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On the minimum energy compensation for linear
time-varying disturbed systems
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We consider in this work a class of finite dimensional time-varying linear disturbed systems.
The main objective of this work is to studied the optimal control which ensures the remediability
of a disturbance of time-varying disturbed systems. The remediability concept consist to find
a convenient control which bringing back the corresponding observation of disturbed system
to the normal one at the final time. We give firstly some characterisations of compensation
and in second party we find a control which annul the output of the system and we show also
that the Hilbert Uniqueness Method can be used to solve the optimal control which ensure the
remediability. A general approach was given to minimize the linear quadratic problem. Examples
and numerical simulations are given.
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1. Introduction

Disturbances can cause serious damage to the dynamic system, its distur-
bances can be caused by infections, radiations or pollutions. Studies of dis-
turbed systems have continued to grow in importance in recent years. Un-
known disturbances are detected by observation and several works have been
devoted to their detection and reconstruction from the corresponding observation
(see [6,9,12,13,17,21,22,24,26]).

Though, the detection of a disturbance is generally insufficient, it is however
necessary to act by means of controls to attenuate the impact of the disturbances
on the system. The notion of remediability consists in studying the existence
of an adequate control ensuring the compensation of possible disturbances by
attenuating it, and this by bringing back the observation of the disturbed system
towards its state without disturbance.
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The concepts of remediability are developed and treated firstly for a class
of parabolic systems in the case of a finite time horizon, and hence for discrete
systems, hyperbolic systems, regional and asymptotic cases, we can see [1-5,7].

In [25] the authors was defined the gradient remediability of distributed
parabolic systems and the relationship with the gradient controllability. In [23]
the problem of regional remediability for a class of nonlinear distributed systems
was studied, this problem was solved by the fixed-point theorem and the pseudo
inverse techniques. Also the case of multiple input delays for a class of distributed
systems was described in [27]. In [29] the authors was studied the remediability
problem for a class of discrete delayed systems with application to the discrete
version of the wave equation. Also the remediability problem for a category of
hyperbolic perturbed systems with the two case constant and time-varying delays
is described in [28]. And in [8] the authors studied the possibility of finite time
or asymptotic compensation of disturbances for a class of linear lumped systems.

In the case of finite dimensional linear time-varying systems the remediability
is not yet discussed. The goal of this paper is to discus the optimal control problem
of remidiability for such systems. The quadratic control problem has been the
subject of different works for a variety of continuous, discrete, linear, nonlinear
systems, see as examples [11,14,15,19,20]. In this work we investigate a optimal
control which make the linear time-varying disturbed system remediably. The
minimum energy compensation for discrete delayed systems with disturbances
has been studied in [29] and a cheap controls for disturbances compensation in
hyperbolic delayed systems is described in [28] and with multi-input delays in
[27]. In this paper we give necessary and sufficient conditions for the remediability
for time-varing system, and we find a control which annul the output of the system.
In second part of this work we show also that the Hilbert Uniqueness Method can
be used to solve the optimal control which ensure the remediability. And a general
approach was given to minimize the linear quadratic problem. To illustrate our
work several examples and numerical simulations are given.

This work is organized as follows: In section 2, we introduce the considered
model of perturbed time varying systems and we define the problem statement
and we give some results to characterize the remediability of system. In section 3,
the minimum energy problem are described and some numerical simulation are
given to illustrate the obtained results. Finally, a conclusion is summarized in
section 4.

2. Problem statement

In this work, we consider a class of finite dimension time-varying control
systems described by a linear state equation as follows:

2(t) =A)z(t) + BlHu(t) + f(1), 0<t<T,

2(0) = 20, n
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where A € C*([0,T], M,(R)), B € C*([0,T], M, ,(R)), u € L%(0,T;RP) and
f e L*(0,T;R").
The system (1) is augmented by the output equation:

y()=C(t)z(¢t), O0<t<T ()
with C € C*([0,T], M, ,(R)). We have
2(t) =R(t,0)z0+ Hu+G,f,
where R is the resolvent of the time-varying linear system x = A(7)x. Then
y(t) = C(1)R(t,0)z0 + C(t)Hyu + C(1)G, f
where H, and G, are the operators defined by
H,: L?(0,t;R?) — R”

’ (3)
u — /R(t,s)B(s)u(s)ds
0
and
G,: L*(0,1;R") — R”
4)

f — /R(t, s)f(s)ds.
0

In the case without disturbance and control, i.e. f = 0 and u = 0, the observation
is given by
yoo(t) = C(1)R(1,0)z0 .
But if the system is disturbed by a term f, the observation becomes
t
vo,r(t) = C()R(t,0)zo +/ C(H)R(t,s)f(s)ds # C(t)R(¢,0)z.
0

Then we introduce a control term Bu in order to reduce the effect of this
disturbance at final time 7', i.e. y, ¢ (T) = yo,0(T).

Definition 1 The system (1) augmented with the output (2), or (1) + (2) is said
to be remediable on [0,T], if for any f € L?*(0,T;R"), there exists a control
ue€ L2(O, T;RP) such that

C(T)HTM + C(T)GTf =0.
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We have the following characterization result.
Proposition 1 The following properties are equivalent

i) (1)+ (2)is remediable on [0,T];

ii) Im(C(T)Gr) c Im(C(T)H7),
iii) Im(C(T)Hr) = Im(C(T)),

iv) Ker(H;C(T)*) = Ker(G;C(T)*);

v) Ker(H;C(T)") = (Im(C(T)))*;

vi) Ker(B*G;C(T)*) = Ker(G;C(T)*);
vii) There exists v > 0 such that for every 8 € R4, we have

IR(T, )*C(T)*0ll 2o < ¥ IBCR(T, ) CTY Ol 20 rm (5

Proof. Derive from the definition and the fact that

Ker(H;C(T)*) = Ker(B(.)"R(T,.)"C(T)*),
Ker(G;.C(T)*) = Ker(R(T,.)"C(T)")

and also the result [10]. O
Let us now define the remediability Gramian of the system (1) + (2).

Definition 2 Let g > 1, the remediability Gramian of the system (1) + (2) is the
symmetric g X q-matrix

T
@(T):C(T)HTH;C(T)*:/C(T)R(T,S)B(S)B(s)*R(T,s)*C(T)*ds. (6)
0

Remark 1 Note that, for every ¥ € R4, we have

T
‘P*(:)(T)‘P:/||B(s)*R(T,s)*C(T)*‘P||2ds.
0

Hence the remediability Gramian O(T) is a nonnegative symmetric matrix.
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3. Minimum energy problem

3.1. The optimal control
Let 7 € C%(0,T;R") be the solution of the Cauchy problem

7(1) = A()Z(t) + B()a(t) + f(1), 0<t<T,

7
Z(0) = zo )

and the system (7) is augmented by the output equation
y()=C()z(t), 0<t<T. (8)

We assume (7) + (8) is remediable on [0,7], and let i € L?(0,T;R”) be
defined by:

i(s) = B(s)*R(T,s)*C(T)*O(T) ' (-C(T)Grf), se]0,T]. 9)

Then
y(T) = C(T)R(T,0)z
T
+/C(T)R(T,s)B(s)B(s)*R(T,s)*C(T)*(:)(T)—l(—C(T)GTf)ds

0
+ C(T)Grf =C(T)R(T,0)zp.

We have the following result of uniqueness.

Proposition 2 Ler (z,7z9) € R* X R" and let u € L*(0,T;RP) be such that the
solution of the Cauchy problem

2(t) = A(t)z(t) + B(Ou(t) + f(1), 0<t<T,

10
z(0) = zp. 10

The system (10) is augmented by the output equation
yv()=C(t)z(t), O0<t<T. (11)

We assume that (10) + (11) is remediable on [0, T], and satisfies
y(T) = C(T)R(T, 0)zo.

T T
/ la(s)|Pds < / lu(s)|Pds
0 0

with equality if and only if

Then

u(s) =iu(s) foralmostevery s € [0,T].
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Proof. Let v = u — ii. Then, 7 and z being the solutions of the Cauchy problems
(7) and (10), respectively, one has

T T
C(T)/R(T,s)B(s)v(s)ds:C(T)/R(T,s)B(s)u(s)ds
0 0

T
- C(T)/R(T,S)B(s)ﬁ(s)ds
0
= (C(T)Hru) — (C(T)Hru) .

Hence

T
C(T) / R(T,5)B(s)v(s)ds = (y(T) - C(T)R(T,0)z0 - C(T)Grf)
0

- (¥(T) - C(T)R(T,0)z0 — C(T)Gr f)
=0. (12)

We have
T T T T
/||u(s)||2ds:/||a(s)||2ds+/||v(s)||2ds+2/a*(s)v(s)ds. (13)
0 0 0 0
From (9) (note also that ®(T)* = O(T)),
T T
/ﬂ*(s)v(s)ds:(—C(T)GTf)*(:)(T)_I/C(T)R(T,S)B(s)v(s)ds,
0 0
which, together with (12), gives
T
/ﬁ*(s)v(s)ds=0. (14)
0

Then Proposition 2 follows from (13) and (14). O
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3.1.1. Numerical simulations

Let us define A where n =2 by

A1) = (8 ?)

compute the resolvent of z(¢) = A(z)z(?).
One has

1 0
R(T,t) = (0 6722_#) .

We consider the case where p = ¢ = 2 and

B(t) = ((1) (1)) C(r) = ((1) (1))

The disturbance term is given as follows

0
f@) = (6;) :

Using proposition 2, one gets
0
u(t) =| —20e
\rerf(10)

with the error function (also called the Gauss error function ), often denoted by
er f such that

=
2 )

2 X
erf(x) = ﬁ/ e dt.
0

The initial state is considered null zg = 0, then y o) = 0. Then

0
[2
u t = - 2 t ’
Y(up) (1) 10eZer £ (1) ol
erf(10)
(1) y
. t = 12 .
Y(©.) tols

We obtain the following numerical results which illustrate the previous devel-
opments.
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Figure 1: Representation of y(,, sy and y (o, r)

Hence, in Figure 1, we give the representation of the observations y, s and
Y(o,f)- This figure show the effect of our control, which bringing back the output

the normal one at time 7" = 10. i.e., y(,,1)(T) = y(0,0)(T) = 0.
In Figure 2, we give the representation of the optimal control u.

T
——optimal control u

Figure 2: Representation of the optimal control u

3.2. HUM method

In this section we give an other method for the optimal control ensuring the
compensation by the Hilbert uniqueness method. The HUM method introduced
by J.L. Lions [20] was generalized for different systems [16] and [18].
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We consider the following minimum energy problem:
For zo € R" and f € L?(0,T;R"), does there exist an optimal control u €
L?(0, T;R?) such that
C(THru+C(T)Grf =0,

i.e. minimizing the function J(v) = ||[v||*> on the set {v € L*(0,T;R?) |
C(T)Hyv+C(T)Grf =0}?

For this, we use an extension of the Hilbert Uniqueness Method. Indeed, for
6 € RY, let us note:

1 1

T 2 T 2
161l = / |(Hr)*C(T)*6||3,ds | = / |B(T)*R(T, s)*C(T)*6||3,ds
0 0

||0]]« is a semi-norm on RY.

We assume that ||.||. is a norm on RY. If Ker [(H7)*C(T)*] = {0}, this is
equivalent to the remediability of the system (1) + (2) on [0, T]. The correspond-
ing inner product is given by:

T
< 0,0 >,= / < B(T)*R(T, s)*C(T)*6, B(T)*R(T, s)*C(T)*o > ds
0
and the operator A : R? — R defined by
T
A6 = C(T)Hr(Hr)*C(T)"6 = / C(T)R(T,s)B(T)B(T)"R(T,s)"C(T)*0ds
0

is symmetric and positive definite and then invertible. We give hereafter the
expression of the optimal control ensuring the compensation of a disturbance f
at the final time 7.

Proposition 3 For f € L>(0,T;R"), there exists a unique 0 + € Y4 such that
ANy =-C(T)Grf

and the control
I/tgf () = B(T)*R(T, .)*C(T)*Qf

verify
C(T)HTMgf + C(T)GTf =0.

Moreover, it is optimal and

luo, 11220,rm0) = 1107l
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Proof. A extends uniquely into an isomorphism such that:
1.<Ab0,0 >pa =< 0,0 >,.

2. [[AO|ga = 1I6]]..

In particular, if —-C(T)Gr f € R?, then 3!6; € RY such that
AN;=-C(T)Grf
one gets

T
/ C(T)R(T, s)B(T)B(T)*R(T. 5)*C(T)*6;ds = —-C(T)Gr.f
0

from which we have

T

/ C(T)R(T,s)B(T)ug, (s)ds = -C(T)Gr f
0
with ug, (s) = B(T)"R(T,s)"C(T)" 0y

that implies

C(T)HTugf = —C(T) GTf.

‘We have
C(T)HTugf + C(T)GTf =0

then ug, € {v € L*(0,T;R?) | C(T)Hrv + C(T)Grf = O}.
By assumptions of Lax-Milgram theorem, J(v) = a(v, v)—2L(v) has aunique
minimum «* such that

<u',v—u">>Llv—u"), Vv e {velL*0,T;R?) | C(T)Hrv+C(T)Gr f =0}

with a(u,v) =< u,v >0 7rp), and L = 0 since a(u,u) = l|ue||%.
Let us prove ug, = u".
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Letv e {v € L?>(0,T;R?) | C(T)Hrv + C(T)Grf = 0}, we have

T
<ug,,V—Ug, >1200TRP) = /< ug, (), v(s) —ug,(s) > ds
, 0

_ /< B(T)*R(T. )" C(T)"07.v(s) - ug, (s) > ds

OT
= /< 07, C(T)R(T, s)B(T)(v(s) —ug, (s)) > ds

’ T T
=< Hf,/C(T)R(T, $)B(T)v(s)ds —/C(T)R(T, s)B(T)ug, (s)ds >

0 0
=<0y, Hv — Hug, >
=0
then ug, = u*. O

3.3. Linear Quadratic problem

In this section, we present a more general approach which consists to consider
the compensation problem as minimization one of a cost function defined on
L%(0,T;RP) as follows

J(u) =< Q(C(T)Hru+C(T)Grf),C(T)Hru + C(T)Grf >
T
+/ <W()(C(t)Hiu+ C(t)Gf),C(t) Hu + C(t)G,f > dt

0
T

+ [ <U@®)u(t),u(t) > dt,
/

where Q € M, (R) and W € L*([0,T], M,(R)) are positive symmetric matrixes,
and U € L*([0,T], M,(R)) is a positive definite symmetric matrix.
Let’s remember that the map J is strictly convex and

T T
Yu € L*(0,T;RP), / <U@u(t),u(t) > dr > a/ u(u(t)dr  (15)
0 0
with @ > 0 is the minimal eigenvalue of U.
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We have the following result.

Theorem 1 Under the hypothese (15), there exists a unique control u €
L%(0, T;RP) such that

Ju)= inf  J(O).
velL2(0,T;RP)

Proof. Let us prove initially the existence of such control. Let us consider a
sequence minimizing of controls (u,),en on [0, 7] such that

C(T)Hru, + C(T)Grf =0, (16)

i.e. the sequence J(u,) converges to the lower bound of the costs, in particular
this sequence is bounded. By assumption,

Ja >0, Yu € L*(0,T;RP), J(u) > a||u||§2(0T,R,,)

then, the sequence (u,),en is bounded on L?(0,T;R?), which implies, the sub-
sequence of (u,),cy converges weakly to u € L?(0,T;R”), using (16), one gets

C(T)Hyu+C(T)Grf =0.
Hence u,, — u on L>(0, T;R?) implies that
T T
/ <U@)u(t),u(t) > dt < liminf/ <Ut)u,(t),u,(t) > dt
0 0

from which we get
J(u) < liminf J(uy).

In particular, (u,),en is @ sequence minimizing of controls on [0, T], then
J(u) is equal to the lower bound of the costs, we then have the existence of such
a control optimal u.

Since J is strictly convex we deduce uniqueness of such a control optimal .

In the following result, we give a necessary and sufficient condition for our
optimal control problem.

Theorem 2 The control u is optimal such that

J(u) = inf  J(v),
veL2(0,T;RP)

if and only if there exists a certain row vector p(t) € R"\{0}, called adjoint
vector satisfying

p() =-p(OAQ@) + (C(OOHu+ C()G,f)'W()C(1), Ve € [0,T] (A7)
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such that
p(T) =—=(C(T)Hru+ C(T)Grf)*0O (18)
or
u(t) =U()B(1)*p(t)*. (19)

Proof. Let u the optimal control such that

J(u) = inf  J(v).
veL2(0,T:RP)

Letu € LZ(O, T;R?) be such that

upert(t) = u(t) +ou(t)
and
Zpert(t) = z(2) +0z(2) + o(|[oull12),

with
0z(0) =0.

Zpert 18 the solution of the system Z(#)pert = A(#) Zpert+B(¢)Upert, and it is augmented
by the output equation

)’pert(t) = C(t)Zpert(t), O < l < T

then
0z(t) = A(t)oz(t) + B(t)ou(r), 0<t<T,
oy(t) = C(1)oz(1)
one has
C(1)6z(t) = C(t)H,;6u = / M ()M~ (s)B(s)6u(s)ds. (20)
0
with

M(t) = R(t,0).

We have the cost function J is Frechet differentiable, and u is optimal control,
then

dJ(u) =0.
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In particular,

J(upert) =< Q(C(T)HTupert +C(T)Grf), C(T)HTupert +C(NGrf >
T

+/ <W(t)(c(t)Htupert+C(I)th)’c(t)Htupert+C(t)th> dt

0
T
+/ < U(t)upert(t)a upert(t) > dr
0

and for every du € L?*(0,T;R?), we have

%dJ(u)du = (C(T)Hru + C(T)Grf) QC(T)Hréu
T T

+/(C(t)H,u +C ()G, f) ' W(t)C(t)H,Sudt +/u(t)*U(t)5u(t)dt
0 0
= 0. (21)

Let the adjoint vector p(¢) is the solution of the system

p(t) =-p®A@W) + (C(O)Hu + C(t)G,f) W()C(t), 0 <t < T,
p(T) = =(C(T)Hyu + C(T)Gr f)"Q

then

p(t) =AM~ (1)

+ / (C(s)Hgu + C(5)Gy ) W(s)C(s)M(s)dsM~'(¢), Yt € [0,T]
0

with
A=—(C(T)Hru+C(T)Grf)"QM(T)

T
- / (C(s)Hyu + ()G, f)* W ($)C(s)M(s) ds.
0
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Using (20), (21) and integrations by parts, one gets

T
/(C(t)H,u +C()G, f)*"W(t)C(t)H,6udt =
0

T t
/ (C(OHu+ C(0)G,f)*W(£)C(t) / M(H)M~1(5)B(s)6u(s)dsdt
0 0

T

T
/(C(S)Hsu+C(S)Gsf)*W(s)C(s)M(s)ds/M_l(s)B(s)éu(s)ds
0 0

T 1

—//(C(s)Hsu+C(s)Gsf)*W(s)C(s)M(s)ds
0 0
MY (1)B(1)Su(r)dr.

We have
p()—-AM (1) :/(C(S)HSM+C(S)Gsf)*W(S)C(S)M(S)dSM_l(I), Vte|0,T]
0

then
T

/(C(t)H,u +C()G, f)*"W(t)C(t)H,6udt =
0

T T
—(C(T)HTu+C(T)GTf)*QM(T)/M“(t)B(t)(Su(t)dt—/ p(t)B(t)ou(r)dt.
0 0

From (21), one gets
(C(T)Hru + C(T)Gr f)*QC(T)Hrdu =
T

(C(T)Hpu + C(T)Gr ) QM(T) / M (1) B()su(r)dr,
0

which implies that
T

%d](u)éu - / (u(t)*U(t) — p(1)B(1)) Su(t)dt =0, Vou € L*(0,T;RP)
0
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and
u(t)*U(t) — p(1)B(r) =0, Vte[0,T].

Conversely, if there exists a adjoint vector p(z) satisfying (17), (18) and (19),
then
dJ(u) =0.

Moreover, J is strictly convex, which implies the control u is optimal such
that

J(u) = inf  J(v).
veL2(0,T;RP)

Remark 2 Let H: [0, T] XR"x (R"\{0}) XxR? — R is the Hamiltonian function
defined by

H(t,z(1), p(1),u(t)) = p(1) (A()z(r) + B(t)u(r) + f (1))
- %[(C(t)z(t) —C(t)M(t)z0)"W(t)(C(1)z(2)
— C(t)yM(1)z0) +u(t) U()u(t)],

then
. oH
(1) = 5(% z(1), p(1), u(r)) = A()z(1) + B(t)u(r) + f (1),

0
p(1) = —a—i[(t, 2(1), p(1),u(t)) = =p(DA@) + (C(O)Hu + C(1)G ) W(1)C(1),
and
0H x
5y (L2, p(@),u(t)) = p()B(1) —u()"U(1) = 0.
This the general maximal principle.

Example 1
i) We consider the case wheren =1, p = ¢ = 1 and

A(t) =t, B(t)=t, C(t),=-t,

and the cost function ;

J(u) = / u(1)?dt.

0
Using the maximal principle, one gets

p(t) =-p(n),
p(T) =0,
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and
u(r) =tp(t).
Then
—£2
b0 =pOexp (),
from which we get the optimal control minimizing the cost function J

2

u(t) = tp(0) exp (%)

ii) Let us define A where n = 2 by
t -1

compute the resolvent of z(¢) = A(¢)z(¢).
One has

17242 17242

cos(T —t)e 2z —sin(T —t)e 2

R(T,1) = 2.2 2.2

sin(T —t)e = cos(T —t)e 2

We consider the case where p = ¢ = 1 and

t

B(t):(o), C(t)=(10),

and the cost function
T

J(u) = —(C(T)Hru + C(T)Gr f)" + / u(r)?dt.
0
Using the maximal principle, one gets
p(t) = (_tpzl(t) - pzz(t) Pz (1) - tpzz(t)) )
1

P(T) = (por(T) por(T)) = (5 o),

and
u(t) =tp (1).
Then

1 242 1 . 22
p(t) = Ecos(T—t)eTT —ESIH(T—I)eT2 )

from which we get the optimal control minimizing the cost function J

1242

u(t) = %cos(T — e

|
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3.3.1. Numerical simulations

Let us define A where n =2 by

00
a0 =(70):
compute the resolvent of z(¢) = A(¢)z(?).

One has

1 0
R(T,t) = ( 722 ) .
— 1

We consider the case where p = ¢ = 1 and

B0 = (o) co=(F o).

and the cost function
T

J(u) = —(C(T)Hyu + C(T)G1 f)* + / u(t)?dt.
0

Using the maximal principle, one gets
p(t) = (=tpz,(1) 0),

P = (1) pa) =3 0).

and
u(t) = Pz (1),

p(0) = (% 0).

From which we get the optimal control minimizing the cost function J

then

u(r) :%.

The initial state is considered null zg = 0, then y (o) = 0. The disturbance term
is given as follows

f@t) = 500



www.czasopisma.pan.pl P N www.journals.pan.pl
Y

ON THE MINIMUM ENERGY COMPENSATION
FOR LINEAR TIME-VARYING DISTURBED SYSTEMS 751

To simplify the notations, let us note y, ) the observation corresponding to
the control u and the disturbance f. Then

- T
Yu,p)(t) = 56 2+ 1B/;Oerf(t),

_ T
y(o,f)(t) = 1Oooel‘f(l).

We obtain the following numerical results which illustrate the previous devel-
opments.

Hence, in Figure 3, we give the representation of the observations y, s and
¥(0,r)- This figure show that for 7" = 10, we have y, ) (T) = y(0,0)(T) = 0.

¥(0.H)]

y(u.f)

Figure 3: Representation of y(, ¢y and y (g, r) for T = 10

In Figure 4, we give the representation of the optimal control u.

15 T
—— Optimal control u

Figure 4: Representation of the optimal control u
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4. Conclusion

This paper is about a class of time-varying linear dynamical systems. The
concept of remediability is an important technique in perturbation theory. It
consists of studying the possibility of attenuating the effect of any disturbance,
through observation. We show in this work how to find a practical input operator
ensuring the compensation of the disturbance. We find a control that cancels the
output of the system and we also show that Hilbert uniqueness method can be
used to solve the optimal control that ensures remediability. And finally a general
approach has been given to minimize the linear quadratic problem. To illustrate
our work, some examples and numerical simulations are given.
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