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ANALYSIS OF WAVE EFFECTS IN COMPLEX
VIBRATION ISOLATION SYSTEMS

The problem of transmitting vibrations with audible frequencies by steel springs,
constituting the vibration isolation system was considered in this paper. The analytical
relationships allowing determining the value of the transmissibility for the springs
resonance frequencies responsible for the transmissibility of high frequency vib-
rations have been derived and checked by means of FEM method.

Also the occurrence of the increasing stresses in the springs in the areas between
the resonances has been shown. The typical system, i.e. the serial system with rubber
cushion, has been analyzed, reducing the transmission of high frequency vibrations by
the spring. It has been shown that the transmission is reduced not as a result of
differences in the wave impedance of the boundary of both media but due to the
increased dispersion of energy in the rubber, and the analytical relationships allowing
the evaluation of the effectiveness of this method have been derived.

1. Introduction

The vibration isolation systems with the application of the helical
steel springs, in addition to a number of advantages, suffer from a di-
sadvantage consisting in the intensive transmission, within the over-
resonance range, of the vibrations with frequencies corresponding to
the spring natural frequencies [1].

This phenomenon particularly occurs with regard to longitudinal vib-
rations, or more precisely, rotary-longitudinal ones. For typical springs, with
small screw line ascending angles, the factor that couples longitudinal and
rotary vibrations can be disregarded [2], which makes it possible to consider
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further the longitudinal vibrations of the spring as the vibrations of a bar with
adequately selected spring and inertia constants.

The near-resonance increase of vibrations of this type causes both the
transmission of intense reactions to the structure protected by the spring, as
well as large internal stresses in the spring.

However, whereas the range within which the vibration-isolation proper-
ties of such systems deteriorate is narrow and concentrates round springs
natural frequencies, the range within which the essential additional loads in
the spring coils occur is relatively wide [6], filling in the area between the
springs natural frequencies.

The basic protection against structure-borne sound in steel springs is their
serial association with rubber elements, or applying the additional rubber
coating on the springs, so that the springs near-resonance vibrations energy is
dissipated owing to the contact friction or material damping in rubber.

The reasonable selection of these protection vehicles requires the
possibility of the evaluation of their effectiveness. The methods in use [1], [7],
based upon the analysis of the reflection of wave on the boundary of the media
with different wave impedances do not emulate the essence of the
phenomenon, thereby leading to erroneous results.

The objective of this paper is the formulation of a new analysis of impact
of the rubber washer on the processes of transmission of high frequency
vibrations, based upon the balance of energy.

With regard to the washer-free springs, for which the literature [3], [8]
provides the evaluation of the transmissibility coefficient based upon the linear
reology model, the analysis has been performed based upon the material-
structural suppression, as this kind of suppression is closer to the vibration-
isolation systems nature. The paper also performs the analysis of the influence of
the springs stop plates on the course of the phenomenon and shows the existence
of the optimal value of a clamp in systems containing a rubber sleeve.

2. The vibration isolation system with the application
of the helical springs

Figure 1 shows the vibration isolation unit diagram together with the
corresponding model of a bar with continuous distribution of mass and
adequately selected constants pA i EA.

The system has been analyzed, in a number of works, such as [1], [3], [8],
where one derived the course of the transmissibility coefficient p, understood
as the relation of the amplitude of the force transmitted onto the base to the
amplitude of the forcing force P in the frequency function.
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Fig. 1. The vibration isolation system model

The coefficient of the force and displacement transmissibility for the
model under analysis is equal to:

p= (D
cos = - @sin T

\/z \km \/E

m m

where: M — sprung mass, m — spring mass, k — stiffness constant of the spring.
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Fig. 2. Coefficient of transmissibility of spring vibration isolation system from Fig. 1,
without the suppression
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The course of the changes of the coefficient p in the forcing frequency
function f[Hz] has been shown in fig. 2 (the operating range of the vibration

isolation unit covers the frequencies @ > \/5 - 1=6.7557"), obtained for data
k=9-10°N/m, [ =0.2 m, M = 1000 kg, m = pA - [ = 10 kg:

Due to the fact that the suppression has been disregarded, the transmis-
sibility coefficient for each of the resonance frequencies is equal to infinity.

The resonance frequencies may be arrived at approximately, through
decomposing the system onto the model with one degree of freedom for the
first frequency, and with regard to the value of sprung mass M — onto the
model of a bar fastened on both sides for higher frequencies [6]:

k
®, = \/—1 2)
M
k
w,=(n-1) n\/; n=2345.. 3)

The frequency band for which the force transmitted onto the base is
amplified is wide only at the proximity of the first free frequency of the
system. However, as it has been shown in the work [6], this is not pertinent to
internal forces P, in the springs, whose maximum values are usually found
beyond the edge coils and assume large values in the wide neighborhoods of
resonance frequencies — Fig. 3.
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Fig. 3. Maximum internal forces in the spring
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These forces lead to the fatigue of the wire in the spring, which causes
a danger of the damage to the springs (breaking, fracturing, etc.).

2.1. The analysis of high frequency vibrations transmitted through
the vibration isolation systems with linear damping

In order to determine the actual, finite values of transmissibility
coefficient p for the springs resonance frequencies, the system as above will
be analyzed, with the incorporation of the damping in the bar, acting as
a spring in this approach:

3 2
+ FAx - M_pAa u(x’t):()

A*u(x 1)
ox* ot Jt?

EA I’
In order to solve the equation, the Fourier method of separating the
variables is applied, in the following form:

e =X e"™

After simple transformations, the equation allowing determining the X (x)
in the complex numbers domain may be presented as follows:

PA

17 2
e YRR

- X(x) =0

where the roots of characteristic equation:

1
= b -1}4_
Fla==h 1 +ioa

while:

therefore, the amplitude of steady vibrations is shown through the following
formula:
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Xx)=C, e+ Cy- e

The boundary conditions have merely been modified through the
incorporation in the equation the longitudinal force of the structural
damping, thus:

X0)=0 EAX'(D+EA-i- waX'()=P-Mw*X()

After substituting the solution of X (x), together with its derivatives, in the
boundary conditions, the constants C; and C, may be determined, following
which the force acting onto the base can be arrived at.

The aforesaid procedure may be easily applied through numerical
methods, however, the result in the analytic form cannot be obtained.

The approximate analytic solution of this problem has been presented in
[8, volume 3, page 1505] for the first free resonance of springs f;:

02 - m
tgd - M

n

P2 4

where & — Loss angle.

The practical calculations according to the aforesaid relation are hindered
through the fact that the dissipation of energy in actual systems, determining
the amplitude of the near-resonance vibrations, takes place by way of
non-linear damping of material-structural type [4], [5], whose mathematical
model significantly differs from the linear damping model.

This restriction doesn’t apply to other reports in this field, such as [3],
where the methodology of determining the transmissibility coefficient for
wide band of frequencies, based upon the receptance method and damping
model in the complex Young’s modulus, has been given.

2.2. The analysis of transmitting high frequency vibrations through
the vibration isolation system — the system with material-structural
damping and kinematic excitation from the foundation

In order to derive the analytic solution in the form convenient for
engineering calculations, the phenomenon of transmitting the vibrations in
the spring free resonance will be contemplated only approximately, while the
correctness of simplifying assumptions made will be evaluated through the
comparison with the accurate solution.



ANALYSIS OF WAVE EFFECTS IN COMPLEX VIBRATION ISOLATION SYSTEMS 369

In the first approximation, let us disregard the vibrations of the
termination of the spring, fastened to the mass M, as these are low in
comparison with the resonance vibrations of the spring coils. In this case, the
form of the spring vibrations corresponds to its free vibrations in double fixed:

X(x) = Csin (@x)
C

where:
C — amplitude,
@, — natural frequency of the spring in double fixing, w, = 7w Vk/m
c=1+ W,
other denotations as above.

(As it can easily be checked through the replacement, this form fulfil the
conditions of double fixed bar).

The full description of vibrations, following the incorporation of their
resonance character, i.e. the angle of phase shift y = —7/2, assumes the
following form:

u(x,t) = Csin (%x) - sin (a)gt ~ g) = ~Csin (7:)—;) - cos (w, 1)
Therefore, the force in the spring, at its bottom (x = 0) termination,

1s equal to:

P(0,1)=FEA au&(i’ D __EA. %TCCOS (HTOJ - cos (w,t) = —CEA

T

7 cos (w,t)

while the external force at the bottom termination:

P'(0,0) = — P(0.,f) = CEA%[ - cos (w21)

The power of the external force P’(0,7) along the shift of the bottom
termination of the spring, arising from the base vibrations u¢(0,f)
= Cysin(w,1), is equal to:

(91,{ 0(0,1)
dt

N() = P'(0.0) - = G CEA%[ ;- cos*(w1)
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while its work for the vibrations period 7, = 2 7/ w;:

27/ w, T 27l w, EA
Ly = J'N(t)dt:Co CEAT @ Icosz(a)zt)dt:ﬂ:zCoCT
0 0

This work covers the losses of energy in the course of vibrations AE 7,
which losses can be determined e.g. from the model of material damping with
the coefficient y = 2 w7, n-loss factor adjusted in order to take account of
also the structural damping [5]:

~ 1 Haxm |, 1 03! (wz)
AEr = wUmm_iz//EAJ[ R }dx——wEAC ZJ'cos —x |dx
0

0
Vo2 FAc
47r lC

Comparing Ly, = A Er,, we obtain the formula allowing determining the
amplitude C.

Therefore, the force acting on the mass M, can be arrived at through the
relation:

-4nCoEA

7 4C, (7[ I
—— - 60
vl

P'(Lt)y=—P(l))=EA= - s T) - cos(w,t) =

; - cos(w,t)

while the amplitude of this force is equal to:

47mCyEA
| P(LD)| max = T

Treating the mass M as unconstrained, subjected to harmonic force P(l,?),
the amplitude of vibrations Cy, of this mass may be arrived at through the
following equation:

IP(lvt)lmn,\' = M : CM ) w%
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from where:

_47CyEA
- Moiyl

M

therefore the transmissibility coefficient p, for this case is equal to:

Mwsyl Moy anfu/

m

Cu 4rnEA 4k 4k
Pz=?
0

Finally,

Pi= (5)

;
Ty M
The table 1 provides the vibration transmissibility coefficients, deter-
mined through the application of numerical methods (FEM), as well as

analytically, from the equation (5) for the parameters of the system as above
the Fig. 2.

Table 1
Vibration transmissibility coefficients, arrived at by means of approximate and reference (FEM) methods

w=0.13 v = 0.065

analyt. FEM analyt. FEM
0.098 0.098 0.196 0.196

3. System with rubber cushion

As mentioned in the introduction, the basic protection from the
structure - borne sound in the steel springs is their serial association
with the rubber elements, or the application of additional rubber coats
that attenuate the resonance vibrations of springs owing to the contact
friction or structural damping.

Based upon [1], such a typical solution is presented in figure 4, where the
steel spring 1 is founded on the steel abutment 2, under which the cushion
from flat rubber 3 has been located, while the effect of dry friction has been
materialized by means of the rubber sleeve 4 put on the spring with a certain
inceptive tension. The fastening screws 5 are insulated with the rubber sleeves
6 allowing the small vibrations of the steel abutment.
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Fig. 4. The vibration isolation system model

The solutions of this kind produce a number of doubts associated with the
absence of the methodology of optimized or even proper selection of the
system parameters.

The effectiveness of the rubber cushion application is usually accounted
for [1], [7] through the fact that the energy of wave motion is weakened
(reflected) on the boundary of environments:

5
—

E,

2 Eq

Fig. 5. The wave system model with inclusion

The analysis of the aforesaid model leads to the relationship for the insert
effectiveness D [dB]:

D - 10 ) lg Ilincidenl — 20 lg j{bgl
transition 142

where:

- C steel
T w/2rn

=334 m

In analysis case for b = 1 cm and rubber 55°Sh effectiveness is on level
D = 36.4dB.

However, in reality, this is the standing rather than running wave that
occurs here. In addition, there is no relationship between p and I — the
transmissibility coefficient for e.g. force vibration isolation may reach
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significant values even where no power is transmitted onto the base, i.e. the
base is fully stiff.

These discrepancies show that the aforesaid approach is unsuitable, and
therefore the necessity exists of determining the effectiveness of the rubber
cushions based upon another model.

In order to explain the doubts produced, the contemplation is proposed of
the system shown in figure 6, where the rubber cushion has been described as
the discrete element with stiffness constant k,, and with the material damping
factor y, (such a description of the cushion has its reasons in the very high first
partial frequency of the cushion, depending on the quotient of the velocity of
the longitudinal wave in the rubber to the height of the cushion).

Let us disregard the vibrations of the terminations of the spring as they are
negligible in comparison with resonance spring vibrations.

m,k,

kg, Wy
PARTT

Fig. 6. The model of interaction of the system of steel spring-rubber

The differential equation of the spring vibrations has the following form:

Pulxr) L, Pulxt)
ot ¢ T ox?

A EA LK
ol m/l m

The boundary conditions for the free vibrations can be written as follows:

0

du(l,t)

u0,0))=0 EA 5

=u(l,t) - k,
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The solution, obtained through the Fourier method, is the following
series:

u(x,t) = 2, C sin (n;x) - sin(w;t + 7,)

where:
C:, y: — depends on initial conditions
w,' = 77,‘ €

while 77, are determined through the roots of the equation.

k
@mm=—;-mm

g

The problem will be further contemplated for the describing series u(x, 1),
but only with regard to the first i = 1, i.e. for:

u(x,t) = Csin(n,x) - sin(w,t + y;)

In order to calculate the value of energy losses in each subsystem,
the maximum potential energy in a) the spring, and b) the rubber,
must be arrived at:

a) the spring:

1 _ du 1
Unas = [, 3EA S = 5 EA J[Cnlcos(nlx)] dx =
!
1 5. 5 | X A
=§EAC ni §+4—Slﬂ(2n1X) =
m 0
_kiC*ni

1 .
8 li21+71'51n(2n]l):l
b) the rubber:

lkngsinz(nl D

Ugmax = 2
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The loss of energy for the vibrations period, as a result of material-
structural suppression, may be determined from the following formula:

AE, = ¥, U = C*5¥2[20 2 + I sin 2, )

2

C -
AE; = W, Ugnar = _2‘"kg Wesin“(n:1)

therefore the relation of the energy losses is equal to:

A_AEg_4u/gkg. sin®(17,1)

SAE, - wk 200+ InsmGn D] ©)

Let us now formulate the following hypothesis:

The phenomenon of transmission of vibrations through the steel
springs, occurring near the resonance frequencies of these springs
is not restricted with dynamic factors (the reflection of waves of
the boundary of media), but depends on the system suppression
properties, which are increased following the serial insertion of the
rubber cushion into the system.

Based upon this hypothesis, as well as the approximately inversely
proportional dependence of amplitude of vibrations in the resonance on the
damping, the formula has been devised, determining the transmissibility
coefficient for the system with the rubber cushion p;. ., where the value of this
coefficient for the system without the cushion p; is known:

Bl e o e o P
Ps TAE; + AEg_l + A Of Pssg = 1+ A

(7)

where the coefficient p;, as referring to the first resonance of the spring, may
be arrived at from the formula (5) i.e.:

4
Ty

EI.S

Ds=

while A is determined through the relation (6).
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The aforesaid relations allow the approximate evaluation of the impact of
the rubber cushion on the vibrations transmissibility coefficient in the first
natural frequency of the spring.

A simple form of the relation between p;, p,., and A, may produce doubts
whether this relation actually reflects the essence of the relationships between
these quantities.

In order to verify the proposed method of determining the transmissibility
coefficient p,., for the first resonance frequency of the spring, its value has
been calculated based upon formulas (5, 7, 6) for various ratios of k,/ k. The
results obtained for the vibration isolation system previously analyzed have
been presented in Fig. 7, where the results obtained through the application of
the FEM method are additionally given for reference and comparison.
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analytical solution

0.07
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0
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Fig. 7. The transmissibility coefficient p,., determined for y, = 0.13 and y, = 0.3

As can be seen from the diagrams, the accuracy of the relationship (7) is
significantly determined by the ratio of k,/ k. The relative error p,. , within the
range 10<k,/ k= 100is found between 21.4% and 2.6%. For typical values of
k¢/k, in the order of 70, the method error is in the order of 3.8%.

3.1. Optimization of the rubber cushion parameters

In order to determine the influence of k, on the transmissibility in the main
resonance p; and the first resonance of the spring p,, the force vibration
isolation system of the mass M, supported on the spring and the rubber
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cushion with different values of modulus of elasticity, has been subject to
analysis.

In numerical analysis, the spring has been adopted with the following
constants: [ =0.2 m, EA = 180 - 10°N, pA = 50 kg/m while M = 1000 kg,
Y. =0,

Two limiting cases of rubber cushions have been adopted for the analy-
sis, notably: ring cushion with parameters k, = 14 - 10°N/m and
b, =0.684- 10%/wNs/m and typical circular cushion with the parameters:
k,=71- 10°N/m and b, = 3.44 - 10°/ @Ns/m.

The optimal value of rubber parameters has been sought by analyzing the
model for 11 different rubber parameters, starting from the “ring” ending on
the “solid”. The results of the analysis have been tabulated in table 2 (lines
2-12). The values: fi, p; describe the vibrations of mass M on the elastic
bearing, while f,, p, — the lowest free resonance of the spring.

Table 2
Coefficients of transmissibility for different rubber parameters

kg b, P h P2 S
3.865 - 10° 188000/ w 108.86 4.29 0.15 124.20
14 - 10°¢ 684000/ w 339.02 4.62 0.37 141.21
19.7 - 10° 959600/ w 470.15 4.66 0.50 143.65
254 -10° 1235200/ w 601.25 4.68 0.63 145.05
31.1 - 10° 1510800/ w 732.34 4.70 0.77 145.95
36.8 - 10° 1786400/ w 863.43 4.71 0.90 146.59
42.5-10° 2062000/ w 994.52 4.72 1.03 147.05
48.2 - 10° 2337600/ w 1125.6 4.72 1.16 147.41
53.9 - 10° 2613200/ w 1256.7 4.73 1.30 147.70
59.6 - 10° 2888800/ w 1387.8 4.73 1.43 147.93
65.3 - 10° 3164400/ w 1518.8 4.73 1.56 148.12
71 - 10° 3440000/ w 1649.9 4.74 1.69 148.28
o o oo 4.77 oo 150.15

The value k,=3.865 - 10°N/m, included in the first line of tab. 2, has been
chosen so that the value of the first free resonance frequency of the original
system (without rubber) is lowered following the introduction of the cushion
by not more than 10 %. The value of b, has been selected proportionally to &,
[5]. In spite of the fact that the application of rubber with such parameters
leads to significant lowering of coefficients p, these will be disregarded in the
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course of other contemplations due to the fact that in order to obtain such
values of b, and k,, the special rubber vibration isolation unit should be used
rather than the flat cushion adopted in this report.

Except for the vibration isolation unit, in the range of changes the rubber
cushion parameters, the best values have been obtained for the limiting value
of the variability interval (hence the name “the best” rather than optimal). For
further analysis, a ring rubber cushion has been used, with the parameters
k, =14 - 10°N/m and b, = 0.684 - 10° / @ Ns/m.

4. Selection of steel abutment mass

If, as it is often the case, the resistance plate with mass comparable with
the spring mass is found between the spring and rubber, this plate should be
incorporated in the model, e.g. in a way as shown in Fig. 8.

Psin(wt)

Fig. 8. The vibration isolation system model

In the case of the analysis of the system shown in Fig. 8, the mass of the
plate (steel abutment) has been included in the boundary conditions, as the
lumped mass:

du(0,t) ~du(0,1) 2%u(0,1)
EA e ke, - u(0,t) + b, 5 +m 5,7 (8)
du(l,t) 2*u(l?) o
EA ax —_MT+P Sln(a)t)

where: m — mass of the abutment,
M - sprung mass.
Table 3 shows the results of the analysis of the system shown in the figure
8 for different values of m — the mass of the abutment. The damping in the
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spring is disregarded, while the parameters of the rubber are the same as
previously.

Table 3
Transmissibility coefficients for different masses

m P S P2 fa Ps f3 P4 Sa Ps fs Ps fe
0 ([339.02| 4.62 |0.3714|141.21| - — 10.0974|282.74|0.0463 [425.25|0.0283 |568.86

2 |338.99| 4.62 |0.3365]|140.20|0.0669|273.15]|0.0262|388.38|0.0229|499.08 |0.0275 |628.80

5 |338.95| 4.62 |0.2870|138.28|0.0438|245.53|0.0471|332.29(0.0719|464.25|0.0844 |609.18

10 (338.83| 4.62 |0.2155|133.65|0.0552|201.46|0.1338|311.39|0.1714 |456.04|0.1857 |604.21
15 |338.74| 4.62 |0.1642|126.88]0.0971|178.67]0.2323|306.65|0.2730|453.83|0.2878 |602.73

20 |338.64| 4.62 |0.1345]|118.75|0.1625|167.65|0.3331|304.68|0.3750|452.80(0.3901 |602.03

25 [338.55| 4.62 |0.1200|110.70|0.2436(162.08|0.4347|303.62|0.4773 |452.22|0.4925|601.61
50 [338.07| 4.62 |0.1191| 83.37(0.7225|154.34|0.9453|301.71|0.9891 [451.10(1.0046 |600.81

100 [337.11| 4.62 |0.1717| 60.29(1.7356|151.92|1.9692|300.86|2.0135 [450.57|2.0291 |600.42

The additional resonance f;, ps; has appeared in the spectrum in
conjunction with the partial frequency of the rubber-abutment configuration,
following which the consecutive resonances have been renumbered, similarly
as the corresponding transmissibility coefficients.

As can be seen from the results presented, the introduction of the mass m,
in the order of 15-20 kg reduces in this example the coefficients p,, ps,
corresponding to the lower frequencies of free vibrations of the abutment,
down to 0.44% of the value p, for m = 0. Further increase of the mass leads to
the increase of p;.

S. Spring in the rubber sleeve — viscous damping

The damping in the system may be increased through putting the rubber
sleeve on the spring [1] — figure 4.

The dry friction between the spring and rubber, occurring in reality, is
replaced, based upon the condition of friction forces works equality, with the
viscous friction in the calculation model. The friction force per unit of length
1s equal to the product of the difference of the spring and rubber velocity in the
specific cross-section and the damping coefficient .

After separating the variables in the form:

u(x,t) = X(x) T()
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for the spring and
vix,t) = Y(x) T(¢)
for the rubber, the following system of differential equations is obtained:

EAX"(x) + 020A X&) + @ (ioX(x) — io¥Y(x) =0
EAY"(xX) + ©20:A, Y(x) + a (i0Y(x) — iwX(x)) = 0

where:
a — overall coefficient of viscous suppression of the boundary of en-
vironments,

w — frequency of vibrations,
EA, — longitudinal stiffness of the spring,
EA, — longitudinal stiffness of the rubber; here EA, = 1/15 - EA,.

0 l

Psin(wt)

Fig. 9. The vibration isolation system model

It has been assumed that the friction on the boundary between the
rubber and spring constitutes the prime source of energy
dissipation, which makes it possible to disregard the material
suppression in both environments.

Determining from the first equation of the aforesaid system:

iwaY(x) = EAX"(x) + (0?pA, + iw @) X(x)
differentiating twice

iwaY’(x) = EA\ X% + (w?pA, + iwo) X’ (x)
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and inserting into the second equation and arranging the terms, the fourth
order equation is obtained:

w3pA, + ia)a+ w?*p,A; + iw

.(4)
e +( FA, EA,

“] X(x) + 9)

N (w?pA; + iwa) (W*pA; + W) + w*a?
EA1 ° EA2

X=0 (10)
In order to simplify the notation, the following replacements have

been used:

_WpA, + ia)a+a)2p3A2 +ioa
- EA] EA2

A

_(0PpA; + i00) (0°p2A; + i00) + 0 a’

B EA, - EA;

The solution to the equation:

X9x) + AX”(x) + BX=0

has been sought in the following form:

X(x) = Cexp?~

therefore, the characteristic equation has the following form:
6*+A0*+B=0
which roots are:

62—_A + JA? - 4B -A —+A%Z - 4B
| B %
2

The general solution of the equation (11) is presented by means of the function:

X(x) = C, exp O x 4 C3€Xp‘01-.\‘ + C3€Xp 62 x 4 C4exp-62-.x (12)



382 JERZY MICHALCZYK, LESZEK MAJKUT

while the equation of the amplitude of vibrations in the rubber:

E B . i 5 _..
Y(x):%{~ [B%Cl exp '+ 01 Crexp I + 03 Crexp 2+ 03 Crexp *]
(13)

+—a)“pA1 L [Clexpg"”+Czexp“6"”'+ C3exp92"+C4exp‘92'*]

o

The boundary conditions associated with the model shown in figure
9 have the following form:

EAX"() + EA,Y'(1) — mw*X() = P

X{) = Y()
X(0)=0 (14)
Y(0) = 0

Inserting the functions (12) and (13), including their derivatives, into the
system of equations (14) we may determine the constants of integration C; up
to C4, and the equations of amplitude of forced vibrations may be arrived at.

Figure 10 summarizes the results obtained for different values of
clamping force of the sleeve on the rubber, thereby, various
values of .

0.63

b2

06251

0.62

06151

0.61

0.605 L L 1 L L L L 1 1
250 260 270 280 290 300 310 320 330 340 350

(e}

Fig. 10. Transmissibility coefficient p, in the function of coefficient o
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A-sitcan be seen, the &, 1.e. & (p,=min) exists in this case, which means
the existence of optimal clamping force of the sleeve on the spring.

In order to determinie this point, the method presented above may be
directly applied.

For the optimal point, also the coefficients of transfer for the remaining
resonances have been calculated.

The amplitude of force R, transmitted onto the base in the contemplated
problem of vibration isolation (Fig. 9), can be arrived at from the
following formula:

R=FEA; X’(0) + EA,Y'(0)

Table 4 summarizes the coefficients p for the first five maximum values
(resonances), together with the corresponding frequencies [Hz]. The suppression
in the spring and in the rubber (p, = infty) has been disregarded in this analysis.

Table 4
Maximal coefficients of amplitude amplification, shown in figure 9
P oo f 4.92
P2 0.606 b 149.90
D3 0.187 f 299.88
ps 0.111 fi 449.91
ps 0.080 fs 599.93

As it can be seen, the damping on the boundary of the rubber-spring
environments, does not restrict the resonance vibrations of the first form
(vibrations of mass M), which is concurrent to the phenomenological analysis
of the system. With regard to the internal resonances of the springs, the results
obtained are worse than the results of the very structural damping in the
spring, which shows the purposefulness of modifying the system from figure
9 so that the interaction method of both elements is changed, as shown e.g. in
[1, p. 249].

6. Summary and conclusions

1°. The report shows that the “wave” method of evaluation of the
effectiveness of the rubber cushion inserted into the spring vibration
isolation system to reduce the high frequency vibrations transmission is
unreasonable.
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2%

3~

4°.

-

(1]
(2]
(3]
(4]
(5]

(6]

(71
(8]

(9]

The new method of evaluating the effectiveness, based upon the balance
of energy in the resonance, has been formulated, and the relationship
obtained has been checked using the MES method.

With respect to the springs without rubber cushions, the formulas
allowing arriving at the value of transmissibility coefficient p, in the first
free resonance of the spring, with the incorporation of the nonlinear
model of material and structural damping, have been derived.

The analysis of impact of the resistance plate mass of the spring on the
phenomenon of transmitting the vibrations at the proximity of the system
first few areas of resonance has been performed.

The mathematical model of interaction between the rubber sleeve and the
spring in the spring-sleeve systems has been built, and the existence of the
optimum clamping force has been shown from the condition against the
minimum of p,.
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Analiza przenoszenia drgan materiatlowych w ukladach wibroizolacji

Streszczenie

W pracy rozpatrzono zagadnienie przenoszenia drgan o czestotliwosciach styszalnych przez

sprezyny stalowe stanowiace uktad wibroizolacji. Wyprowadzono 1 zweryfikowano za pomoca
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MES zalezno$ci analityczne pozwalajace na okreslenie warto$ci wspdlczynnika przenoszenia
dla czestosci rezonansowych sprezyn, ktére odpowiadaja za przewodzenia drgafi wysoko-
czestotliwos$ciowych.

Wskazano na wystepowanie narastajacych naprgzen w sprezynach réwniez w obszarach
pomiedzy rezonansami. Przeanalizowano typowy ukiad redukujacy przenoszenie drgan wyso-
koczestotliwo$ciowych przez sprezyne tzn uktad szeregowy z podkladka gumowa. Wykazano, ze
redukcja przenoszenia nie zachodzi na skutek réznic w impedancji falowej obu §srodowisk lecz na
skutek zwigkszonego rozproszenia energii w gumie i wyprowadzono zaleznosci analityczne
pozwalajace na ocene¢ skutecznosci tego sposobu.



