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KRZYSZTOF BRZOZOWSKJ*l

NUMERICAL MODELLING OF CAR EXHAUST POLL UT ANT 
DISPERSION WITH CHEMICAL REACTIONS 

The paper presents a numerical model of car exhaust pollutant dispersion. The 
model can be used for estimation of the impact of pollutant emissions from road 
vehicles on the environment. The finite volume method has been used for model 
formulation. Equations obtained after discretisation are solved by using different 
methods like Runge-Kutta, Crank-Nicholson or decomposition methods. On the basis 
of the numerical simulation, conclusions are formulated about the numerical 
effectiveness of the integration methods used. In the paper, a problem of nitrogen 
oxides dispersion is formulated and solved, whereby chemical reactions are included 
in considerations. 

The model presented in the paper has been used for numerical calculations of car 
exhaust pollutant concentrations in a real car park. The last part of the paper presents 
some numerical results of calculations, which include emissions after cold start of 
engines. 

NOTATION 

</J concentration of pollutant at point with coordinates (x<'l, x(2), x<3l), 
U vector of wind velocity, 
µ0l turbulent diffusion coefficient, 
I the term describing sources of emission, absorption of pollutants 

and chemical reactions, 
t time, 
te calculation time, 
S: integration step, 
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E-mail: kbrz.ozoivski@ath.bielsko.pl



64 KRZYSZTOF BRZOZOWSKI 

- permissible enor, 
number of iterations, 
percentage difference, 

- reaction coefficients, 
- ambient temperature, 

intensity of solar radiation, 
- road emission, 

intensity of additional emission, 
average velocity of vehicle, 
engine capacity. 

1. Introduction 

It is obvious that road transport, including passenger cars, causes 
environmental damage. Road traffic, especially in urban areas, is one of the 
chief factors causing the atmosphere to deteriorate. The negative impact of 
traffic is connected, in the first place, with exhaust emissions from engines of 
vehicles but also with noise, dust emission and fuel evaporation [ 1]. 

Mathematical modelling of emission and dispersion of exhaust gases of 
moving vehicles now represents one of the important stages in the design and 
modernization of road infrastructure. The models are also crucial tools in 
managing the quality of the air in urban areas. They can be used to evaluate 
pollutant concentration and also to predict pollutant concentrations for 
different scenarios. 

In order to define the state of the air around road infrastructures, a range of 
mathematical models have been used which differ considerably in their 
degree of complexity. In mathematical modelling of traffic pollutant 
dispersion CFD (Computer Fluid Dynamics), empirical, analytical and hybrid 
models are used [2]. 

A complex mathematical model enabling car exhaust pollutant concent­ 
ration to be evaluated or predicted has the following elements: 
exhaust emission model taking into account the cold start phase, 

- transport model which describes dispersion of pollutants caused by 
advection, turbulent diffusion and if necessary also taking into account 
chemical reactions, 

- air flow model with proper turbulence model. 
It is known that results of numerical calculations depend on input data. In 

modelling car exhaust pollutant concentration, calculation results obviously 
depend directly on the data concerning sources of emission, namely 
individual vehicles. The relationship of the emission (in the form of road 
emission or emission intensity) of individual pollutants to parameters of 
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vehicle motion is described by emission characteristics. The dependence of 
the average road emission on average vehicle velocity leads to the 
formulation of quasi-dynamic (static) emission characteristics. If the amount 
of emission is related to instantaneous vehicle velocity and acceleration, then 
the relationships are known as dynamic characteristics [2], [3]. 

Pollutant dispersion models differ significantly in the degree of comp­ 
lexity of the chemical reactions considered. In car exhaust pollutant 
dispersion models, chemical reactions of nitrogen oxides are taken into 
account, since these lead to ozone and thus photochemical smog. 

The process of turbulent pollutant transport can be described by partial 
differential equations, which after discretisation on the basis of one of the 
most popular methods (finite difference, finite element, finite volume 
method) can be reduced to a set of ordinary differential equations (ODE). The 
solution can be obtained when information describing medium and environ­ 
ment is also known. This means that the solution of the problem requires 
information about fluid field velocity and temperature, which is possible after 
solution of another set of partial differential equations (energy, Navier­ 
Stokes, continuity and turbulence model equations). The examples of those 
models can be found in books [2], [4]. Sometimes, however, (if terrain is flat 
and we take into account a boundary layer of the atmosphere) simple 
algebraic equations can be used. 

In this paper we look only at the problem of solution of the dispersion 
equation (for turbulent motion) after discretization by the finite volume method. 
Investigations were carried out to find the best integration method of ODE in the 
dispersion problem. The numerical effectiveness of classic integration methods 
like Runge-Kutta and Crank-Nicholson [5] is compared to decomposition 
methods [6]. Additional investigations are carried out after including the 
non-linear terms describing chemical reactions in the dispersion model. 

2. Advection-diffusion equation, discretisation method 

The equation of pollutant dispersion can be written in the following 
form [2]: 

8¢ ~ [ 8 ul 8 ( (/) 8¢ )] _ Jr+ (-=i' 8xu/U ¢) - 8xUl µ 8xUl - I. (1) 

Discretisation of equation (I) by finite volume method [7] allows us to reduce 
a problem of solution of a partial differential equation for four variables 
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(t, x<1i, x(2), x<3l) to the problem of solving an ordinary differential equation. 
The finite domain V, in which we seek to define values of function </J, can be 
divided into prisrnatic elements shown in Fig. l. 

xPl / 
k 

' ' ',o'----.,.,' 
X(2i A(1) +, . ----------ctr: ... ----,,...J 

x,_1) 
I 

Fig. 1. Elementary rectangular prism with volume V;_ i-, 

The ends of the intervals with nodal points x<(l, x<~l, ... , x~! for l = 1, 2, 3; 
are denoted in the way presented in Fig. 2 with indices ±~. 

X(/) X(I) x)I) XU) X(I) X(I) 
I 2 i+l n,-\ ,,, 

XU) (I) X(/) X(/) X(I) X(/) x<I) x<I) x<I) 
1-_I_ X I 

2+.!. . I . I i+I+_!_ n1-I-_!_ n1 -I+.!. I I+- /-- I+- n, +2 2 2 2 2 2 2 2 2 
X(/) (/) X(I) X(I) X(I) x<I) X({) 
2-_I_ 

X I 
i-I+_!_ i+l-_!._ i+2-.!. "1 -2+.!. I 3-- 11,-2, 

2 2 2 2 2 2 

Fig. 2. Nodal points x(;>-;- x~'. and denotations of end points of intervals for i= 1, ... , n1; I= 1, 2, 3 

It is also assumed that inside prism V;_j,k, concentration of pollutants is 
constant with reference to spatial coordinates, that is 

(2) 

Elementary volume is: 

V. . = A (I) A (2) A (3) 
l,J,k Ll. I Ll. J Ll. k. (3) 

After integrating equation (1) over elementary volume V;,j, k we obtain 
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I a¢ I a ()) J a ( ()) a¢ )TtdV + ćJx(1/U ¢)dV - ćJx(JJ µ ćJx<JJ dV
v,.j.,· v,.j. .l: v,.j.,

I a (2) J a ( (2) a <1> ) + Jx(2) (U ¢)dV - ćJx(2) µ ćJx(2) dV
\li,j,l.: V,.j.k

(4) 

I a (3) J a ( (3) a <1> ) _ f+ Jx(3)(U ¢)dV- ćJx<3! µ ćJx(>l dV - ldV.
V;_1_, v,.1., vi.1.,.

Paper [2] presents a detailed description of algorithms allowing cal­
culation of integrals from equation (4) by using different stability ap­
proximation schemes [8] and different forms of boundary conditions.

The set of ODE equations which we obtain after discretisation, taking into
account boundary conditions, can be written in the form [2]

d d: min{i+2,n~'1}
~ + a (JJ + " , (Jl ,I,dt ,.1. k L. a i.i, k., 'f' i.; k 

/=max {i-2, l}

min {j + 2,n ;'.2]}
+ a<2J + " a<2) ,I,1,J.k £.... 1,J,k,I w t.t.: 

i=max{j-2, I}
(5)

rnin{k+2,n~3
~}

(3) .J (3)
+ak+ " a-k1,1,·-,=l-k I,), ' L. I,), ·, 'f' I,), I,], ·,

/=max {k-2, I}

h (ml <1l <2l (3l b f d . [2] [4]w ere a i.j,k, a;,j,k,t, a;,j,k.t, a;,j,k.t can e oun m , .
Further considerations will be limited to the case when the domain

investigated is a rectangular prism, for which the assumption of the vector of
unknowns (values of function ¢ at points of discretisation) has the form

<ł> == [</J1,l,l,···,(/Jn1,1,1, ... ,</J;,j,k,···,</Jn1,n2,113]T, (6) 

with n= n 1 • n2 · n3 components, where n, is a number of division intervals in
direction I = I , 2, 3.

Equations (5) are a set of n first order ordinary differential equations
according to variable t, which can also be written in a matrix form

dep dt + A(cj>) = f, (7 .1)
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where 
min{i+2,n1} min{.;+2,11J min{k+2,11J

,+. ~ (I) ~ - (2) ,+. ~ . (3) ,+.
/\.('I') i.J.k= L a i.], u </J 1.J.k + L a i.J.k., 'f' ;, l.k + L a ;,1. k., 'f' i.], 1, 

I= max { i - 2, I ) I= max {i - 2, I ) I= max { k - 2, I } 

3. r ~ (I)f = [f1, 1. 1, ... ,J,,,. 1. 1, ... ,J;,J,k, ... ,f,,,,,,,,,,,] , f;,J,k = l;,J,k - La ;,1. k.
I= I 

In order to solve equations (7), appropriate initial conditions have to be 
used. Usually it can be assumed that 

(7.2) 

which means that concentration of pollutant ę<0l in time t0 is known; this is 
usually equal to background concentration. 

3. Methods of solving equations after discretisation 

The solution of the initial problem in form (7) can be obtained by different 
numerical methods. The most popular are the Runge-Kutta method (especial­ 
ly of IV order) and multi-step (extrapolation and interpolation) methods. 
Description of these methods can be found in books on numerical methods 
like [5], [9], [ 10]. The problem formulated by equations (7) can also be solved 
also by using one of the classic methods for parabolic equations such as the 
implicit and explicit method or the Crank-Nicholson method [5], [7]. 

The Runge-Kutta (of IV order) and Crank-Nicholson methods are 
described below. Both methods can be used for integrating linear and 
non-linear differential equations. 

After assuming t0 = O, the initial equations (7) can be written in the form 

~ = F(t, ę),

(j>(O) = ęo,

(8.1) 

(8.2) 

where F(t, (j>) = f - A((j>).
If we denote 

(j>' = (j>(s · !it),

f' = f(s · !it),

F' = F(s · !it),

(9.1) 

(9.2)

(9.3) 
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for known ej>', in Runge-Kutra method the solution of cp<+ 1 is found by solving 
equation [5], [ 1 OJ 

(1 O) 

where 

K, = M F(s M, ♦'), K, = M· F((s + ½) 1'1, <I>'+ ½K,). 
Ks= t.,. F((s + ½) -1'1, ♦' + ½K,). K, = t.,. F((s + I)· M, <!>' + K,). 

The method gives an error of the order (1:it)4, so the result will be found 
with a good accuracy. The Runge-Kutta method can be also used for 
integrating stiff ODE, which we find in fluid dynamics [11]. In the R-K 
method, it is necessary to use a small integration step. In some cases, 
a disadvantage of R-K method is multiple (four times) calculation of vector F, 
in one integration step, in order to find the solution of cp'+ 1 from (10). It 
increases the calculation time. 

In the Crank-Nicholson method used for solving problem (7), it is 
assumed that solution of ej>'+ 1 can be obtained from equation 

The left side of equation (11) is a discrete approximation ofdq,' by using 
dt 

central difference fort= ( s + ~) !:it. The right side of equation (11) is equal to 
average values of vector F in (8), for layers s and s + 1. 

From equation ( 11) we can obtain 

ej>'+ I = cl>' - !:it A (<j,'+ I) + !:it f'+ I - !:it A (ej>') + !:it f' (12) 
2 2 2 2 . 

If we assume operator A as a sum of linear and non-linear terms we can 
write 

A (<j,) =A· ej>+ B(cj>), (13) 

where A is the square matrix and B is the non-linear term. 
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After assuming ( 13) from equation (12) we can obtain 

(14) 

where g(q,-'+1) = -tt B(q,s+1), G' = q,' - ~t A(q,-') + ~t [f'+1 + f'], 
and in the next step 

(15) 

S: 
where M = I + 2 A. 

If the non-linear term B of operator A exists, then equations (15) are a set 
of n non-linear algebraic equations. If operator A is linear, the equations (15) 
are a set of linear algebraic equations and q,·'+ 1 can be determined 

(16) 

Computing of matrix M-1 is numerically efficient for the case of M with 
constant coefficients. Unfortunately, in most cases M does not have constant 
coefficients. Solving equations (15) for each integration step by elimination 
methods is not efficient numerically, either. Better numerical efficiency can 
be achieved using one of the iterative methods, both for linear and non-linear 
operator A. 

After decomposing matrix M to the form 

M=D+R, (17) 

where Dis diagonal matrix, with elements d;; = 111;; for i= 1, ... , n; equations 
(15) can be written in the form 

(18) 

where H(q>s+1) = -R· q,s+1 + g(q,'+1). 

The most popular method, which can be used for solving equations ( 18), is 
the iterative Gauss-Seidel method. If we denote cp(,) as r-th approximation of 
vector q,'+ 1 and we know approximation cp<,-1), the components of 
vectors q>(,) can be calculated 
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,+,(r) - I [H(.+.(r) ,+, (r) ,+,(r-1) ,+,(r-1)) G'] f . - 1 2 . , - 1 2 '!'i --d-· 'f'l,···,'f'i-1,'f'i ,···,'f'n + Orl-, , ... ,11,l-, , .... 
li 

(19)

It is also assumed that cj,<0l = cp'. 
The iteration procedure has to be repeated until the following stop condition is 
fulfilled 

llą,(r)II - llq,<r-])11
li cl> <r) li < E, (20)

where E is permissible en-or. 
It is possible to formulate stop conditions by limiting the number of 

iterations, that is conditions r :S r max, where r max is maximal number of 
iterations. However, using small values r max can lead to inadequate 
calculation results. 

The Crank-Nicholson method gives an en-or of the order (~t)2, assuming 
that equations (18) are solved with good accuracy. 

The integration methods above do not take into account a special form of 
operator A in the advection-diffusion equation. The method of decomposing 
the advection-diffusion equation with respect to successive variables was 
presented in [6]. In this method, two schemes can be used to solve equations 
(7): one and two-cycle schemes. Both schemes are unconditionally stable and 
enable us to find the solution of the problem with high numerical efficiency. 
Below, both methods are applied to solving equations (7). 

The dispersion equation (1) can also be written in the form 

(21) 

_ a ui ,+, a ( ui a </J ) _ where A1 </J - JxUl (U r) - Jx<I) µ Jx<I) , for l - l, 2, 3. 

Discrete approximations of A 1 </J, A2</J, A 3</J in accordance with (5) are 

min {i+ 2, n ~In 
(l) 1 (l) A1··,=a··,+ ' a-,1.+.1·, .i.i.« 1.J.. ,l._ I,),·. 'f' ,}, ·, 

/;max{i-2, I} 

min{j+2,n~2n 
A <2i · <2l 
i.i.;» = a;_j,, + L aru, </J;.1.k, 

I ; max U - 2, I }

(22. l) 

(22.2) 
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min{k.+2.11<-'!} 
(3) ~- '•i (3) 

A.3,i,j,k = a i,j,k + L ai,j,k,I ¢;,j,l· 
/=ma, {k-2, I} 

(22.3) 

If the discrete approximation of equation (21) is written in the form 

(23) 

where A 1, A2, A3 are defined in (22), fis defined in (7.1 ), in accordance with 
[6], the method of decomposing equation (23) with respect to successive 
variables can be applied. 

If we know cp', that is components of vector ci, on layer s (in relation to 
time), for the one-cycle scheme q,'+1 is found by solving the following 
sequence of problems [6] 

cps+l/3 _ cp' (<1>'+ 1/3 + cp') ----+A ---- =f'+l/2 
/',,,t 3 2 ' 

cps+l/6 - cp' 1 (<1>·1+!/6 + cp·') ---- + -A·'+3/6 ---- = O /',,_( 2 I 2 ' 

cp;➔-2/6 _ cps+ 1/6 1 . (ci,s+2/6 + ci,·'·+ 1/6) ----- + -A·'+3/6 ----- = O 
/',,,t 2 2 2 ' 

q, , + 316 _ q, s+ 216 I , (ci,,+ 3/6 + ci, s+ 216) I 
-----+-A·l+.1/6 ----- =-f'+3/6 

!'it 2 3 2 2 ' 

(24.1) 

(24.2) 

(24.3) 

Solution with the one-cycle decomposition scheme gives an error of the order 
/',,,t [6]. 

When we use the two-cycle scheme, the vector cl>'+ 1 can be obtained by 
solution of the following systems of equations [6] 

(25.1) 

(25.2) 

(25.3) 
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q,s+4/6 _ <I>,+ 3/6 l ( q> .\ +4/6 + <j> ·'· + 3/6) 1 ______ + -A .1+310 = -f'+310 
S: 2 3 2 2 ' 

cp·'·+s10 _ cj>.1+416 l . , (cps+s10 + cp'+4/6) _ 
+ - A I+ J/6 2 - o' 

S: 2 2 

cp'+ I _ cl>.1+5/6 ] (cps+ I + q>.1+5/6) 
-----+-A'+31G ----- =0 

S: 2 I 2 ' 

(25.4) 

(25.5) 

(25.6) 

Solution with the two-cycle decomposition scheme gives an error of the 
order (t::it)2, so accuracy is equal to that obtained by the Crank-Nicholson 
method. 

In the next part of the paper all integration methods described are tested 
with respect to accuracy for different integration time step and numerical 
efficiency. Two different problems were formulated and solved: 
- the first is connected with the dispersion process given by equations (7), 
- the second is formulated for dispersion with chemical reactions of 

pollutants, which leads to a multiplication of the number of equations and 
makes the dispersion problem non-linear. 
The dispersion problem, which takes into account chemical changes, uses 

the model of chemical reactions of nitrogen oxides given in [2], [12], [13] 

k, N02 + hv -➔ NO +O (26.1) 

Mathematical description of this model is a set of the following non-linear 
ODEs 

dc/JNo cit= k2c/JN0, - k, c/Jo,c/JNo 

dc/JNo, dt = k I c/JNo ¢o, - k2 c/JNo, 
d:t = k2c/JN0, - k1c/JNoc/Jo, 

(26.2) 

In the paper this model is applied in the advection-diffusion equation in 
the manner described below. We assumed that advection-diffusion equations 
for reactive pollutants have the form 
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d</Jc dt + A(</Jc) = fe for c = I,2,3 ... .n», (27) 

where n; is the number of pollutants which are taken into account in 
dispersion modelling. 

In order to consider the model of reaction with nitrogen oxides n; = 3, it is 
assumed 

(28.1) 

(28.2) 

(28.3) 

In source terms I c we have to add respectively 

(29.1) 

(29.2) 

(29.3) 

The discretisation method for equations (27) is exactly the same as for 
a single pollutant. The essential difference in relation to single pollutant 
dispersion modelling is that the equations (27) are directly conjugate with 
chemical reactions. The equations (27) can be written in the form 

d</Jc dt + A(</Jc) =f(</J1, </J2, </)3) for c = 1,2,3. (30) 

As it can be seen in dispersion modelling of nitrogen oxides with the 
chemical reaction model, we obtain three times more (3n) partial differential 
equations (30) than for a single pollutant. The integration algorithm can be 
completed by additional conditions 

</Jc, i.j. k 2 O. (31) 

It should be noted that non-linearity of equations (26) results in 
non-linearity of equations (30). 
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4. Analysis of numerical efficiency 

Analysis of numerical efficiency of methods used for integration of ODEs
after finite volume discretisation has been performed for the rectangular
prism presented in Fig. 3. The domain investigated was divided into elements
with a volume of 1 x 0.5 x 0.1 m. After discretisation with 111 = 112 = 40;
113 = 100 we have n= 160000 control volumes.

u 

40 m 
Fig. 3. Domain investigated: S - emission source,

P1 -ć- P4 - points inside domain in which pollutant concentrations ¢ are investigated

The emission source with maximum emission intensity fmax equal to
100 mg/sis located inside the domain at x0l = 35; x<2J = 1 O, at height x<3J = I m.
The source function is assumed to be a triangular function (Fig. 4a)

o if t < t, 
t 

fmax- if t ::::: tn, 
J= t/11 (32)

fmax ( 1 t - t/11) if t/11 < t ::::: tk tk - [111 

o if t > t; 

This means that, for volume V,.j. k surrounding the emission source, term I,.j. k 
has the form

1 
i.; = V-:- f. 

,.;, k 
(33)

Additionally, we assumed the start emission time t., = O. Maximum emission
occurs for t111 = 20 s and stop of emission is at time i, = 40 s.

The direction of air velocity vector was a= 180° in relation to axis ox<1l
with velocity U= 3 mis at height 14 m (Fig. 4b). The vertical distribution of
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the air velocity was obtained from the pre-processor for neutral conditions of 
the atmosphere [2]. It was also assumed that the velocity vector has 
components u<1) = U(xC3l), u(2) = u(3) = O. 

120 

100 

80 

40 

20 

10 20 30 

t[s] 
40 

15 
14 
13 
12 
11 
10 

'?9 
M......,. 8 
->< 7 

6 
5 
4 
3 
2 

50 Oo 0.5 1 

a) 

1.5 2 2.5 3 3.5 
U [m/s] 

b) 

Fig. 4. Input calculation data: a) emission intensity of source S; b) vertical distribution of air velocity U 

Calculations have been carried out with all methods described in the 
paper. The results obtained for four different points P; (i= 1, 2, 3, 4) inside the 
domain are compared. 

Points Pi (20, 10, 1) and P3 (35, 10, 1) are located inline with the source 
(parallel to direction of air velocity vector), in contrast to points P2 (20, 15, 1.5) 
and P4 (35, 15, 1.5), which are located higher and outside the line connecting 
source and points Pi and P3 (see Fig. 3). Calculations assume the second kind 
of boundary conditions for x<iJ = 40 (inlet plane) and x<3l = O (pollutant 
reflection). For other boundaries, conditions of the first kind are assumed. 
Initial concentrations inside the domain and background concentrations have 
been assumed as equal to zero. 

Calculations were carried out by using different methods with a constant 
time step within time interval t E (0,120) s. In calculations the following were 
used: 

one-cycle decomposition scheme (]), 
two-cycle decomposition scheme (D), 
Crank-Nicholson method with Gauss-Seidel iteration (C - N), 
Runge-Kutta (IV order) method (R - K). 
Results obtained by different methods were compared with results 

obtained by the Runge-Kutta method, because this method gives the best 
accuracy, with a relatively small time integration step. 
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4.1 Linear advection-diffusion equation 

The numerical simulations enabled us to find the length of time step which 
guarantees a good accuracy of calculation results obtained for R-K method. 
For this method, acceptable accuracy is obtained for integration time step 
/),.t $ O.OS s. If we decrease the time step, the calculation time increases but 
accuracy of the results does not change. Fig. 5 and Fig. 6 present calculated 
pollutant concentrations in time, for points P1--:-P4 obtained by R-K methods 
and for integration time step /),.t = O.Ol s. 

Fig. 5 presents changes of pollutant concentration for points P1 and P3 

located inline with source of emission. We can observe higher concentration 
at point P1, where distance from source is smaller than from point P3• The 
shapes of concentration lines for both points are similar. Differences in values 
are due to different distance from the source and by the turbulent diffusion 
process. 

6,---------------------.=====;i 

5

4
(") 

E
oi3 
.ś
-e-

2 .,,,.--- 
/ ,, '

/ ' 
/ ',

_,,,/ ............. 
0..1.--.c__~o:c:✓=--........-------,-----===--==--...;-.:.;-;:=.......------ł

30 60 

t[s) 
90 120 

Fig. 5. Pollutant concentration at point P, and P3 

Fig. 6 presents calculation results for points P2 and P4, which are located 
higher and outside the axis of air motion. 

Results of calculations presented in Fig. 6 differ from those in Fig. 5. The 
maximal concentrations are smaller than those for points P1 and P3, which are 
located in the axis of air motion. It can be noticed that smaller concentrations 
are observed at point P2, which is located in an area where advection has 
a crucial influence on pollutant transport. For a longer distance from the 
source, especially outside the axis of air motion, the influence of turbulent 
diffusion on pollutant transport increases. 
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Fig. 6. Pollutant concentration at point P2 and P. 

The comparison of accuracy of results obtained by using different 
methods requires calculations for different time step values. In the paper, 
results of calculations for time steps !::.t = 1 s, !::.t = 0.5 s, !::.t = 0.1 s and 
!::.t = 0.05 sand different methods are compared with results obtained by the 
Runge-Kutta method and time step !::.t = O.Ol s. 

Maximal concentration ¢111 calculated at points Pi-~P4 by the Crank­ 
Nicholson method and decomposition schemes are compared with those 
obtained for Runge-Kutta. Percentage difference is defined as 

(35) 

where </JR-K the value calculated by using the Runge-Kutta method, </)111 the 
value calculated by using one of the methods investigated. Fig. 7 presents 
percentage difference E according to (35). 

The values of percentage differences presented in Fig. 7 show good 
correspondence for a time step less than !::.t = 0.5 s. We can see the lower 
accuracy of the one-cycle scheme and very close results obtained for the 
two-cycle scheme and Crank-Nicholson method (after using value of 
permissible error z= le-6 in (20)). In the Crank-Nicholson method, the value 
of permissible error influences not only the accuracy of results (Fig. 7 results 
for £ = le-6 and £ = le-3), but also the number of iterations and, in 
consequence, the calculation time. 
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Comparison of global calculation time te for different methods and time 
steps is presented in Fig. 8. 

Figs. 7 and 8 show that the two-cycle decomposition scheme and the 
Crank-Nicholson method give the best relation between accuracy of results 
and calculation time. 

4.2 The set of non-linear advection-diffusion equations 

In this part of the paper, we investigate the numerical efficiency of 
different methods used for solving the non-linear advection-diffusion 
equations in form (30), which are conjugate with chemical reactions. It can be 
noticed that nitrogen dioxide (NO2) is a pollutant which can significantly 
damage human respiratory system. Because nitrogen dioxide is formed in the 
atmosphere through the oxidation of nitrogen oxide (NO) by ozone (03), our 
investigations focus on interaction between concentration of NO2 and 03• 

Change in NO concentration is similar to that of 03 concentration, thus, NO 
concentration is not presented. 

All pollutant concentrations are calculated according to the model of 
chemical reaction presented, using the same domain. It was assumed that 
intensity of nitrogen oxides emission is known and 95% of the mass emitted is 
nitrogen oxide and 5% is emission of nitrogen dioxide. 

It is assumed that background concentrations of both pollutants and the 
background concentration of the product of chemical reaction, ozone, are 
equal to zero. Reaction coefficients k1, k2 from (26) are dependent on ambient 
temperature T (288 K was assumed) and intensity of solar radiation Q 
(660 W/m2 was assumed) according to paper [14] 

k _ 16.33 -'1° [l/ b ] 
I - -------y- e pp S , 

IO -6 k2=0.8-10-3e-Q+1 .. 10 
Q [lis]. 

(36) 

(37) 

As for single pollutant dispersion, at first we found the proper length of 
time step which can guarantee a good accuracy of calculation results. For the 
Runge-Kutra method, acceptable accuracy is obtained for integration time 
step !).t = 0.01 s. 

Fig. 9 presents changes of pollutant concentration of NO2 and 03 for point 
P1--'c-P4 obtained by R-K methods and for integration time step /).t = O.Ol s. 
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Fig. 9. Concentration of NO2 and 03 at points P17P• 

Different ozone concentrations can be seen. At points P1 and P3, the
reaction of ozone production lasts longer and ozone concentration reaches
a maximum earlier than NO2 concentration. Ozone concentration remains
constant at the time point at which concentration of NO2 decreases to about
50% of its maximum value. At points P2 and P4, which are located outside the
axis of main air motion, the intensity of ozone production is smaller as the
result of lower NO2 concentration. The decrease of ozone concentration is in
simple relation to the decrease of NO2 concentration.

The set of non-linear equations describing nitrogen oxides dispersion was
solved by the methods presented in the paper, for different time steps: f...t= 1 s,
S: = 0.5 s, f...t = 0.1 s and f...t = 0.05 s. The results obtained for NO2 

concentrations are compared with those obtained by the Runge-Kutta method
for time step f...t = O.Ol s. Maximal concentration </JNo, calculated at points
Pr-':-P4 by the Runge-Kutta and Crank-Nicholson methods and the decom­
position scheme are compared using percentage difference value E defined in
(35). Comparison of percentage difference values for the above methods is
presented in Fig. I O.
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The analysis of percentage difference presented in Fig. 1 O shows weak 
correspondence for time step !::,,t = 0.5 s (for single pollutant dispersion this 
time step was sufficient). Decreasing the time integration step gives better 
correspondence with results obtained by the Runge-Kutra method. 

For the non-linear problem investigated, we can also see a lower accuracy 
of the one-cycle scheme and very close results obtained for the two-cycle 
scheme and the Crank-Nicholson method. Obviously, in the Crank-Nicholson 
method, the value of permissible error s influences the accuracy of results (see 
results for £ = le-6 and £ = le-3). 

Numerical efficiency of methods investigated can be defined by compari­ 
son of calculation time for the given time step and is presented in Fig. 11. 

Fig. 11 shows that the two-cycle decomposition scheme is the method 
which requires the shortest calculation time. However, if we compare 
calculation time te in relation to number of equations, the best relation 
between accuracy of results and calculation time after including non-linear 
terms is obtained for the Runge-Kurta method. Calculation time te in relation 
to number of equations after including non-linear terms increases considerab­ 
ly for the two-cycle scheme. These results enable us to conclude that the 
Crank-Nicholson method is more universal than the two-cycle decomposition 
scheme. 

5. Numerical case studies for a car park 

The dispersion model presented in the paper can be used for numerical 
simulation of nitrogen oxides dispersion after cold start of vehicle engines and 
vehicle motion with unheated engines. The calculations are carried out for an 
open car park with dimensions as in Fig. 12. An inclination of wind angle 
a= 180° to axis x0l is assumed. 

x<21 

Fig. 12. Car park geometry 
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The domain investigated around the car park has the dimensions
360 x 245 x I O m. According to the finite volume method, the domain was
divided into control volumes for n 1 = I 00; n2 = 45; n3 = 20, so 90000 control
volumes were obtained. In the calculations, Neumann boundary conditions
were assumed for plane (xC1l = 360) and plane (xc3J = O). Boundary Dirichlet
conditions (which are used to describe free exchange between surroundings
and domain) were assumed for the other boundaries of the domain. It was also
assumed for simplification that initial concentration and background concent­
ration at time t0 = O are equal to zero.

The problem is to determine possible distributions of NO2 and 03

concentrations in the domain of the car park for given weather conditions. The
input data were chosen in correspondence to a real situation. It was assumed
that emission of nitrogen oxide was 95% of total emitted mass of nitrogen
oxides. An unstable condition of atmosphere was taken into account in
calculations with solar radiation equal to 940 W/m2 (average radiation in June
in Bielsko-Biała city). A numerical pre-processor was used in order to define
data of wind profile and eddy diffusivity [2]. Input parameters for the
pre-processor are presented in Table 1.

Table I.
Input parameters for the pre-processor

Parameter Value

Air velocity at height _,..c3i = 14 m 3 mis 

Aerodynamic roughness 0.5 m

Ambient temperature at height x(J) = 2 m 15°C

Ambient temperature at height _,..oi = 14 m 14.8°C

Atmospheric pressure O.I MPa

We modelled cars starting and leaving different parking spaces at random
every 15 seconds over 30 minutes. Each car represented a moving source of
pollutants in accordance with the multi-point model [2], [4].

Emission intensity for a vehicle of a given category which is inside control
volume V;,j, k can be expressed as [2]:

1 
Ii,j,k = ~(ve(I) [v] + £uJ(t, V, n) 

I,), k 
(38)

where euJ [v] is road emission for a heated engine as a function of average
vehicle velocity v for vehicle category /, £uJ (t, v, T) is intensity of additional
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emission after cold start of vehicle engine in ambient temperature T and time 
of engine work after cold start t for given vehicle category I. 

In simulation, it is assumed that each modelled vehicle remains stationary 
for the first ten seconds after the cold engine was started. After ten seconds the 
car accelerates to a velocity of about 30 km/h and leaves the car park by the 
shortest route. It stops at x<2l = 3 to pay the parking charge. Then it exits the car 
park and the domain investigated. 

The results obtained with the dispersion model presented can only be 
evaluated if calculations are based on statistical data which are representative 
for an actual car fleet. One method of creating a representative sample of cars 
in a car park is to divide vehicles up into commercial segments and note the 
percentage of each segment on market. If we then break down the total fleet 
according to cylinder capacity and SUCI engine, we can find a classification 
as in Table 2 [2]. 

Table 2. 
Assumed classification of SI and CI cars according to engine capacity 

Engine capacity Ye [drn '] 
Type of engine 

Ye< 1.4 1.4 <Yes; 2.0 Ye> 2.0 

SI 49.2% 29.7% 21.1% 

er - 62.4% 37.6% 

The percentage distribution of cars according to pollutant emission and 
type of engine assumed in calculations is presented in Table 3. 

Table 3. 
Assumed percentage of cars fulfilling various legislation norms according to type of engine 

Percentage in relation to type of engine [%) 
Legislation Norm Percentage of all fleet 

SI CI 

Pre EURO 15 80 20 

EURO l 35 60 40 

EURO 2 30 55 45 

EURO 3 15 80 20 

EURO4 5 90 10 

In order to determine emission from a vehicle of a given category, 
emission for a heated engine was calculated on the basis of the static 
characteristic (average road emission as a function of vehicle velocity) 
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according to the HB EFA model [ 15]. An example of characteristics of 
average road emission NOx as a function of average vehicle velocity is 
presented in Fig. 13. 
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Fig. 13. Characteristics of average road emission of NOx for vehicles with CI engine, fulfilling EURO Il, 
in relation to engine capacity 

Emission intensity for a vehicle of a given category after cold start was 
assumed as the power function of engine work presented in [2] according to 
the data from the INRETS model [ 16]. 
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Fig. 14. Additional emission intensity characteristics of NO, for vehicle with Cl engine fulfilling EURO II, 
after cold start in various ambient temperatures 
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An example of additional emission intensity characteristics of NO" after 
cold start in various ambient temperatures for average velocity of vehicle 
v = 30 km/h, according to the data from the INRETS model, is presented in 
Fig. 14. 

Numerical simulation of dispersion of emitted pollutants with chemical 
reactions enable us to calculate prognostic concentration of nitrogen oxides 
and concentration of ozone produced in chemical reactions as a secondary 
pollutant. Using the data given for atmospheric conditions, emission 
characteristics and car fleet, computer simulation gives us instantaneous and 
average concentrations of NO2 and 03 in the car park. Numerical calculations 
are carried out by the Crank-Nicholson method and a time step is equal to 
b.t = O.OS s. The maximum values of calculated concentrations of nitrogen 
dioxide and ozone are presented in Table 4. 

Table 4. 
Maximum concentration of NO2 and 03 at a height of I .8 m 

Pollutant 9nm [rng/rn '] 
NO2 0.059 

03 1.15 · 10-0 

Fig. 15 shows the average 30-minute distributions of NO2 and 03 

concentration in the car park at a height of 1.8 m. Both concentrations are 
given in the scale log(¢s)/log(¢maxs) wheres= 3 · 108• 

The analysis of data presented in Table 4 and in Fig. 15 leads to the 
conclusion that, for the given simulation data, the calculated concentrations at 
a height of 1.8 m do not indicate that alarm values (which are defined as 
a 1-hour average) [ 17] would be exceeded, but it must be stressed that 
background concentration was assumed to be zero. 

Apart from calculating averaged values, the numerical model of disper­ 
sion and multi-point source model presented can facilitate calculation of 
instantaneous concentrations at any height. Fig. 16 presents instantaneous 
concentrations of NO2 and 03 at the point with coordinates xC'l = 152.5; 
xC2l = 3; x<3l = 1.8. 

The results obtained by numerical simulation of the dispersion process 
and presented in the paper can be treated as an example of possible 
applications of numerical multi-point models in relation to car exhaust 
emission and dispersion. After taking into account other scenarios of car 
motion or different parameters of atmosphere, results obtained may be 
different to those presented. 
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Fig. 15. Calculated average concentrations in car park at a height of 1.8 m 
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6. Conclusion 

The paper presents equations and computer models to carry out numerical 
simulations, in which we define vehicle pollutant concentrations. The model 
presented in the paper can be used in the analysis of dispersion of pollutants of 
vehicles travelling on roads and motorways or, as in the paper, around a car 
park. The mathematical model of pollutant dispersion phenomena consists of 
a linear partial differential equation for a single non-reactive pollutant or of 
a set of non-linear PDE if chemical reactions are included. 

Numerical integration of a set of ordinary differential equations obtained 
after discretisation is possible by using a variety of methods. Numerical 
efficiency in solving dispersion problems by a classical method like the 
Runge-Kutta (IV order) and Crank-Nicholson is analysed in comparison to 
the decomposing one- and two-cycle schemes, which take into account 
a special form of ODE equations obtained after discretisation. 

The simulations carried out enabled us to determine that the Crank­ 
Nicholson method is a universal method, which can be applied to the 
problems of mass transport by advection and turbulent diffusion. The 
disadvantage of this method is the calculation time needed (longer in relation 
to the two-cycle scheme) for solution in the case of the linear advection­ 
diffusion equation as a result of Gauss-Seidel iteration. It should be also 
underlined that decomposition schemes take into account the special form of 
operator A (equation (23)). 

For numerical solution of a set of non-linear advection - diffusion 
equations, better results are given by the Crank-Nicholson method with 
Gauss-Seidel iterations instead of the decomposing two-cycle scheme. In this 
case, the set of ODE equations is stiff, and using the two-cycle scheme (with 
the same accuracy) is less numerically efficient than the Crank-Nicholson 
method. 

On the basis of the results of simulation presented in the paper, we can 
state that for a non-linear dispersion problem a smaller integration time step 
should be used than for linear dispersion problems. Where a large number of 
equations are conjugate, the Runge-Kutta or Crank-Nicholson method with 
Gauss-Seidel iteration should be used. 

This paper was written as part of Project 4 Tl 2D 008 26 financed by the 
Committee for Scientific Research. 

Manuscript received by Editorial Board, September 08, 2004; 
final version, February IO, 2005. 
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Numeryczne modelowanie dyspersji zanieczyszczeń pochodzenia motoryzacyjnego
z uwzględnieniem przemian chemicznych

Streszczenie

W artykule przedstawiono model dyspersji zanieczyszczeń emitowanych przez silniki spalino­
we pojazdów, umożliwiający ocenę stopnia oddziaływania transportu na środowisko. Model
numeryczny dyspersji sformułowano przy zastosowaniu metody objętości skończonych. Przed­
stawiono równania uzyskane w wyniku dyskretyzacji zagadnienia oraz omówiono metody ich
rozwiązania (metodą Rungego-Kutty, Cranka-Nicholsona oraz dekompozycji). Na podstawie
przeprowadzonych symulacji komputerowych podano wnioski dotyczące efektywności numerycz­
nej poszczególnych metod. Sformułowano zadanie dyspersji tlenków azotu (NO,) z uwzględ­
nieniem przemian chemicznych i przedstawiono wyniki symulacji komputerowych. W zadaniu
uwzględniono także zwiększoną emisję w warunkach zimnego rozruchu silników.


