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Abstract
Capacitive leakage and adjacent interference are the main influence sources of the measuring error in the
traditional series step-up method. To solve the two problems, a new algorithm was proposed in this study
based on a three-ports network. Considering the two influences, it has been proved that response of this
three-ports network still has characteristics of linear superposition with this new algorithm. In this three-
port network, the auxiliary series voltage transformers use a two-stage structure that can further decrease
measurement uncertainty. The measurement uncertainty of this proposed method at 500/

√
3 kV is 6.8 ppm

for ratio error and 7 μrad for phase displacement (𝑘 = 2). This new method has also been verified by
comparing its results with measurement results of the PTB in Germany over the same 110/

√
3 kV standard

voltage transformer. According to test results, the error between the two methods was less than 2.7 ppm for
ratio error and 2.9 μrad for phase displacement.
Keywords: voltage transformer, traceability method, calibration, high voltage.
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1. Introduction

Standard voltage transformers for power frequency usually contain a series voltage trans-
formers (VTs) with different voltage classes (1 kV, 10 kV, 110/

√
3 kV, 220/

√
3 kV, 500/

√
3 kV

and 1000/
√

3 kV). Among them, the 1 kV inductive voltage divider (IVD) applies self-calibration
with the reference potential method [1–3] and its uncertainty can reach 10−7. For 10 kV or higher
standard VTs, error calibration is accomplished in two steps: (I) At 10%–20% rated voltage points,
error calibration is realized by the standard VT with lower voltage directly. (II) Error changes at
the voltages from N% to 2N% rated voltage (called the voltage coefficient) were measured with
the “step-up method”. Error under 20%–120% rated voltage could be gained by applying Step I
once and multiple Step II.
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The capacitor voltage coefficient method is one of the step-up methods. It is based on the low
voltage coefficient of the standard capacitor. The uncertainty for this method is 8 ppm and 8 μrad
(𝑘 = 2) at 400/

√
3 kV for 50 Hz [4]. Reference [5] describes an experimental voltage divider

circuit with the auto-calibration function during normal operation of the divider in the place of
its installation. Reference [6] presents a self-calibration method for voltage dividers as well as
the results of experimental and simulation studies, a version with single compensation when the
voltage is lowered to 230 Vrms.

The series step-up method is another one that provides an opportunity for verification of the
capacitor voltage coefficient method. The series step-up method was proposed by scholars from
the Physikalisch-Technische Bundesanstalt (PTB, Germany) [7]. The voltage level of that series
step-up method at that time can reach 35 kV and the measurement uncertainty is 12 ppm and
35 μrad. Later, it was improved in the 1990s [8–10] for easier operation and higher measurement
accuracy. The voltage level of the improved series step-up method can reach 110/

√
3 kV and the

measurement uncertainty are 10 ppm and 10 μrad.
Reference [11] presents a further improved method which is applied to higher voltage with

adding an isolation transformer. The uncertainty for this method is 3 ppm and 2.6 μrad (𝑘 = 2)
at 110/

√
3 kV. But based on the reference, for 1000/

√
3 kV, the uncertainty increases to 50 ppm

and 50 μrad.
Recently, 500/

√
3 kV two-stage VTs have been developed whose accuracy class can reach

0.002 [12]. To attain such a high accuracy standard VT, the measurement uncertainty of this
series method in reference [11] needs to be improved.

2. The error caused by VT series connection

2.1. Two influences of VT in series

1) Capacitive leakage error. To analyze the capacitive leakage error, the equivalent circuit of
distributed capacitance is shown in Fig. 1. Point 𝐵 is the intermediate potential of the primary
side, 𝑏 and 𝑑 are the intermediate potentials of the secondary side. 𝐸T1 is the potential of point 𝐵,
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Fig. 1. Equivalent circuit of distributed capacitance.
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and 𝐸T3 is the potential of points 𝑏 and 𝑑. Due to the existence of distributed capacitances𝐶1,𝐶2,
𝐶3, leakage current 𝐼𝑐1, 𝐼𝑐2, 𝐼𝑐3 will be formed. Considering that current 𝐼𝑐1 is directly driven by
the power supply 𝑈11 and does not flow through the primary winding of VT, the resulting error
𝜀1 can be ignored. The current 𝐼c2 flows through the isolation transformer 𝑇2. The secondary
winding of 𝑇2 will produce a voltage drop on the internal impedance 𝑍2 of the winding, which
will cause additional series errors 𝜀2. Error 𝜀3 is similar to 𝜀2.

In addition, there is an inherent potential difference U between the primary winding and the
secondary winding of the isolated VT 𝑇2. The capacitive current 𝐼𝑐4 caused by the distributed
capacitance 𝐶4 will also bring additional error 𝜀4. Due to the small distance between the primary
winding and the secondary winding of 𝑇2, the capacitance of 𝐶4 is larger. The small impedance
of 𝐶4 leads to a large current 𝐼c4. Therefore, 𝜀4 is the main source of capacitive leakage error.

2) Adjacent interference. Adjacent interference also affects the measuring accuracy of the
series step-up method. Under high voltage, adjacent interference must be taken into account
when two voltage transformers are connected in series (also including measurement interference
produced by the connecting wire between the transformers). In the series step-up method, the
test circuit has to be changed, so the relative position of the devices and the connection pattern
of the wires change accordingly. Theoretically, these produce different adjacent interference and
measurement error which generally cannot be ignored in the measurement process.

2.2. The measurement of the capacitive leakage and adjacent interference

1) Next, the influence of the two influences above should be measured. The measurement
principle is shown in Fig. 2. Figure 2a shows the principle of measuring the error of the upper-
level VT𝑇1 and𝑇2, written as 𝜀𝑎, and. Figure 2b shows the error measurement for the lower-level VT
𝑇3, written as 𝜀𝑏 .
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Fig. 2. Principle of the measurement.

Take Fig. 2a as an example to illustrate the measurement method: short-circuit the primary
winding of 𝑇1 (the potentials of the A and B terminals are equal, 𝑈). If the two influences are
ignored, the output voltage of the upper-level VT 𝑇1 is Δ𝑈 = 0. Then the actual measurement of
the output voltage is the additional error 𝜀𝑎 caused by the series transformer. During the test, the
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output terminal 𝑈ref of the lower voltage transformer 𝑇3 is the reference voltage. The test results
are shown in Table 1.

Table 1. Measurement results for influences of capacitive leakage error and adjacent interference.
The rated voltage of 𝑇1 and 𝑇3 is 250 kV/.

Applied voltage Un (%) 15 30 60

𝜺a
Ratio error in ppm 14.3 14.8 16.5
Phase displacement in µrad –10.2 –10.5 –12.2

𝜺b
Ratio error in ppm 4.2 4.3 4.2
Phase displacement in µrad –3.4 –4.0 –3.8

Considering the influences presented above, a new algorithm for the series step-up method
was proposed in this study.

3. Principle of the three-ports network

A linear three-ports network is shown in Fig. 3. It has two input ports (𝐴1−𝑋1 and 𝐴2−𝑋2)
and one output port 𝑎−𝑥. This network is composed of linear passive devices, such as a resistor,
a capacitor, and a reactor. According to the circuit principle, the current equations contained in
this network could be set up by all current circuits. Since all components are linear, these circuit
equations must be linear and the solution of branch current is linear. Hence, the solution of the
circuit equation of the three-ports network can be expressed as:[ ¤𝐼] = [

𝑌
] [ ¤𝑈]

, (1)

where [ ¤𝐼] and [ ¤𝑈] are column vectors. The three-ports network only has two input ports. The
accessed excitation voltages are set ¤𝑈1 and ¤𝑈2. Hence, the corresponding column vector [ ¤𝑈] has
only two non-zero elements. The response of this three-ports network is:

¤𝑈3 =
∑︁
𝑚,𝑛

𝑍𝑚 ¤𝐼𝑛 , (2)

where ¤𝑈3 is the output voltage at 𝑎−𝑥, 𝑍𝑚 is impedance in a circuit branch which is connected to
𝑎−𝑥 of the network and ¤𝐼𝑛 is the current in the chosen current branch. Since 𝑍𝑚 in this network
is linear, the responses of 𝑎−𝑥 to ¤𝑈1 and ¤𝑈2 have proportionality and superposition.
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Fig. 3. Linear three-ports network.

To implement the series step-up method in such a linear three-ports network, the network
structure from Fig. 4 could be applied. In this three-ports network, the ground-connected voltage
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transformers (VT1 and VT2) and the high-voltage isolated transformer (HVIT) were used as
network devices.
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Fig. 4. Internal structure of the linear three-ports network.

In Fig. 4, VT1 and VT2 are both two-stage voltage transformers. The structure of the two-stage
VT is shown in Fig. 5 [10]. The error of the two-stage VT for 110 kV to 500 kV is less than
0.002%. Moreover, the low voltage coefficient is an important characteristic of the two-stage VT.
The structure of the HVIT is detailed in reference [13].

1N

2N 3N

1C

2C

𝐶1: first-stage core 𝐶2: second-stage core
𝑁1: first-stage winding 𝑁2 and 𝑁3: second-stage winding

Fig. 5. Structure of a two-stage voltage transformer for high voltage.

If these voltage transformers are linear passive devices, the circuit equation and admittance
matrix [𝑌 ] could be listed, and the network response is calculated by the solving method for the
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linear network. This implies that this network has proportionality and superposition. The output
variables of the network are ¤𝑈01 and ¤𝑈02. According to the linear hypothesis, there is:

¤𝑈01 = 𝑚 ¤𝑈1 + 𝑔 ¤𝑈2 + ℎ ¤𝑈2 , (3)

where 𝑚, 𝑔, and ℎ are proportional constants, 𝑚 ¤𝑈1 is the voltage when the input voltage ¤𝑈1 is
transmitted to the output port after cascade connection of VT1 and HVIT, 𝑔 ¤𝑈2 is the disturbance
voltage that is produced at the output end when the primary voltage ¤𝑈2 is applied, and ℎ ¤𝑈2 is
the leakage voltage at the output end when the voltage ¤𝑈2 is applied between the primary and
secondary windings of HVIT.

Similarly, it can be obtained that:

¤𝑈02 = 𝑛 ¤𝑈2 + 𝑓 ¤𝑈1 , (4)

where 𝑛 and 𝑓 are proportional constants, 𝑛 ¤𝑈2 is the voltage which is the transmitted component
of the primary voltage ¤𝑈2 to the output port by VT2, and 𝑓 ¤𝑈1 is the disturbance voltage at the
output port when VT1 applies the primary voltage ¤𝑈1.

In fact, the excitation impedance of the iron core of transformers is nonlinear. However, the
voltage transformer is always designed to operate in a linear area, so the branch voltage still can
be gained through superposition and the voltage at the output port ( ¤𝑈3) also can be gained from
superposition.

If the rated voltage ratio and ratio error after the cascade connection of VT1 and HVIT are 𝐾
and 𝛼, and the rated voltage ratio and ratio error of VT2 are 𝐾 and 𝛽, (3) and (4) can be further
expressed as:

¤𝑈01 =
¤𝑈1
𝐾

(1 + 𝛼) + (𝑔 + ℎ) ¤𝑈2 , (5)

¤𝑈02 =
¤𝑈2
𝐾

(1 + 𝛽) + 𝑓 ¤𝑈1 . (6)

If the rated voltage ratio of the standard voltage transformer VT3 is also 𝐾 , the ratio error is
the function of input voltage, that is 𝛾( ¤𝑈). In this study, the new step-up method can be divided
into three steps:

Step 1: The major departure from the traditional method, as shown in Fig. 6, is the application
a booster transformer 𝑇𝐵. The voltage (−𝑈) is applied at 𝐴1 − 𝑋1, and voltage 𝑈 is applied
simultaneously at 𝐴2 − 𝑋2 and VT3. In this case, the network output is the influence of shielding
leakage and adjacent interference. And it is a very low voltage (similar to difference voltage Δ𝑈

in normal operation conditions), but not equal to zero. The input potential difference of the test
set is Δ𝑈 (𝑎−𝑥). At this moment, the measured value of the test set is 𝜀1 (Δ𝑈/𝑈ref) and the ratio
error of VT3 is 𝛾( ¤𝑈). According to the definition of error of the transformer, the network output
( ¤𝑈31) can be expressed as:

¤𝑈31 =
¤𝑈
𝐾

[
1 + 𝛾( ¤𝑈)

]
𝜀1 ≈

¤𝑈
𝐾
𝜀1 . (7)

In result, it can be gained from the voltage balance of the network that:

¤𝑈31 = ¤𝑈01 + ¤𝑈02

= −
¤𝑈
𝐾
(1 + 𝛼) + (𝑔 + ℎ − 𝑓 ) ¤𝑈 +

¤𝑈
𝐾
(1 + 𝛽). (8)
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Fig. 6. Measurement of output response to the input port 𝐴2 − 𝑋2.

Step 2: In Fig. 7, 𝑈 is applied to 𝐴1 − 𝑋1 and VT3 simultaneously, while zero voltage (short
circuit of two terminals) is applied at 𝐴2 − 𝑋2. The potential difference Δ𝑈 (𝑎−𝑎3) is accessed
to the test set. 𝑎3−𝑥3 is the secondary output port of VT3 and 𝑎−𝑥 is the output of the network.
Under this circumstance, the measured value of the test set is 𝜀2 and the ratio error of VT3 is
𝛾( ¤𝑈). Therefore, the output ( ¤𝑈32) of the network can be expressed as:

¤𝑈32 =
¤𝑈
𝐾

[
1 + 𝛾( ¤𝑈)

]
(1 + 𝜀2) ≈

¤𝑈
𝐾

[
1 + 𝛾( ¤𝑈) + 𝜀2

]
. (9)
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Fig. 7. Measurement of output response to the input port 𝐴1 − 𝑋1.

Similarly to (8), ¤𝑈32 is expressed as:

¤𝑈32 = ¤𝑈01 + ¤𝑈02 =
¤𝑈
𝐾
(1 + 𝛼) + 𝑓 ¤𝑈. (10)

Step 3: In Fig. 8, the voltage 𝑈 is applied simultaneously to 𝐴1−𝑋1 and 𝐴2−𝑋2 which are
connected in series, while 2U is applied simultaneously at the primary side of VT3. The potential
difference Δ𝑈 (𝑎−𝑎3) is accessed to the test set. The measured value of the test set is 𝜀3. Under

307

https://doi.org/10.24425/mms.2022.140035


H. Liu et al.: AN IMPROVED ALGORITHM FOR THE SERIES STEP-UP METHOD . . .

this circumstance, the ratio error of VT3 is 𝛾(2 ¤𝑈). The network output ¤𝑈33 can be expressed as:

¤𝑈33 =
2 ¤𝑈
𝐾

[
1 + 𝛾(2 ¤𝑈)

]
(1 + 𝜀3) ≈

2 ¤𝑈
𝐾

[
1 + 𝛾(2 ¤𝑈) + 𝜀3

]
. (11)
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Fig. 8. Measurement of output responses to the input ports 𝐴1 − 𝑋1 and 𝐴2 − 𝑋2.

Similarly to (8) and (10), ¤𝑈33 is expressed as:

¤𝑈33 = ¤𝑈01 + ¤𝑈02 =
¤𝑈
𝐾
(1 + 𝛼) + (𝑔 + ℎ + 𝑓 ) ¤𝑈 +

¤𝑈
𝐾
(1 + 𝛽). (12)

Formula derivation is carried out after the three steps above. It can be gained from (8) and (10):

¤𝑈31 + 2 ¤𝑈32 = −
¤𝑈
𝐾
(1 + 𝛼) + (𝑔 + ℎ − 𝑓 ) ¤𝑈 +

¤𝑈
𝐾
(1 + 𝛽) + 2

¤𝑈
𝐾
(1 + 𝛼) + 2 𝑓 ¤𝑈

=
¤𝑈
𝐾
(1 + 𝛼) + (𝑔 + ℎ + 𝑓 ) ¤𝑈 +

¤𝑈
𝐾
(1 + 𝛽). (13)

It can be gained through a comparison of (12) and (13) that:

¤𝑈31 + 2 ¤𝑈32 = ¤𝑈33 . (14)

Combined (7), (9) and (11), (14) can be rewritten, so there is:

¤𝑈
𝐾
𝜀1 +

2 ¤𝑈
𝐾

[
1 + 𝛾( ¤𝑈) + 𝜀2

]
=

2 ¤𝑈
𝐾

[
1 + 𝛾(2 ¤𝑈) + 𝜀3

]
. (15)

Finally, (15) can be deduced to:

𝛾(2 ¤𝑈) − 𝛾( ¤𝑈) = 𝜀1
2

+ 𝜀2 − 𝜀3 . (16)

The error of VT3 at the voltage point of 𝑈 was measured by the calibration method directly
(by using a standard voltage transformer with a lower-rated voltage but higher accuracy). Error
coefficient of VT3 when voltage increases from 𝑈 to 2𝑈 could be calculated through (16). By
repeating the process above, the error of VT3 under 2𝑘 𝑈 (𝑘 = 1, 2, . . .) could be determined.
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4. Measurement uncertainty analysis

The measurement uncertainty of this series step-up method varies with different voltage
levels. We take 500/kV as an example. 20% to 50% of rated voltage can be calibrated directly
with a 220/ kV standard VT. And 60%, 80%, 100%, 120% of rated voltage can be calculated with
the step-up method from 30%, 40%, 50% of rated voltage respectively. It does not need curve
fitting. The main uncertain component consists of the following parts:

1. Type 𝐴measurement uncertainty. It is mainly caused by the noise in the measurements and
the repeatability over several days.

𝑈 𝑓 1 =

√√
1
𝑛

𝑛∑︁
𝑖=1

𝑢2
𝑓 1 = 1 × 10−6, (17)

𝑈𝛿1 =

√√
1
𝑛

𝑛∑︁
𝑖=1

𝑢2
𝛿1. = 1.2 μrad. (18)

2. 𝐴 220/ kV Standard VT. For a 500/ kV standard VT, the error under 20%∼50% of rated
voltage is calibrated with a 220/ kV standard VT with an accuracy class of 0.002. The
measurement uncertainty 𝑢 𝑓 2 and 𝑢𝛿2 are 6 × 10−6 and 6 μrad (𝑘 = 2) respectively.

3. Test set measurement unit. The measurement uncertainty would not be more than 0.1𝜀𝑚/
√

3,
where 𝜀𝑚 is the largest error of a series VT from 20% to 120% of the rated voltage. To
calibrate a 500/kV VT, we should use two 250/ kV in series with an accuracy class of
0.002. 𝜀𝑚 is 20 ppm and 20 μrad. Therefore, 𝑢 𝑓 3 and 𝑢𝛿3 are 1.15 × 10−6 and 1.15 μrad
respectively.

4. Surrounding uncertainty. Although adjacent interference is already considered in this paper,
the surrounding uncertainty such as electromagnetic interference from the power supply and
other surroundings should be calculated. This would be below 0.01𝜀𝑚, and is considered as
a Gaussian distribution. Therefore, the measurement uncertainty 𝑢 𝑓 4 and 𝑢𝛿4 are 0.2×10−6

and 0.2 μrad respectively.
5. Remaining parts of compensation for shield leakage and adjacent interference. Usually

compensation will never be perfect soan estimate should be added to the final uncertainty.
The largest influence is 0.5×10−6 and 1 μrad, and as such it could be considered as uniform
distribution so the measurement uncertainty 𝑢5 would be divided by

√
3. Therefore, 𝑢 𝑓 5

and 𝑢𝛿5 are 0.3 × 10−6 and 0.6 μrad respectively.

And there may be additional factors in the complete system affecting the total measurement
uncertainty. But we believe that it has a very small influence. As the above-mentioned components
are independent of each other, so the expanded combined relative uncertainty would be:

𝑈 𝑓 = 2 ×

√√√ 5∑︁
𝑖=1

𝑢2
𝑖
= 6.8 × 10−6 (𝑘 = 2), (19)

𝑈𝛿 = 2 ×

√√√ 5∑︁
𝑖=1

𝑢2
𝑖
= 7 μrad (𝑘 = 2). (20)
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5. Experiment and results

5.1. Comparison with PTB under 110/
√

3 kV

A 110/ kV voltage transformer (VT3) with an accuracy class of 0.01 was used as the testing
equipment. Measurement results of the proposed series step-up method and PTB were compared.

Method #1: At voltage points of 15% and 20% rated voltage 110/ kV, the voltage transformer
was calibrated directly by a 10 kV two-stage voltage transformer with an accuracy class of 0.001.
Measurement results are shown in Table 2. Next, the error of VT3 in the range of 20%∼120%
rated voltage was measured with the proposed series step-up method. Measurement data in Step
1 to Step 3 are listed in Table 3 where (A) is ratio error and (B) is phase displacement. Taking
the measurement results in Table 3, (16) is applied to the calculation. Combining with data in
Table 2, errors of VT3 at five voltage points (30%, 40%, 60%, 80% and 120% of rated voltage)
could be gained. Then, errors at points 50% and 100% of rated voltage could be gained via the
curve fitting method.

Table 2. Direct calibration results at low-voltage.

Applied voltage (%) f
in ppm

𝜹
in µrad

15 –5.5 –26.0

20 0.9 –27.5

Method #2: PTB’s results based on active capacitive high voltage divider are also presented.
The measurement uncertainty of this method is 2 ppm for ratio error and 2 μrad for phase
displacement [14]. The final comparison of the two methods is shown in Fig. 9.

Fig. 9. Comparison of results with PTB.

It can be seen from Fig. 9 that the deviation of the two methods is less than 2.7 ppm for
ratio error and 2.9 μrad for phase displacement. The deviation between the results of the two
methods is a systematic error. And it is worth noting that the error is mainly introduced from
direct calibration of point at 10% and 20% of rated voltage with a 10 kV standard VT.
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Table 3. Data of new series method.

(a) Ratio error

Applied voltage
(%)

𝜺1
in ppm

Applied voltage
(%)

𝜺2
in ppm

𝜺3
in ppm

20 –59.4 10 29.6 –16.6

30 –61.0 15 32.3 –19.5

40 –60.3 20 33.4 –21.5

50 –59.9 25 33.3 –22.7

60 –57.7 30 32.1 –24.4

70 –55.8 35 30.5 –24.4

80 –53.6 40 28.7 –24.6

90 –52.7 45 26.7 –24.4

100 –52.6 50 25.2 –23.4

110 –50.0 55 22.5 –21.8

120 –49.9 60 20.3 –18.3

(b) Phase displacement

Applied voltage
(%)

𝜺1
in µrad

Applied voltage
(%)

𝜺2
in µrad

𝜺1
in µrad

20 19.7 10 26.4 43.8

30 24.5 15 17.6 41.2

40 26.9 20 13.1 39.1

50 27.4 25 10.3 36.5

60 29.2 30 8.0 34.5

70 29.1 35 6.5 33.1

80 29.4 40 5.1 31.9

90 28.5 45 4.2 30.7

100 27.8 50 3.7 29.6

110 27.9 55 3.6 28.5

120 27.3 60 4.4 26.2

5.2. Experiment at 500/
√

3 kV

A 500/
√

3 kV VT𝑥 with an accuracy class of 0.05 is chosen as the testing equipment. The
measurement results of the three methods are compared.
Method #1: VT3 (220/

√
3 kV) is used as a standard VT to calibrate VT𝑥 at 20% and 40%

rated voltage directly. The difference between these two points (Δ𝜀1) is the voltage coefficient
of VT𝑥 in the range of 20%∼40% rated voltage (the corrected value when calibration results are
taken to VT3).
Method #2: the voltage coefficient of VT𝑥 in the range of 20%∼40% rated voltage is measured

with the proposed method in this paper and the measurement result is Δ𝜀2.
Method #3: it is also measured with traditional method (Fig. 1). And measurement results for

these three methods are shown in Table 4.
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Table 4. Comparison between direct calibration and the proposed method at the reference points.

Method #1 Method #2 Method #3
20% 40% Δ𝜀1 Δ𝜀2 Δ𝜀3

f in ppm –33.2 –18.6 14.6 16.8 30.8

𝜹 in µrad –42.1 –12.0 30.1 32.6 50.2

As Method #1 is calibrated directly and takes the correct value of reference a VT to the final
result, we could regard it for a moment as a reference. From Table 4 we can see that the deviation of
traditionalMethod #3 and newMethod #2 in this paper is 14.0 ppm and 17.6 μrad. The difference
in phase displacement is mainly caused by capacitive leakage and adjacent interference.
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