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Fixed terminal time fractional optimal control problem
for discrete time singular system

Tirumalasetty CHIRANJEEVI, Ramesh DEVARAPALLI, Naladi Ram BABU,
Kiran Babu VAKKAPATLA, R. Gowri Sankara RAO

and Fausto Pedro GARCÍA MÁRQUEZ

This paper presents the formulation and numerical simulation for linear quadratic optimal
control problem (LQOCP) of free terminal state and fixed terminal time fractional order discrete
time singular system (FODSS). System dynamics is expressed in terms of Riemann-Liouville
fractional derivative (RLFD), and performance index (PI) in terms of state and costate. Because of
its complexity, finding analytical and numerical solutions to singular system (SS) is difficult. As a
result, we use coordinate transformation to convert FODSS to its corresponding fractional order
discrete time nonsingular system (FODNSS). After that, we obtain the necessary conditions
by employing a Hamiltonian approach. The relevant conditions are solved using the general
solution approach. For the analysis of formulation and solution algorithm, a numerical example
is illustrated. Results are obtained for various 𝛼 values. According to state of the art, this is the
first time that a formulation and numerical simulation of free terminal state and fixed terminal
time optimal control problem (OCP) of FODSS is presented.
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1. Introduction

Physical systems described using fractional derivatives (FDs) are called frac-
tional order systems and represent more accurate behavior [1–3]. Because FD
is not a point property, it is a good tool for describing memory and heredity
features of diverse systems. This is the fundamental benefit of employing FDs,
as such effects are ignored in integer order representation [1]. It should be men-
tioned here that from the viewpoint of application, FDs emerge in control theory,
signal processing, mechanics, electrical engineering, economics, rheology, elec-
trochemistry, bioengineering, biophysics, biology, viscoelasticity, mechatronics,
image processing, etc. [1–3]. FDs also appear in OCP.
When at least one FD term appears in either in PI or in system dynamics,

or both, a dynamic optimization issue is reduced to a fractional optimal control
problem (FOCP) [4]. RLFD and Caputo fractional derivative (CFD) are the most
often used FDs. The system dynamics are described using RLFD in this paper.
Only a few works on FOCP have been documented in the literature. In this

respect, a general formulation and numerical scheme for FOCPs has been in-
troduced in [4]. In [5, 6], Biswas and Sen proposed formulation of FOCPs
at different endpoint conditions. For the solution of state and control, shoot-
ing method and Grünwald-Letnikov approximation-based technique have been
used. Authors in [7] proposed a solution scheme based on reflection operator
for solving FOCPs described by RLFD or CFD. Authors in [8–10] proposed
different numerical schemes based on modified Jacobi polynomials, semidef-
inite programming approach and collocation method along with properties of
the Legendre multiwavelets for solving FOCPs. Lotfi et al. proposed differ-
ent solution schemes, namely penalty variational method [11], Ritz-epsilon
method [12], Legendre orthonormal polynomial based method [13], and Ritz-
variational method [14] for the solution of constrained multidimensional FOCPs.
In these papers, authors first transform the constrained FOCP into an uncon-
strained FOCP, and then obtain optimal solution. Effati et al. proposed so-
lutions of FOCPs using neural network approach [15], variational iterative
method [16], linear programming method [17], modified Adomian decompo-
sition method [18], fixed point approach [19], and hybrid meshless method [20].
In literature, other existing solution schemes for solving FOCPs are based on
Bernoulli polynomials in combination with a fractional integral operational
matrix [21, 22], Bezier curve [23], hybrid functions [24], nonstandard finite
difference [25], Haar wavelets collocation [26], Bernstein polynomials oper-
ational matrices of FDs [27], the Legendre wavelets [28], and closed form
solution method [29]. Formulation of FOCP with control constraints is dis-
cussed in [30]. In [31–33], authors develop formulation and solution of FOCP
of discrete-time systems. Some more works of discrete time FOCP are discussed
in [34–36].
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The above literature discusses the FOCPs of non-singular systemswith distinct
terminal conditions. SSs have a number of essential properties, including “consis-
tent initial conditions, nonproperness of the transfer matrix, input derivatives in
state dynamics, and noncausality” [37]. Because of these special characteristics,
SSs are having particular importance, and we can find in various applications,
including social, economic, biological and engineering systems [37].
Reported work in the literature on OCP of SSs is not much. Arora and

Chauhan [38] present OCP of SSs using block pulse function. Authors in [39–41]
discuss LQOCP for SSs. Mohan and Kar [42] propose a solution method for OCP
of SSs utilizing shifted Legendre polynomials.
Only limited work is reported on FOCP of continuous time SSs. In this regard,

a “pseudo state space” formulation for FOCP of SSs in terms of RLFD and CFD
is introduced in [43,44]. In literature, authors develop formulation in the sense of
RLFD [45–47], CFD [48–50] and distinct numerical schemes [51–53] for FOCP
of continuous time SSs at different endpoint conditions. Regarding FODSS, fixed
terminal time andfixed terminal stateOCPare discussed in [54].However, free ter-
minal state and fixed terminal timeOCP of FODSS have not been discussed so far.
Formulation and numerical simulation for LQOCP of FODSSwith free termi-

nal state and fixed terminal time in terms of RLFD are presented in this paper. PI
in terms of state and costate is taken into account. We convert the FODSS into its
equivalent FODNSS by using transformation [55], and then necessary conditions
are obtained. We solve the relevant conditions using the general solution method.
An example is used to analyze the formulation and solution strategy.
The remaining part of the paper is framed as follows: In Section 2, LQOCP

formulation of FODSS is presented. Numerical algorithm for free terminal state
and fixed terminal time OCP of FODSS is presented in Section 3. In Section 4,
numerical illustration is carried out for the analysis of formulation and solution
algorithm. Eventually, in Section 5, the work’s conclusions are presented.

2. LQOCP formulation of FODSS

Consider the FODSS described by Eq. (1) [56]

EΔ𝛼𝑥(𝑘 + 1) = A𝑥(𝑘) + B𝑢(𝑘), 𝑘 ∈ Z+ = {0, 1, . . .} , (1)

where Δ𝛼𝑥(𝑘) is given by [56]

Δ𝛼𝑥(𝑘) =
𝑘∑︁
𝜄=0

(−1) 𝜄
(
𝛼

𝜄

)
𝑥(𝑘 − 𝜄), (2)

where 𝑢(𝑘) ∈ <𝑚, 𝑥(𝑘) ∈ <𝑛 are the input and state vectors, A ∈ <𝑛×𝑛,
E ∈ <𝑛×𝑛, B ∈ <𝑛×𝑚 are the state, singular and input matrices.
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Consider a feedback control law

𝑢(𝑘) = K𝑥(𝑘) + 𝜈(𝑘), (3)

where K ∈ <𝑚×𝑛 is the gain matrix and 𝜈(𝑘) ∈ <𝑚 is new input vector. Choose
the gainmatrixK in order to satisfy the relation deg( |𝑧E − (A + BK) |) = rank(E).
By using Eq. (3), we can write Eq. (1) as

EΔ𝛼𝑥(𝑘 + 1) = (A + BK) 𝑥(𝑘) + B𝜈(𝑘). (4)

Γ and Λ may be chosen in order to satisfy [37]

ΓEΛ = diag(𝐼𝑜, 0), Γ(A + BK)Λ = diag(Z, 𝐼), 𝑜 = rank(E), (5)

where Γ and Λ are non-singular.
We may choose coordinate transformation [37]

𝑥(𝑘) = Λ

[
𝑥1(𝑘)
𝑥2(𝑘)

]
, 𝑥1(𝑘) ∈ <𝑜, 𝑥2(𝑘) ∈ <𝑛−𝑜 . (6)

By considering Eqs. (5) and (6), the Eq. (4) is modified as[
𝐼𝑜 0
0 0

]
Δ𝛼

[
𝑥1(𝑘 + 1)
𝑥2(𝑘 + 1)

]
=

[
Z 0
0 𝐼

] [
𝑥1(𝑘)
𝑥2(𝑘)

]
+

[
B1
B2

]
𝜈(𝑘). (7)

By considering Eq. (2), the Eq. (7) is modified as

𝑥1(𝑘 + 1) =
𝑘∑︁
𝜄=0

𝜎(𝜄)𝑥1(𝑘 − 𝜄) + B1𝜈(𝑘),

0 = 𝑥2(𝑘) + B2𝜈(𝑘),
(8)

where 𝜎(0) = Z + 𝛼 𝐼, 𝜎(𝜄) = (−1) 𝜄
(
𝛼

𝜄 + 1

)
𝐼, 𝜄 = 1, 2, . . . , 𝑘 .

We consider quadratic PI as

𝐽 =

𝑁−1∑︁
𝑘=0

[
𝑥𝑇 (𝑘)𝚽𝑥(𝑘) + 𝑢𝑇 (𝑘)𝚯𝑢(𝑘)

]
, (9)

where 𝚽 ∈ <𝑛×𝑛 > 0 and 𝚯 ∈ <𝑚×𝑚 > 0.
By considering Eqs. (6) and (8) we write[

𝑥(𝑘)
𝑢(𝑘)

]
=

[
𝐼 0
K 𝐼

] [
𝑥(𝑘)
𝜈(𝑘)

]
=

[
Λ 0

KΛ 𝐼

] [
𝑥1(𝑘)
𝑥2(𝑘)
𝜈(𝑘)

]
=

[
Λ 0

KΛ 𝐼

] [
𝐼 0
0 −B2
0 𝐼

] [
𝑥1(𝑘)
𝜈(𝑘)

]
. (10)
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By using Eq. (10), we can modify Eq. (9) as

𝐽 =

𝑁−1∑︁
𝑘=0

[
𝑥(𝑘)
𝑢(𝑘)

]𝑇 [
Φ 0
0 Θ

] [
𝑥(𝑘)
𝑢(𝑘)

]
=

𝑁−1∑︁
𝑘=0


[
𝑥1(𝑘)
𝜈(𝑘)

]𝑇 
𝐼 0
0 −B2
0 𝐼


𝑇 [

Λ 0
KΛ 𝐼

]𝑇 [
Φ 0
0 Θ

] [
Λ 0

KΛ 𝐼

] 
𝐼 0
0 −B2
0 𝐼


[
𝑥1(𝑘)
𝜈(𝑘)

]
=

𝑁−1∑︁
𝑘=0

[
𝑥1(𝑘)
𝜈(𝑘)

]𝑇 [
𝚽 Σ

Σ𝑇 𝚯

] [
𝑥1(𝑘)
𝜈(𝑘)

]
=

𝑁−1∑︁
𝑘=0

[
𝑥𝑇1 (𝑘)𝚽𝑥1(𝑘) + 𝑥𝑇1 (𝑘)Σ𝜈(𝑘) + 𝜈𝑇 (𝑘)Σ𝑇𝑥1(𝑘) + 𝜈𝑇 (𝑘)𝚯𝜈(𝑘)

]
.

Here we can note that the matrix
[
Φ 0
0 Θ

]
is symmetric positive definite (SPD)

and matrix
[
Λ 0

KΛ 𝐼

] 
𝐼 0
0 −B2
0 𝐼

 is of full column rank. Therefore, the matrix[
𝚽 Σ

Σ𝑇 𝚯

]
=


𝐼 0
0 −B2
0 𝐼


𝑇 [

Λ 0
KΛ 𝐼

]𝑇 [
Φ 0
0 Θ

] [
Λ 0

KΛ 𝐼

] 
𝐼 0
0 −B2
0 𝐼


is SPD and, therefore, are matrices 𝚽 and 𝚯 [37, 51].
Finally, PI becomes

𝐽 =

𝑁−1∑︁
𝑘=0

[
𝑥𝑇1 (𝑘)Φ̃𝑥(𝑘) + 𝜗𝑇 (𝑘)𝚯𝜗(𝑘)

]
, (11)

where Φ̃ = 𝚽 − Σ𝚯
−1
Σ𝑇 , 𝜗(𝑘) = 𝜈(𝑘) +𝚯

−1
Σ𝑇𝑥1(𝑘) and[

Φ̃ 0
0 𝚯

]
=

[
𝐼 −Σ𝚯−1

0 𝐼

] [
𝚽 Σ

Σ𝑇 𝚯

] [
𝐼 −Σ𝚯−1

0 𝐼

]𝑇
.

In
[
Φ̃ 0
0 𝚯

]
=

[
𝐼 −Σ𝚯−1

0 𝐼

] [
𝚽 Σ

Σ𝑇 𝚯

] [
𝐼 −Σ𝚯−1

0 𝐼

]𝑇
, the matrix

[
𝐼 −Σ𝚯−1

0 𝐼

]
is

nonsingular, and the matrix
[
𝚽 Σ

Σ𝑇 𝚯

]
is SPD. Therefore, the matrix

[
Φ̃ 0
0 𝚯

]
is

SPD and so is matrix Φ̃ [37, 51].
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Substitute 𝜈(𝑘) = 𝜗(𝑘) −𝚯
−1
Σ𝑇𝑥1(𝑘) in Eq. (8), we get

𝑥1(𝑘 + 1) =
𝑘∑︁
𝜄=0

𝜌(𝜄)𝑥1(𝑘 − 𝜄) + B1𝜗(𝑘), (12)

where

𝜌(0) = Z + 𝛼 𝐼 − B1𝚯
−1
Σ𝑇 , 𝜌(𝜄) = (−1) 𝜄

(
𝛼

𝜄 + 1

)
𝐼, 𝜄 = 1, 2, . . . , 𝑘 .

Therefore, the FODSS given by Eq. (1) is transformed into its equivalent
FODNSS given by Eq. (12). We can now use OCP strategy to generate a new
control vector 𝜗(𝑘) that minimizes the new PI defined by Eq. (11).
By using Lagrange’s multiplier 𝜆(𝑘), we write augmented PI (𝐽𝑎) as

𝐽𝑎 =

𝑁−1∑︁
𝑘=0

(
𝑥𝑇1 (𝑘)Φ̃𝑥1(𝑘) + 𝜗𝑇 (𝑘)𝚯𝜗(𝑘)

+
[

𝑘∑︁
𝜄=0

𝜌(𝜄)𝑥1(𝑘 − 𝜄) + B1𝜗(𝑘) − 𝑥1(𝑘 + 1)
]𝑇

𝜆(𝑘 + 1)
)
.

Hamiltonian function can be defined as

H(𝑘) = 𝑥𝑇1 (𝑘)Φ̃𝑥1(𝑘) + 𝜗𝑇 (𝑘)𝚯𝜗(𝑘)

+
[

𝑘∑︁
𝜄=0

𝜌(𝜄)𝑥1(𝑘 − 𝜄) + B1𝜗(𝑘)
]𝑇

𝜆(𝑘 + 1).

By using Hamiltonian, we write 𝐽𝑎 as

𝐽𝑎 = 𝑥𝑇1 (0)𝜆(0) − 𝑥𝑇1 (𝑁)𝜆(𝑁) +
𝑁−1∑︁
𝑘=0

[
H(𝑘) − 𝑥𝑇1 (𝑘)𝜆(𝑘)

]
.

We can write the first variation of 𝐽𝑎 as

𝛿 𝐽𝑎 = −𝜆(𝑁) 𝛿𝑥𝑇1 (𝑁) +
𝑁−1∑︁
𝑘=0

[(
𝜕H(𝑘)
𝜕𝑥𝑇1 (𝑘)

− 𝜆(𝑘)
)
𝛿𝑥𝑇1 (𝑘) +

𝜕H(𝑘)
𝜕𝜗𝑇 (𝑘)

𝛿𝜗𝑇 (𝑘)

+
(
𝜕H(𝑘 − 1)
𝜕𝜆𝑇 (𝑘)

− 𝑥1(𝑘)
)
𝛿𝜆𝑇 (𝑘)

]
.
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For optimum 𝛿 𝐽𝑎 = 0 [4]. Which yields

𝑥1(𝑘 + 1) =
𝜕H(𝑘)

𝜕𝜆𝑇 (𝑘 + 1)
=

𝑘∑︁
𝜄=0

𝜌(𝜄)𝑥1(𝑘 − 𝜄) + B1𝜗(𝑘), (13)

𝜆(𝑘) =
𝑁−1∑︁
𝑘=0

𝜕H(𝑘)
𝜕𝑥𝑇1 (𝑘)

=

[
Φ̃ + Φ̃𝑇

]
𝑥1(𝑘) +

𝑁−𝑘−1∑︁
𝜄=0

𝜌𝑇 (𝜄)𝜆(𝑘 + 𝜄 + 1), (14)

𝜕H(𝑘)
𝜕𝜗𝑇 (𝑘)

= 0 ⇒ 𝜗(𝑘) = −
[
𝚯 +𝚯

𝑇
] −1

B𝑇
1𝜆(𝑘 + 1). (15)

Finally, 𝛿 𝐽𝑎 becomes −𝜆(𝑁)𝛿𝑥𝑇1 (𝑁) = 0.

3. Numerical algorithm

A solution strategy [31–33] is described here in order to solve optimal condi-
tions (13), (14) and (15) with the given initial condition 𝑥(𝑘 = 0) = 𝑥0.
Apply the z-transform to Eqs. (13) and (15) by considering the initial condi-

tion, and then apply the inverse z-transform, we can obtain the solution of state
equation (13) as

𝑥1(𝑘) = ℏ(𝑘)𝑥1(0) −
𝑘−1∑︁
𝜄=0

ℏ(𝑘 − 𝜄 − 1)B1
[
𝚯 +𝚯

𝑇
] −1

B𝑇
1𝜆(𝜄 + 1), (16)

where ℏ(0) = 𝐼𝑛, ℏ(𝑘) =
𝑘−1∑︁
𝜄=0

𝜌(𝜄)ℏ(𝑘 − 𝜄 − 1).

We can write Eq. (16) in matrix form as


𝑥1(1)
...

𝑥1(𝑁)

 =


ℏ(1)
...

ℏ(𝑁)

 𝑥1(0)
+


ℏ(0) · · · 0
...

. . .
...

ℏ(𝑁−1) · · · ℏ(0)

 [−B1
[
𝚯 +𝚯

𝑇
] −1

B𝑇
1 ]


𝜆(1)
...

𝜆(𝑁)

 . (17)
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The matrix form of Eq. 14) is


𝜆(1)
...

𝜆(𝑁)

 =


ℏ𝑇 (𝑁−1)

...

ℏ𝑇 (0)

 𝜆(𝑁)
+


0 ℏ𝑇 (0) · · · ℏ𝑇 (𝑁−2)
...

...
. . .

...

0 0 · · · ℏ𝑇 (0)
0 0 · · · 0


[
Φ̃ + Φ̃𝑇

] 
𝑥1(0)
...

𝑥1(𝑁−1)

 . (18)

In the present case terminal state 𝑥(𝑁) is free, therefore, the variation
𝛿𝑥𝑇 (𝑁) ≠ 0. Therefore, the transversality condition is 𝜆(𝑁) = 0.
By using 𝜆(𝑁) = 0 in Eq. (18), we get


𝜆(1)
...

𝜆(𝑁)

 =


0 ℏ𝑇 (0) · · · ℏ𝑇 (𝑁−2)
...

...
. . .

...

0 0 · · · ℏ𝑇 (0)
0 0 · · · 0


[
Φ̃ + Φ̃𝑇

] 
𝑥1(0)
...

𝑥1(𝑁−1)

 . (19)

By considering 𝜏1 =

[
𝚯 +𝚯

𝑇
]
and 𝜏2 =

[
Φ̃ + Φ̃𝑇

]
, Eq. (19) can be modi-

fied as


𝜆(1)
𝜆(2)
...

𝜆(𝑁−1)
𝜆(𝑁)


=


ℏ𝑇 (0)𝜏2 ℏ𝑇 (1)𝜏2 · · · ℏ𝑇 (𝑁−2)𝜏2 0
0 ℏ𝑇 (0)𝜏2 · · · ℏ𝑇 (𝑁−3)𝜏2 0
...

...
. . .

...
...

0 0 · · · ℏ𝑇 (0)𝜏2 0
0 0 · · · 0 0




𝑥1(1)
𝑥1(2)
...

𝑥1(𝑁−1)
𝑥1(𝑁)


. (20)

Equation (17) can be modified by using Eq. (20) as


𝜓11 𝜓12 · · · 𝜓1,𝑁−1 𝜓1,𝑁
𝜓21 𝜓22 · · · 𝜓2,𝑁−1 𝜓2,𝑁
...

...
. . . · · · ...

𝜓𝑁−1,1 𝜓𝑁−1,2 · · · 𝜓𝑁−1,𝑁−1 𝜓𝑁−1,𝑁
𝜓𝑁,1 𝜓𝑁,2 · · · 𝜓𝑁,𝑁−1 𝜓𝑁,𝑁




𝑥1(1)
𝑥1(2)
...

𝑥1(𝑁−1)
𝑥1(𝑁)


=


ℏ(1)
ℏ(2)
...

ℏ(𝑁−1)
ℏ(𝑁)


𝑥1(0), (21)
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where 
𝜓11 𝜓12 · · · 𝜓1,𝑁−1 𝜓1,𝑁
𝜓21 𝜓22 · · · 𝜓2,𝑁−1 𝜓2,𝑁
...

...
. . . · · · ...

𝜓𝑁−1,1 𝜓𝑁−1,2 · · · 𝜓𝑁−1,𝑁−1 𝜓𝑁−1,𝑁
𝜓𝑁,1 𝜓𝑁,2 · · · 𝜓𝑁,𝑁−1 𝜓𝑁,𝑁


=


𝐼𝑛 0 · · · 0 0
0 𝐼𝑛 · · · 0 0
...

...
. . .

...
...

0 0 · · · 𝐼𝑛 0
0 0 · · · 0 𝐼𝑛


+


ℏ(0) 0 · · · 0 0
ℏ(1) ℏ(0) · · · 0 0
...

...
. . .

...
...

ℏ(𝑁−2) ℏ(𝑁−3) · · · ℏ(0) 0
ℏ(𝑁−1) ℏ(𝑁−2) · · · ℏ(1) ℏ(0)


B1𝜏 −1

1 B𝑇
1

+


ℏ𝑇 (0)𝜏2 ℏ𝑇 (1)𝜏2 · · · ℏ𝑇 (𝑁−2)𝜏2 0
0 ℏ𝑇 (0)𝜏2 · · · ℏ𝑇 (𝑁−3)𝜏2 0
...

...
. . .

...
...

0 0 · · · ℏ𝑇 (0)𝜏2 0
0 0 · · · 0 0


.

Optimal state vector 𝑥1(𝑘) can be obtained from the Eq. (21) as
𝑥1(1)
𝑥1(2)
...

𝑥1(𝑁−1)
𝑥1(𝑁)


=


𝜇11 𝜇12 · · · 𝜇1,𝑁−1 𝜇1,𝑁
𝜇21 𝜇22 · · · 𝜇2,𝑁−1 𝜇2,𝑁
...

...
. . .

...
...

𝜇𝑁−1,1 𝜇𝑁−1,2 · · · 𝜇𝑁−1,𝑁−1 𝜇𝑁−1,𝑁
𝜇𝑁,1 𝜇𝑁,2 · · · 𝜇𝑁,𝑁−1 𝜇𝑁,𝑁




ℏ(1)
ℏ(2)
...

ℏ(𝑁−1)
ℏ(𝑁)


𝑥1(0), (22)

where
𝜇11 𝜇12 · · · 𝜇1,𝑁−1 𝜇1,𝑁
𝜇21 𝜇22 · · · 𝜇2,𝑁−1 𝜇2,𝑁
...

...
. . .

...
...

𝜇𝑁−1,1 𝜇𝑁−1,2 · · · 𝜇𝑁−1,𝑁−1 𝜇𝑁−1,𝑁
𝜇𝑁,1 𝜇𝑁,2 · · · 𝜇𝑁,𝑁−1 𝜇𝑁,𝑁


=


𝜓11 𝜓12 · · · 𝜓1,𝑁−1 𝜓1,𝑁
𝜓21 𝜓22 · · · 𝜓2,𝑁−1 𝜓2,𝑁
...

...
. . . · · · ...

𝜓𝑁−1,1 𝜓𝑁−1,2 · · · 𝜓𝑁−1,𝑁−1 𝜓𝑁−1,𝑁
𝜓𝑁,1 𝜓𝑁,2 · · · 𝜓𝑁,𝑁−1 𝜓𝑁,𝑁



−1

.

Co-state vector 𝜆(𝑘) can be obtained by substituting Eq. (22) in Eq. (20).
Once 𝜆(𝑘) is known, we can obtain 𝜗(𝑘) by using Eq. (15). After getting 𝜗(𝑘),
we can obtain 𝜈(𝑘) by using the relation 𝜈(𝑘) = 𝜗(𝑘) −𝚯

−1
Σ𝑇𝑥1(𝑘). Thereafter,

𝑢(𝑘) and 𝑥2(𝑘) can be obtained by using the Eqs. (3) and (8).
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4. Numerical illustration

Consider a FODSS described by

EΔ𝛼𝑥(𝑘 + 1) = A𝑥(𝑘) + B𝑢(𝑘),

where

E =

[1 0 0
0 0 1
0 0 0

]
, A =

[1 0 0
0 1 0
0 0 1

]
, B =

[1
0
1

]
which optimizes the PI

𝐽 =

𝑁−1∑︁
𝑘=0

[
𝑥𝑇 (𝑘)Φ𝑥(𝑘) + 𝑢𝑇 (𝑘)Θ𝑢(𝑘)

]
,

where

Φ =

[1 0 0
0 1 0
0 0 1

]
, Θ = [2]

with the given conditions as

𝑥1(0) =
[
1
1

]
, 𝑁 = 10.

Matrices K, Γ and Λ may be chosen as K =
[
0 1 0

]
, Γ =

[1 0 −1
0 1 −1
0 0 1

]
,

Λ =

[1 0 0
0 −1 1
0 1 0

]
[57].

Let 𝑥1(𝑘) =
[
𝑥11(𝑘)
𝑥12(𝑘)

]
,

[
𝑥11(0)
𝑥12(0)

]
=

[
1
1

]
.

Figures 1–5 shows the results obtained using foregoing considerations.
The problem is solved for various𝛼values. The optimal states, optimal control,

and minimum value of PI for the free terminal state problem are shown in Figures
1-5. The amplitudes of optimal states, optimal control, and minimum value of
PI in these responses increase as 𝛼 is increased. From this, we observed that PI
reduces as 𝛼 is decreased and demands for small control effort. As a result, we
argue that considering FOCP can provide numerous advantages over equivalent
integer order OCP.
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Figure 1: Optimal state 𝑥11 for 𝛼 = 0.5, 0.7, 0.9, 1.0

Figure 2: Optimal state 𝑥12 for 𝛼 = 0.5, 0.7, 0.9, 1.0

Figure 3: Optimal state 𝑥2 for 𝛼 = 0.5, 0.7, 0.9, 1.0
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Figure 4: Optimal control 𝑢opt for 𝛼 = 0.5, 0.7, 0.9, 1.0

Figure 5: Minimum value of PI 𝐽min for 𝛼 = 0.5, 0.7, 0.9, 1.0

5. Conclusions

LQOCP formulation and numerical algorithm for FODSS has been discussed
in this work. PI is considered in quadratic form. FDEs are described in the sense
of RLFD. By using transformation, we have converted FODSS into its equivalent
FODNSS and then applied optimal control theory for obtaining necessary con-
ditions. The necessary conditions are solved using a general solution approach.
For various values of 𝛼, optimal states, optimal control, and the minimum value
of PI are determined. As a result of the findings, we noticed that as 𝛼 rises,
the amplitudes of states and control rise as well. We also observe that when
𝛼 decreases, then minimum value of PI is decreased. From this, we argue that
considering FOCP can provide numerous advantages over equivalent integer or-
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der OCP. According to author’s knowledge, this is the first time a formulation
and numerical simulation of free terminal state and fixed terminal time OCP of
FODSS is presented.
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