 >

+
𝑇∫
0

< 𝑊 (𝑡) (𝐶 (𝑡)𝐻𝑡𝑢pert + 𝐶 (𝑡)𝐺 𝑡 𝑓 ), 𝐶 (𝑡)𝐻𝑡𝑢pert + 𝐶 (𝑡)𝐺 𝑡 𝑓 > d𝑡

+
𝑇∫
0

< 𝑈 (𝑡)𝑢pert(𝑡), 𝑢pert(𝑡) > d𝑡

and for every 𝛿𝑢 ∈ 𝐿2(0, 𝑇 ;R𝑝), we have

1
2
𝑑𝐽 (𝑢)𝛿𝑢 =

(
𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓

)∗
𝑄𝐶 (𝑇)𝐻𝑇𝛿𝑢

+
𝑇∫
0

(
𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓

)∗
𝑊 (𝑡)𝐶 (𝑡)𝐻𝑡𝛿𝑢d𝑡 +

𝑇∫
0

𝑢(𝑡)∗𝑈 (𝑡)𝛿𝑢(𝑡)d𝑡

= 0. (21)

Let the adjoint vector 𝑝(𝑡) is the solution of the system

¤𝑝(𝑡) = −𝑝(𝑡)𝐴(𝑡) +
(
𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓

)∗
𝑊 (𝑡)𝐶 (𝑡), 0 < 𝑡 < 𝑇,

𝑝(𝑇) = −
(
𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓

)∗
𝑄

then

𝑝(𝑡) = Δ𝑀−1(𝑡)

+
𝑡∫
0

(𝐶 (𝑠)𝐻𝑠𝑢 + 𝐶 (𝑠)𝐺𝑠 𝑓 )∗𝑊 (𝑠)𝐶 (𝑠)𝑀 (𝑠)d𝑠𝑀−1(𝑡), ∀𝑡 ∈ [0, 𝑇]

with
Δ = −(𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 )∗𝑄𝑀 (𝑇)

−
𝑇∫
0

(𝐶 (𝑠)𝐻𝑠𝑢 + 𝐶 (𝑠)𝐺𝑠 𝑓 )∗𝑊 (𝑠)𝐶 (𝑠)𝑀 (𝑠)d𝑠.
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Using (20), (21) and integrations by parts, one gets
𝑇∫
0

(𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓 )∗𝑊 (𝑡)𝐶 (𝑡)𝐻𝑡𝛿𝑢d𝑡 =

𝑇∫
0

(𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓 )∗𝑊 (𝑡)𝐶 (𝑡)
𝑡∫
0

𝑀 (𝑡)𝑀−1(𝑠)𝐵(𝑠)𝛿𝑢(𝑠)d𝑠d𝑡

𝑇∫
0

(𝐶 (𝑠)𝐻𝑠𝑢 + 𝐶 (𝑠)𝐺𝑠 𝑓 )∗𝑊 (𝑠)𝐶 (𝑠)𝑀 (𝑠)d𝑠
𝑇∫
0

𝑀−1(𝑠)𝐵(𝑠)𝛿𝑢(𝑠)d𝑠

−
𝑇∫
0

𝑡∫
0

(𝐶 (𝑠)𝐻𝑠𝑢 + 𝐶 (𝑠)𝐺𝑠 𝑓 )∗𝑊 (𝑠)𝐶 (𝑠)𝑀 (𝑠)d𝑠

𝑀−1(𝑡)𝐵(𝑡)𝛿𝑢(𝑡)d𝑡.

We have

𝑝(𝑡)−Δ𝑀−1(𝑡) =
𝑡∫
0

(𝐶 (𝑠)𝐻𝑠𝑢+𝐶 (𝑠)𝐺𝑠 𝑓 )∗𝑊 (𝑠)𝐶 (𝑠)𝑀 (𝑠)d𝑠𝑀−1(𝑡), ∀𝑡 ∈ [0, 𝑇]

then
𝑇∫
0

(𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓 )∗𝑊 (𝑡)𝐶 (𝑡)𝐻𝑡𝛿𝑢d𝑡 =

−(𝐶 (𝑇)𝐻𝑇𝑢+𝐶 (𝑇)𝐺𝑇 𝑓 )∗𝑄𝑀 (𝑇)
𝑇∫
0

𝑀−1(𝑡)𝐵(𝑡)𝛿𝑢(𝑡)d𝑡−
𝑇∫
0

𝑝(𝑡)𝐵(𝑡)𝛿𝑢(𝑡)d𝑡.

From (21), one gets
(𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 )∗𝑄𝐶 (𝑇)𝐻𝑇𝛿𝑢 =

(𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 )∗𝑄𝑀 (𝑇)
𝑇∫
0

𝑀−1(𝑡)𝐵(𝑡)𝛿𝑢(𝑡)d𝑡,

which implies that

1
2
𝑑𝐽 (𝑢)𝛿𝑢 =

𝑇∫
0

(𝑢(𝑡)∗𝑈 (𝑡) − 𝑝(𝑡)𝐵(𝑡)) 𝛿𝑢(𝑡)d𝑡 = 0, ∀𝛿𝑢 ∈ 𝐿2(0, 𝑇 ;R𝑝)
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and
𝑢(𝑡)∗𝑈 (𝑡) − 𝑝(𝑡)𝐵(𝑡) = 0, ∀𝑡 ∈ [0, 𝑇] .

Conversely, if there exists a adjoint vector 𝑝(𝑡) satisfying (17), (18) and (19),
then

𝑑𝐽 (𝑢) = 0.
Moreover, 𝐽 is strictly convex, which implies the control 𝑢 is optimal such

that
𝐽 (𝑢) = inf

𝑣∈𝐿2 (0,𝑇 ;R𝑝)
𝐽 (𝑣).

Remark 2 Let 𝐻 : [0, 𝑇] ×R𝑛× (R𝑛\{0}) ×R𝑝 → R is the Hamiltonian function
defined by

𝐻 (𝑡, 𝑧(𝑡), 𝑝(𝑡), 𝑢(𝑡)) = 𝑝(𝑡)
(
𝐴(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡)

)
− 1
2
[
(𝐶 (𝑡)𝑧(𝑡) − 𝐶 (𝑡)𝑀 (𝑡)𝑧0)∗𝑊 (𝑡) (𝐶 (𝑡)𝑧(𝑡)

− 𝐶 (𝑡)𝑀 (𝑡)𝑧0) + 𝑢(𝑡)∗𝑈 (𝑡)𝑢(𝑡)
]
,

then

¤𝑧(𝑡) = 𝜕𝐻

𝜕𝑝
(𝑡, 𝑧(𝑡), 𝑝(𝑡), 𝑢(𝑡)) = 𝐴(𝑡)𝑧(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡),

¤𝑝(𝑡) = −𝜕𝐻

𝜕𝑧
(𝑡, 𝑧(𝑡), 𝑝(𝑡), 𝑢(𝑡)) = −𝑝(𝑡)𝐴(𝑡) + (𝐶 (𝑡)𝐻𝑡𝑢 + 𝐶 (𝑡)𝐺 𝑡 𝑓 )∗𝑊 (𝑡)𝐶 (𝑡),

and
𝜕𝐻

𝜕𝑢
(𝑡, 𝑧(𝑡), 𝑝(𝑡), 𝑢(𝑡)) = 𝑝(𝑡)𝐵(𝑡) − 𝑢(𝑡)∗𝑈 (𝑡) = 0.

This the general maximal principle.

Example 1
i) We consider the case where 𝑛 = 1, 𝑝 = 𝑞 = 1 and

𝐴(𝑡) = 𝑡 , 𝐵(𝑡) = 𝑡 , 𝐶 (𝑡), = −𝑡,

and the cost function

𝐽 (𝑢) =
𝑇∫
0

𝑢(𝑡)2d𝑡.

Using the maximal principle, one gets

¤𝑝(𝑡) = −𝑝(𝑡)𝑡,
𝑝(𝑇) = 0,
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and
𝑢(𝑡) = 𝑡 𝑝(𝑡).

Then
𝑝(𝑡) = 𝑝(0) exp

(
−𝑡2
2

)
,

from which we get the optimal control minimizing the cost function 𝐽

𝑢(𝑡) = 𝑡 𝑝(0) exp
(
−𝑡2
2

)
.

ii) Let us define 𝐴 where 𝑛 = 2 by

𝐴(𝑡) =
(
𝑡 −1
1 𝑡

)
,

compute the resolvent of ¤𝑧(𝑡) = 𝐴(𝑡)𝑧(𝑡).
One has

𝑅(𝑇, 𝑡) = ©­«cos(𝑇 − 𝑡)𝑒 𝑇 2−𝑡2
2 − sin(𝑇 − 𝑡)𝑒 𝑇 2−𝑡2

2

sin(𝑇 − 𝑡)𝑒 𝑇 2−𝑡2
2 cos(𝑇 − 𝑡)𝑒 𝑇 2−𝑡2

2

ª®¬ .
We consider the case where 𝑝 = 𝑞 = 1 and

𝐵(𝑡) =
(
𝑡

0

)
, 𝐶 (𝑡) =

(
𝑡 0

)
,

and the cost function

𝐽 (𝑢) = −(𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 )∗ +
𝑇∫
0

𝑢(𝑡)2d𝑡.

Using the maximal principle, one gets
¤𝑝(𝑡) =

(
−𝑡 𝑝𝑧1 (𝑡) − 𝑝𝑧2 (𝑡) 𝑝𝑧1 (𝑡) − 𝑡 𝑝𝑧2 (𝑡)

)
,

𝑝(𝑇) =
(
𝑝𝑧1 (𝑇) 𝑝𝑧2 (𝑇)

)
=

(
1
2
0
)
,

and
𝑢(𝑡) = 𝑡 𝑝𝑧1 (𝑡).

Then
𝑝(𝑡) =

(
1
2
cos(𝑇 − 𝑡)𝑒 𝑇 2−𝑡2

2 −1
2
sin(𝑇 − 𝑡)𝑒 𝑇 2−𝑡2

2

)
,

from which we get the optimal control minimizing the cost function 𝐽

𝑢(𝑡) = 𝑡

2
cos(𝑇 − 𝑡)𝑒 𝑇 2−𝑡2

2 . 2
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3.3.1. Numerical simulations

Let us define 𝐴 where 𝑛 = 2 by

𝐴(𝑡) =
(
0 0
𝑡 0

)
,

compute the resolvent of ¤𝑧(𝑡) = 𝐴(𝑡)𝑧(𝑡).
One has

𝑅(𝑇, 𝑡) =
(
1 0
𝑇2−𝑡2
2 1

)
.

We consider the case where 𝑝 = 𝑞 = 1 and

𝐵(𝑡) =
(
1
0

)
; 𝐶 (𝑡) =

(
𝑒

−𝑡2
2 0

)
,

and the cost function

𝐽 (𝑢) = −(𝐶 (𝑇)𝐻𝑇𝑢 + 𝐶 (𝑇)𝐺𝑇 𝑓 )∗ +
𝑇∫
0

𝑢(𝑡)2𝑑𝑡.

Using the maximal principle, one gets

¤𝑝(𝑡) =
(
−𝑡 𝑝𝑧2 (𝑡) 0

)
,

𝑝(𝑇) =
(
𝑝𝑧1 (𝑇) 𝑝𝑧2 (𝑇)

)
=

(
1
2
0
)
,

and
𝑢(𝑡) = 𝑝𝑧1 (𝑡),

then
𝑝(𝑡) =

(
1
2
0
)
.

From which we get the optimal control minimizing the cost function 𝐽

𝑢(𝑡) = 1
2
.

The initial state is considered null 𝑧0 = 0, then 𝑦 (0,0) = 0. The disturbance term
is given as follows

𝑓 (𝑡) = ©­«
𝑒

𝑇 2
2 −𝑡2

500
0

ª®¬ .
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To simplify the notations, let us note 𝑦 (𝑢, 𝑓 ) the observation corresponding to
the control 𝑢 and the disturbance 𝑓 . Then

𝑦 (𝑢, 𝑓 ) (𝑡) =
𝑡

2
𝑒

−𝑡2
2 +

√
𝜋

1000
erf(𝑡),

𝑦 (0, 𝑓 ) (𝑡) =
√
𝜋

1000
erf(𝑡).

We obtain the following numerical results which illustrate the previous devel-
opments.
Hence, in Figure 3, we give the representation of the observations 𝑦 (𝑢, 𝑓 ) and

𝑦 (0, 𝑓 ) . This figure show that for 𝑇 = 10, we have 𝑦 (𝑢, 𝑓 ) (𝑇) = 𝑦 (0,0) (𝑇) = 0.

Figure 3: Representation of 𝑦 (𝑢, 𝑓 ) and 𝑦 (0, 𝑓 ) for 𝑇 = 10

In Figure 4, we give the representation of the optimal control 𝑢.

Figure 4: Representation of the optimal control 𝑢



752 E.M. MAGRI, C. AMISSI, L. AFIFI, M. LHOUS

4. Conclusion

This paper is about a class of time-varying linear dynamical systems. The
concept of remediability is an important technique in perturbation theory. It
consists of studying the possibility of attenuating the effect of any disturbance,
through observation. We show in this work how to find a practical input operator
ensuring the compensation of the disturbance. We find a control that cancels the
output of the system and we also show that Hilbert uniqueness method can be
used to solve the optimal control that ensures remediability. And finally a general
approach has been given to minimize the linear quadratic problem. To illustrate
our work, some examples and numerical simulations are given.
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