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Research paper

Numerical analysis on axial capacity of steel built-up
battened columns

Paweł Pieczka1, Piotr Iwicki2

Abstract: This paper deals with the numerical analysis aimed at study the bearing capacity of pin-
ended steel built-up columns under axial compression. Finite element (FE) models were performed for
the columns presented in the literature. The main problem discussed in the article is the shape and
magnitude of geometric imperfections introduced into the numerical FE model, necessary to obtain the
load capacity consistent with the experimental strength tests. Three types of numerical analysis that can
be used inAbaqus program to calculate the load bearing capacity have been described. The imperfections
possible to introduce for built-up columns were presented and an equivalent imperfection corresponding
to both imperfections recommended by Eurocode 3 (global of the entire column and local of the chord)
for built-up members was proposed. The results of the geometrically and materially nonlinear static
analysis were compared with the calculations according to the code procedures (Eurocode 3 and PN-B-
03200:1990) and the results of experimental tests.
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1. Introduction

For axially compressed columns, the cross-section moment of inertia influences the
buckling resistance. One of the possibilities of manufacturing steel columns with relatively
large moments of inertia in relation to steel expenditure is the use of built-up members.
Such columns consist of parallel chords (hot-rolled or cold-formed) connected by lacings
or battens. Connections can be welded or bolted.
The procedures for calculating the buckling capacity of built-up columns proposed in

Eurocode 3 (EC3) [4] and PN-B-03200:1990 (PN) [17] have many limitations and do not
describe in detail how to design with FEM. The procedure described in EC3 allows the
calculation of internal forces in chords and battens by means of code formulas that take into
account a global initial bow imperfection. Then the cross-section limit load is calculated
for individual elements with assumption that the slenderness of the element is calculated
for the chord in the part between the battens, see e.g. [10–12]). The PN procedure for
built-up members allows the calculation of the buckling resistance using reduction factors
calculated on the basis of the slenderness of both the entire column and the chord in the
part between the battens (see e.g. [12]).
The article is a continuation of the considerations described in [16] where Eurocode

3 design procedure for compressed homogeneous members was adopted for the design
of the build-up members. The procedure was based on the determination of the member
cross-section slenderness on the basis of linear bifurcation analysis (LBA method) (for
similar considerations see e.g., [3,6,19]). In the present paper, the buckling load coefficient
was calculated for the shell model of the column, whereas previously it was obtained by
the 1D beam model. Second original element of the paper consists in investigation of the
imperfection magnitude needed to obtain the calculated load capacity similar to that known
from experimental tests [15].
The issue of the buckling resistance of built-up members is still current. There are

known articles in the literature dealing with the calculation of the bearing capacity of built-
up columns (see e.g. [5, 7, 8, 14]). Furthermore, new types of battens are investigated in
terms of both shape and connection methods (see e.g. [2, 18]). Other articles have focused
on the determination of imperfections necessary to introduce in the numerical model of
built-up members such as to obtain the load capacity results similar to those from strength
tests and code calculations (see e.g. [9, 13, 18]).

2. Description of the investigated structure

The investigated structure was a built-up column composed of two parallel cold-formed
chords of U profile and modular arrangement battens. Battens were made of flat bars and
connected to the chords by pretension bolts (one on each side). Strength tests and material
properties of the discussed columns were described in [15]. In this article, numerical
calculations for 9 types of built-up columns were performed. The columns differ in terms
of the length of the member 𝐿, the axial separation between battens 𝑎, and the distance
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between the centroids of the chords ℎ, see Fig. 1. Calculation of the bearing capacity
according to the procedures for built-up members presented in EC3 and PN, and using
the LBA method modelled by means of 1D elements for the columns in question were
presented in the article [16]. In this article, the critical forces obtained from shell models
were used to calculate the load capacity with the LBA method. In the article [16], it was
shown that the critical forces obtained from both beam and shell models are similar.

Fig. 1. Scheme and cross-section of the exemplary column based on [15]

Table 1 shows the material properties from the coupon tests of chords and battens used
in [15], where: 𝐸 is Young’s modulus; 𝑓𝑦 is the yield stress; 𝑓𝑢 is the ultimate stress. The
cross-sectional area of the column 𝐴 consisting of two chords was 396 mm2. The moment
of inertia of the chord on the weak axis 𝐼ch was 86220 mm4. The results of the strength
tests described in [15] are presented in Section 4.3.

Table 1. Material properties from coupon tests [15]

Parts 𝐸

[MPa]
𝑓𝑦

[MPa]
𝑓𝑢

[MPa]

Chord 201600 306 456

Batten 213100 309 446

3. Code calculations

3.1. Eurocode 3 procedure for built-up members

TheEC3 [4] presents the code procedure for the design of built-upmembers. Calculating
the load capacity of a column consists in checking the load capacity conditions of individual
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elements (chords and battens). The method of calculating internal forces in the chords and
battens is based on the moment 𝑀Ed depending on the structure and load of the column,
Eq. (3.1).

(3.1) 𝑀Ed =
𝑁Ed𝑒0 + 𝑀 𝐼

Ed

1 − 𝑁Ed
𝑁cr

− 𝑁Ed
𝑆𝑣

where 𝑁Ed is the design value of the compression force applied to the built-up member,
𝑒0 = 𝐿/500, 𝐿 is the length of the column, 𝑀 𝐼

Ed is the design value of the maximum
moment in the middle of the built-up member, 𝑁cr is the critical force (elastic buckling) of
the built-up member, 𝑆𝑣 is the shear stiffness of the battened panel, and can be calculated
by using Eq. (3.2).

(3.2) 𝑆𝑣 =
24𝐸𝐼ch

𝑎2
(
1 + 2𝐼ch

𝑛𝐼𝑏

ℎ

𝑎

) ≤ 2𝜋
2𝐸𝐼ch

𝑎2

where 𝐸 is Young’s modulus, 𝐼ch is in plane second moment of area of one chord, 𝐼𝑏 in
plane second moment of area of one batten, 𝑛 is the number of battens, ℎ is the distance
between the centroids of the chords, 𝑎 is the axial separation between the battens.
The chords are calculated in terms of compression with bending. For the compressive

resistance, a reduction factor for buckling 𝜒 must be taken into account. The design chord
force 𝑁ch,Ed should be determined from Eq. (3.3).

(3.3) 𝑁ch,Ed = 0.5𝑁Ed +
𝑀Edℎ𝐴ch
2𝐼eff

where 𝐴ch is the cross-sectional area of one chord, 𝐼eff is the effective second moment of
area of the built-up member.

3.2. PN-B-03200:1990 procedure for built-up members

The code procedure presented in PN [17] consists in calculating the global buckling
resistance of the entire column according to Eq. (3.4). This procedure is applicable only
for columns whose failure mechanism is global buckling.

(3.4) 𝑁Rd = 𝜑𝑚𝐴 𝑓𝑦

where 𝐴 is the cross-sectional area of the column, 𝜑𝑚 is the reduction factor for buckling
and can be calculated by using Eq. (3.5).

(3.5) 𝜑𝑚 =

(
1 + 𝜆

2𝑘
𝑚

)
where 𝑘 is a parameter dependent on the buckling curve, according to [17], 𝜆𝑚 is the
relative equivalent slenderness of the column and should be determined from Eq. (3.6).

(3.6) 𝜆𝑚 =
1
𝜆𝑝

√︂
𝜆2𝑧 +

𝑚

2
𝜆2𝑣 ,
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where 𝜆𝑝 = 84
√︁
215/ 𝑓𝑦 ( 𝑓𝑦 in MPa), 𝑚 is the number of chords, 𝜆𝑧 is the slenderness of

the column in relation to the minor axis (see Fig. 1), 𝜆𝑣 is the slenderness (obtained from
𝐼min) of one chord in the section between the battens.

3.3. LBA method

This method was proposed in [16] and was based on the assumption that a built-up
battenedmember can be treated as homogeneous.With this assumption, the global buckling
resistance of the column 𝑁𝑏,Rd can be calculated according to point 6.3.1 of the EC3 [4]
(Eq. (3.7)).

(3.7) 𝑁𝑏,Rd =
𝜒𝐴 𝑓𝑦

𝛾𝑀1

where 𝛾𝑀1 = 1.0 is partial safety factor. A reduction factor for buckling 𝜒 can be calculated
by using Eq. (3.8). The imperfection factor for which the calculation results are the closest
to the strength test results is 𝛼 = 0.49 (buckling curve: 𝑐). The non-dimensional slenderness
𝜆 (Eq. (3.9)) can be calculated by using the elastic critical force of the entire column 𝑁cr
obtained from the linear buckling analysis performed on both the beam and shell models.
For a Class 4 cross-section, the effective cross-sectional area 𝐴eff must be calculated.

(3.8)

𝜒 =
1

Φ +
√︃
Φ2 − 𝜆

2
≤ 1.0

Φ = 0.5
[
1 + 𝛼

(
𝜆 − 0.2

)
+ 𝜆
2]

(3.9)
𝜆 =

√︄
𝐴 𝑓𝑦

𝑁cr
, for Class 1, 2 ∧ 3 cross-sections

𝜆 =

√︄
𝐴eff 𝑓𝑦

𝑁cr
, for Class 4 cross-sections

4. Numerical analysis

Numerical models of the 9 types of columns described in [15] were made in the
FEM commercial program Abaqus [1]. Four-nodded shell elements (S4R) with reduced
integration and six degrees-of-freedom per node were used to model the chords and the
battens. Mesh size of 5 mm with a shape close to a square was selected for all models (see
Fig. 2a). Due to the use of pretension bolts, it was assumed that the connection chord-batten
were fixed. Fixed connections were introduced by tying the adjacent surfaces of the chord
and the batten (each node of the chord was connected to only one node of the batten), see
Fig. 2b. The material properties were assumed as elastic-plastic according to the data given
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in the article [15]. The column was loaded with a concentrated force at one end. At both
ends of the column pinned supports (on the minor axis) were modelled with a rigid body
option, available in the ABAQUS library. The models consisted of about 80000 elements.

(a) (b)

Fig. 2. Finite element model: a) meshing; b) nodes used in fixed connection chord-batten

4.1. Type of analysis

Three types of analyses available in the Abaqus program [1] were used to calculate
the column limit load: static general with load control, static general with displacement
control, and static riks – arc length control.
In the first type of numerical analysis, a concentrated force was applied at one end

of the built-up column. This force was greater than the limit load of the column. In the
first calculation step, the initial part of the target force was applied (e.g. 1%), then in
the following steps this force was increased until the solution convergence was lost. The
calculation was interrupted when the limit load was reached.
Due to the displacement control used in the experiment, the second type of analysis cor-

responds best to the test set-up [15]. Load was applied to the column using a displacement
of an upper support. The displacement increased incrementally while the reaction force
results depend on the stiffness of the built-up member and can be read as a lower support
reaction. After reaching the maximum reaction, the displacements continue to increase and
the reaction in the column begins to decrease (stiffness decreases).
The last type of analysis solves simultaneously for loads and displacements. The

progress of the solution is measured in the arc length along the static equilibrium path
in load-displacement space. This type is useful for problems with the unstable post buck-
ling path.
The load capacity for 9 built-up members using three types of analysis was calculated.

Initial bow imperfection with 𝐿/500 amplitude was introduced to each model. The results
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for 2 (𝐿3700 𝑎400 ℎ60, 𝐿4500 𝑎880 ℎ60) columns are shown in Fig. 3 and Fig. 4. All three
methods provide the same load capacity results (maximum value in the load-displacement
plot). Due to the lack of differences in the obtained results and the speed of calculation, the
static general – load control analysis was used for further analyses.

Fig. 3. The force-displacement graph for 𝐿3700 𝑎400 ℎ60

Fig. 4. The force-displacement graph for 𝐿4500 𝑎880 ℎ60
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4.2. Assumption of initial geometric imperfections

Numerical calculations were performed for the column with the initial geometric im-
perfection. Imperfections were assigned by importing nodal displacements from the linear
buckling analysis with a set maximum displacement. Fig. 5 shows example imperfections
used in analyses. To create a model corresponding to the EC3 code calculations, the initial
global bow imperfection of 𝐿/500 amplitude and the imperfection related to the possibil-
ity of buckling of a single chord should be introduced. Due to the use of a cold-formed
C-section (class 4 cross-section) as a chord, it is recommended by EC3 to use bow chord
imperfection 𝑎/200 and to check the possibility of local and distortion buckling.

Fig. 5. Example imperfections used in analyses: a) global bow imperfection; b) global three-half
wave imperfection; c) global torsional imperfection; d) local imperfection of the chord web; e) local

bow imperfection of the chord with distortion of the cross-section

On the basis of preliminary analyses, it was found that:
– Introducing the global torsional imperfection of the entire column leads to an increase
in the load capacity.

– Global three-half wave imperfection has a lower bearing capacity effect than global
bow imperfection.
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– Local imperfection of the chordweb has an insignificant effect on the bearing capacity
(e.g. 1% at 1 mm amplitude).

– Due to the difficulty of finding the proper bucklingmode for the local chord buckling,
it is possible to introduce an equivalent bow imperfection with an amplitude equal
to the sum of the global and local amplitudes, see Fig. 6.

Fig. 6. An equivalent bow imperfection

4.3. Calculation of the load capacity

The load capacity was calculated for all columns assuming two imperfection cases,
the first one recommended by EC3 for built-up members with (𝐿/500) amplitude and the
second one taking into account the additional possibility of buckling of the chord in the
section between the battens with equivalent amplitude (𝐿/500 + 𝑎/200), see Fig. 6. The
failure modes for the columns in question are shown in Fig. 7. In all cases, the mechanism
of column failure was the exhaustion of the bearing capacity in the more compressed chord
(left one in Fig. 7).
The summary of the strength tests results, the load capacities calculated using the code

procedures (EC3 and PN), the LBA method (proposed in [16]), and numerical analyzes
using both imperfection amplitudes are shown in Fig. 8. In all cases, both code procedures
give load capacity results lower than the strength tests results. The load capacity obtained
with the LBA method is on average closer to the load capacity from the strength tests,
in some cases it is too high. On the basis of the obtained results, it is impossible to
unequivocally state what imperfection amplitude should be entered into the model to obtain
the load capacity close to the average of the measurements. Then, iteratively checked for
which value of the global bow imperfection amplitude the load capacity from numerical
analysis equal to the mean from the experiments, see Fig. 9.
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Fig. 7. Von Mises stresses distribution after exceeding the ultimate load capacity (displacement of
the column end equal to 6 mm)

Fig. 8. Load capacities obtained by various methods
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Fig. 9. Bow imperfection amplitudes which provided the calculated FEM bearing capacity equal to
the average from the strength tests [mm]

The obtained amplitudes do not allow for the determination of a simple formula de-
pending on the parameters of the built-up member, such as 𝐿/500 or (𝐿/500 + 𝑎/200).
Assuming that the formula for the amplitude value would depend only on the height of the
column, Eq. (4.1) can be obtain.

(4.1) amplitude =
𝐿

denominator

Table 2 shows the denominators of Eq. (4.1) for the columns in question.

Table 2. Denominator of the amplitude equation

Column
𝐿3700
𝑎400
ℎ60

𝐿3700
𝑎720
ℎ50

𝐿3700
𝑎720
ℎ60

𝐿3700
𝑎1200
ℎ50

𝐿3700
𝑎1200
ℎ60

𝐿3700
𝑎1200
ℎ70

𝐿4500
𝑎400
ℎ60

𝐿4500
𝑎880
ℎ50

𝐿4500
𝑎880
ℎ60

Denominator of the
amplitude equation 638 330 289 247 411 725 804 459 268

5. Conclusions and discussion

Based on the performed numerical analysis the following conclusions may be drawn:
– Introducing the imperfections recommended by EC3 into the shell model does not
lead to obtaining results consistent with the strength tests. In some cases, the cal-
culated load capacities were higher than the average from the strength tests, and
it should be remembered that due to the dispersion of the results, some samples
obtained lower load capacities;

– The LBAmethod can be used to calculate the global buckling resistance of a built-up
column;
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– Based on the presented analyses, it is impossible to define a simple formula for the
imperfection amplitudes that should be entered into the model. This may be due to
inaccuracies in the model, such as the lack of specific stiffness in the connection
chord-batten;

Currently, the authors are conducting research on determining the stiffness of a connection
made with a single pretension bolt. Another planned study is the performance of strength
tests for types of built-up battened columns other than those presented in the article [15].
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Analizy numeryczne nośności osiowej stalowych słupów złożonych
z przewiązkami

Słowa kluczowe: stal, słup złożony, wyboczenie, analiza numeryczna, nośność osiowa

Streszczenie:

Artykuł dotyczy analiz numerycznych mających na celu zbadanie nośności stalowych słupów
złożonych z przewiązkami poddanych ściskaniu osiowemu. Dla słupów znanych z literatury wy-
konano modele numeryczne w programie Abaqus. Przedstawiono sposób modelowania połączenia
między przewiązką a gałęzią słupa (zakładając, że ze względu na sprężenie śruby połączenie jest
sztywne). Głównym problemem poruszanym w artykule są wprowadzone do modelu imperfekcje
geometryczne, niezbędne do uzyskania nośności zgodnej z badaniamiwytrzymałościowymi. Opisano
trzy rodzaje analiz numerycznych możliwych do wykorzystania w programie Abaqus do obliczenia
nośności słupa, a następnie przedstawiono najkorzystniejszą z nich (ze względu na szybkość wykony-
wania obliczeń). Zaprezentowane zostały imperfekcje możliwe do wprowadzenia do modeli słupów
złożonych oraz zaproponowano zastępczą łukową imperfekcję odpowiadającą obu imperfekcjom
zalecanym przez Eurokod 3 dla słupów złożonych (globalna całego słupa oraz lokalna gałęzi). Obli-
czone zostały nośności dla dziewięciu typów słupów zgodnie z procedurami normowymi dla słupów
złożonych (Eurokod 3 and PN-B-03200:1990), metodą zaproponowaną w artykule [16] (obliczenie
nośności na wyboczenie dla całego słupa zgodnie z procedurą EC3 dla elementów jednorodnych)
oraz za pomocą geometrycznie i materiałowo nieliniowych analiz statycznych. Otrzymane wyniki
porównano z wynikami z testów wytrzymałościowych znanych z literatury. Podjęto próbę określe-
nia imperfekcji koniecznych do wprowadzenia do modeli numerycznych w celu uzyskania nośności
zbliżonych do tych uzyskanych z badań wytrzymałościowych.
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