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Abstract. In this work, two robust zeroing neural network (RZNN) models are presented for online fast solving of the dynamic Sylvester equation
(DSE), by introducing two novel power-versatile activation functions (PVAF), respectively. Differing from most of the zeroing neural network
(ZNN) models activated by recently reported activation functions (AF), both of the presented PVAF-based RZNN models can achieve predefined
time convergence in noise and disturbance polluted environment. Compared with the exponential and finite-time convergent ZNN models, the
most important improvement of the proposed RZNN models is their fixed-time convergence. Their effectiveness and stability are analyzed in
theory and demonstrated through numerical and experimental examples.
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1. INTRODUCTION
Sylvester equations are frequently encountered in the fields of
pure and applied mathematics. Developing efficient algorithms
for finding the solutions of Sylvester equations has attracted
a lot of interest, due to its wide application in stabilization anal-
ysis [1], image processing [2, 3] and disturbance decoupling [4].
In recent years, numerous approaches have been proposed to
solve Sylvester equations, such as iterative algorithms [5–10],
the matrix sign function method [11], gradient-based neural
networks (GNN) [12, 13] and ZNN [14–17].

Note that the iterative algorithms and MSFM are effective for
solving the static Sylvester matrix equation. However, compu-
tation will increase as the matrix dimension increases, which
limits their application in the situation that requires real-time
online calculation [18]. GNN is one of the promising approaches
to solving static Sylvester matrix equations with high dimension
and other linear matrix equations, due to its unique superiority
of parallel processing. Since the GNN method does not take time
derivative information of the corresponding matrix into consid-
eration, it cannot be directly applied to the dynamic Sylvester
matrix equation. Thus, in ref. [19, 20], a ZNN is established to
address the dynamic case with fast computation. However, the
convergence of ZNN is sensitive to the selection of activation
functions (AFs). Specifically, the ZNN model constructed by
different AFs will lead to different performance in the process of
dynamic problem solving. Inspired by this, many new AFs are
reported to improve its exponential convergence performance
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in [21, 22]. Furthermore, a finite-time convergent ZNN model
activated by sign-bi-power AF (SBPAF) is reported in [23].

In practical applications, the ubiquitous noise may greatly
decrease the accuracy and efficiency of various time-varying
systems. For example, the offset errors in hardware implemen-
tation can be considered as the linear-form time-varying dis-
turbances. External signals interference, e.g. electromagnetic
interference, can be considered as the superposition of sine-form
time-varying disturbances. The instantaneous decline of power
sources equipped with the control module can be described as the
exponential-decay-form time-varying disturbances. Thus, a num-
ber of anti-noise ZNN models have been proposed to address
such an issue in the last few years [24–28]. In [29,30], a NTZNN
model is developed to work in the environment of noise and
interference. However, all the above mentioned anti-noise ZNN
models can only achieve exponential convergence. In ref. [31], a
versatile activation function (VAF) is applied to guarantee fixed-
time convergence and anti-interference capability of the ZNN
model. Although the predefined-time convergence and robust-
ness of the VAF-activated ZNN model [31] can be guaranteed,
these superior performances can be further improved. Thus, pro-
motion of the robustness and convergence of the ZNN model is
still open.

Motivated by the above discussions, two new RZNN models
are proposed by introducing two novel PVAFs in this work to
further improve its convergence and robustness simultaneously.
It is worth mentioning that the VAF in ref. [31] is just a spe-
cial case of our new proposed PVAF. Consequently, the main
contributions of this work are summarized below.
1. In this work, two RZNN models adopting two novel PVAFs

are presented and investigated for online fast solving of the
DSE problem in noise-polluted environment.
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2. Differing from most conventional ZNN models, the proposed
RZNN models achieve predefined-time convergence and
resist the effect of noises.

3. Rigorous mathematical analysis is presented to prove that
the RZNN models can solve the DSE problem within a pre-
defined time.

4. Numerical and experimental examples of the proposed
RZNN-based robot trajectory tracking further demonstrate
their practical application prospects.

For the convenience of reading, the full names of abbrevia-
tions are listed as follows.

Dynamic Sylvester equation DSE
Zeroing neural network ZNN
Noise-tolerant ZNN NTZNN
Power-versatile activation functions PVAF
Linear activation function LAF
Power activation function PAF
Bi-power activation function BPAF
Power-sigmoid activation function PSAF
Hyperbolic sine activation function HSAF
Versatile activation function VAF
Dynamic bounded disappearing noise DBDN
Dynamic bounded non-disappearing noise DBNDN
Mobile robotic manipulator MRM

2. PROBLEM FORMULATION
As a basis for discussion, the problem formula of DSE is put
forward first. Afterwards, the construction procedure of the ZNN
model is introduced in detail.

2.1. DSE problem
The following famous Sylvester equation is considered in this
paper.

D(t)X(t)−X(t)G(t) =−M(t) ∈ Rn×n, (1)

where t is time, D(t), G(t) and M(t) are known dynamic ma-
trices, and X(t) ∈ Rn×n is the unknown time-varying matrix
that needs to be calculated. Here, we suppose that there exists
a unique solution for the DSE in (1). Then, we can rewrite the
DSE in vector form, as follows.(

IT ⊗D−GT ⊗ I
)

vec(X) =−vec(M), (2)

where I is an appropriate size identity matrix, the symbol
⊗ represents Kronecker product and vec(·) represents ma-
trix vectorization. The dynamic matrices D(t), G(t) and M(t)
can be selected arbitrarily as long as the coefficient matrix(
IT ⊗D−GT ⊗ I

)
is invertible such that DSE (1) has a unique

solution.
Define X∗(t) as the unique dynamic solution of DSE (1),

the main objective is to design two RZNN models, such that
the time-independent neural state solution X(t) = X∗(t) can be
obtained in fixed-time even under the condition of noises and
interference.

2.2. ZNN for solving DSE
Implementation of the ZNN model for solving DSE (1) described
as below [19, 20].

Firstly, dynamic error matrix E(t) is defined.

E(t) = D(t)X(t)−X(t)G(t)+M(t) ∈ Rn×n. (3)

It can be found that the theoretical solution of DSE (1) can
be obtained as long as each element of E(t) converges to zero.
Then, to force each element of E(t) to converge to 0, we design
the following evolution formula:

dE(t)
dt

=−λΓ(E(t)), (4)

where Γ(·): Rn×n→ Rn×n is an AF array and λ > 0 is a design
parameter.

Finally, substituting equation (3) into (4) yields:

D(t)Ẋ(t)− Ẋ(t)G(t) =−Ḋ(t)X(t)+X(t)Ġ(t)− Ṁ(t)

− λΓ(D(t)X(t)−X(t)G(t)+M(t)) . (5)

Note that the ZNN model in (5) is stable as long as the AF Γ(·)
is a monotonically increasing odd function [19].

Since AF is an important part of the ZNN model, much effort
has been made to develop different AFs to further optimize its
convergent performance. These AFs are summarized in Table 1.

Table 1
Existing AFs

Activation
functions

Formulations

LAF τ(x) = x

PAF τ(x) = xk k > 3 and k is an odd integer

BPAF τ(x) =
(
1− exp(−ςx)

)(
1+ exp(−ςx)

)
PSAF τ(x) =


xp, |x| ≥ 1
1+ e−ξ − e−ξ x

1− e−ξ + e−ξ x
, otherwise

HSAF τ(x) =
(exp(ςx)− exp(−ςx))

2
, ζ > 1

SBPAF τ(x) =

(
|x|k + |x|1/k

)
sgn(x)

2
, 0 < k < 1

VAF τ(x) = (a1|x|η +a2|x|ω )sgn(x)+a3x+a4sgn(x)

In an ideal no-noise environment, all the AFs in Table 1 can
ensure the convergence and stability of the ZNN. Additionally,
the ZNN activated by SBPAF achieves finite-time convergence.
Moreover, the VAF-based ZNN in ref. [31] achieves both fixed-
time convergence and noise resistance. Although the fixed-time
convergence and robustness of the VAF-based ZNN model can
be guaranteed simultaneously, these superior performances can
be further improved, and two new RZNN models adopting two
novel PVAFs are proposed in this work exactly to this end.
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3. ROBUST ZEROING NEURAL NETWORK (RZNN) MODELS
As mentioned above, robustness of the ZNN models activated by
the AFs in Table 1 to noise is not satisfactory. However, noises
are inevitable for dynamic systems, and many time-varying
systems are sensitive to interference and noise. Therefore, the
following two novel PVAFs are proposed to activate the ZNN
model, such that both noise resistance and predetermined time
convergence can be guaranteed.

τ1(x) = (a|x|p +b|x|q)k sgn(x)+ c1x+ c2sgn(x), (6)

τ2(x) = (a|x|p +b)k sgn(x)+d1x+d2sgn(x), (7)

where a, b, p, q, k > 0, pk > 1, qk < 1. To avoid confusion,
the AFs in (6) and (7) are defined as PVAF-1 and PVAF-2,
respectively.

From equation (6), it can be observed that the VAF in Table 1
is a special case of the PVAF-1 with k = 1.

Employing the PVAF-1 and PVAF-2 to Γ(·) in equation (5)
yields the following two models, respectively, which are ex-
pressed as the RZNN-1 model and RZNN-2 model.

D(t)Ẋ(t)− Ẋ(t)G(t) =−Ḋ(t)X(t)+X(t)Ġ(t)− Ṁ(t)

− λΓ1(D(t)X(t)−X(t)G(t)+M(t)), (8)

D(t)Ẋ(t)− Ẋ(t)G(t) =−Ḋ(t)X(t)+X(t)Ġ(t)− Ṁ(t)

− λΓ2(D(t)X(t)−X(t)G(t)+M(t)). (9)

Taking additive noises into consideration, the RZNN-1 and
RZNN-2 models can be presented below.

D(t)Ẋ(t)− Ẋ(t)G(t) =−Ḋ(t)X(t)+X(t)Ġ(t)− Ṁ(t)

− λΓ1(D(t)X(t)−X(t)G(t)+M(t))+N(t), (10)

D(t)Ẋ(t)− Ẋ(t)G(t) =−Ḋ(t)X(t)+X(t)Ġ(t)− Ṁ(t)

− λΓ2(D(t)X(t)−X(t)G(t)+M(t))+N(t), (11)

where N(t) is the matrix noise.
Their robustness and fixed-time convergence will be analyzed

in the following section.

4. RZNN MODELS ANALYSIS
To analyze the convergence of the RZNN models, two Lemmas
are imposed below.

Lemma 1. [32–34] considering the following dynamic system:

ẋ(t)≤−(axp(t)+bxq(t))k , (12)

where a, b, p, q, k > 0, pk > 1, qk < 1. The above dynamic
system is predefined-time stable, and x(t) converges to 0 within
Tmax, which is given as:

Tmax ≤
1

ak(pk−1)
+

1
bk(1−qk)

. (13)

Lemma 2. [32–34] considering a dynamic system of the fol-
lowing form:

ẋ(t)≤−(axp(t)+b)k , (14)

where a, b, p, q, k > 0, pk > 1, qk < 1. The above dynamic
system is also predefined-time stable, and x(t) converges to 0
within Tmax.

Tmax ≤
1
bk

(
b
a

)1/p(
1+

1
pk−1

)
. (15)

It is worth noting that the convergent time Tmax is independent
of the initial state x(t = 0), and it can be computed directly with
the dynamic parameters a, b, p, q and k.

4.1. RZNN-1 model analysis
Based on Lemma 1, we will firstly analyze the solution of
DSE (1) by using the RZNN-1 model in the cases without noise
and with various noises.

Case 1: No noise
Using PVAF-1 (6), we can obtain the following theorem 1 for
stability of the RZNN-1 model (8).

Theorem 1. If the solution of DSE in (1) exists, the state solution
X(t) of the RZNN-1 model (8) will converge to the theoretical
solution X∗(t) of DSE (1) within ts for arbitrary initial system
state.

ts ≤
1

λak(pk−1)
+

1
λbk(1−qk)

.

Proof. According to (4), the evolution formula of the RZNN-1

model (8) can be written in the form of
dE(t)

dt
=−λΓ1 (E(t)),

and its n2 subsystems can be obtained as:

dei j(t)
dt

=−λτ(ei j(t)) i, j ∈ {1,2, . . .n}. (16)

where ei j(t) is the i j-th element of E(t).
Consider the Lyapunov candidate function v(t) = |ei j(t)| for

the DSE in (1). After substituting the PVAF-1 into the evolution
formula, the derivative of v(t) can be computed as:

dv(t)
dt

= ėi j(t)sgn(ei j(t)) =−λτ (ei j(t))sgn(ei j(t))

=−λ

((
a
∣∣ei j(t)

∣∣p +b
∣∣ei j(t)

∣∣q)k sgn(ei j(t))

+ c1ei j(t)+ c2sgn(ei j(t))
)

sgn(ei j(t))

=−λ

((
a
∣∣ei j(t)

∣∣p +b
∣∣ei j(t)

∣∣q)k
+ c1

∣∣ei j(t)
∣∣+ c2

)
≤−λ

(
a
∣∣ei j(t)

∣∣p +b
∣∣ei j(t)

∣∣q)k

=−
(

λ
1/k (avp(t)+bvq(t))

)k
.

According to Lemma 1, the following bounded convergent
time ti j of the i j-th subsystem can be obtained:

ti j ≤
1

λak(pk−1)
+

1
λbk(1−qk)

.
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Then the upper bound of the convergent time of the RZNN-1
model in (8) can be expressed as:

ts = max(ti j)≤
1

λak(pk−1)
+

1
λbk(1−qk)

.

It can be noted that ts is only dependent on some parameters
of the system, which indicates that the RZNN-1 model (8) can
achieve predefined time convergence in the situation without
noise.

Case 2: Attacked by DBDN
In the situation that the RZNN-1 model is attacked by DBDN, we
can obtain the following Theorem 2 for stability of the RZNN-1
model in (10).

Theorem 2. If the solution of DSE (1) exists, the noise N(t)
in (10) is a DBDN, and |ni j(t)| ≤ δ |ei j(t)| and λc1 ≥ δ (δ ∈
(0,+∞)) hold. The state solution X(t) of the RZNN-1 model (10)
can converge to the theoretical solution X ∗(t) of DSE (1) within
a predetermined time ts for arbitrary initial system state.

ts ≤
1

λak(pk−1)
+

1
λbk(1−qk)

.

Proof. Differing from the above Theorem 1, the evolution for-
mula of the RZNN-1 model (10) with noise can be written in the

form of
dE(t)

dt
=−λΓ1(E(t))+N(t), and its n2 subsystem can

be obtained as:

dei j(t)
dt

=−λτ1(ei j(t))+ni j(t) i, j ∈ {1,2, . . .n}. (17)

where ni j(t) denotes the i j-th element of N(t).
Consider the Lyapunov candidate function v(t) = |ei j(t)|2.

Then, the time derivative of v(t) can be computed as:

dv(t)
dt

= 2ei j(t)ėi j(t) = 2ei j(t)(−λτ1 (ei j(t))+ni j(t)) . (18)

Based on PVAF-1 and the inequalities |ni j(t)| ≤ δ |ei j(t)| and
λc1 ≥ δ , we have:

dv(t)
dt

= 2ei j(t)ėi j(t) = 2ei j(t)(−λτ1(ei j(t))+ni j(t))

= 2ei j(t)
(
−λ

((
a
∣∣ei j(t)

∣∣p +b
∣∣ei j(t)

∣∣q)k sgn(ei j(t))

+ c1ei j(t)+ c2sgn(ei j(t))
)
+ni j(t)

)
=−2λ

((
a
∣∣ei j(t)

∣∣p +b
∣∣ei j(t)

∣∣q)k ∣∣ei j(t)
∣∣

+ c1
∣∣ei j(t)

∣∣2 + c2
∣∣ei j(t)

∣∣)+2ei j(t)ni j(t)

=−2λ

(
a
∣∣ei j(t)

∣∣(p+1/k)
+b
∣∣ei j(t)

∣∣(q+1/k)
)k

+2
(

ei j(t)ni j(t)−λc1
∣∣ei j(t)

∣∣2)−2λc2
∣∣ei j(t)

∣∣

≤−2λ

(
a
∣∣ei j(t)

∣∣(p+1/k)
+b
∣∣ei j(t)

∣∣(q+1/k)
)k

+2
(

δ
∣∣ei j(t)

∣∣2−λc1
∣∣ei j(t)

∣∣2)
≤−2λ

(
a
∣∣ei j(t)

∣∣(p+1/k)
+b
∣∣ei j(t)

∣∣(q+1/k)
)k

=−
(
(2λ )(1/k)

(
a
∣∣vi j(t)

∣∣( pk+1
2k

)
+b
∣∣vi j(t)

∣∣( qk+1
2k

)))k

.

According to Lemma 1, the following corresponding bounded
convergent time ti j of the i j-th subsystem can be obtained:

ti j ≤
1

2λak

((
pk+1

2k

)
k−1

) +
1

2λbk

(
1−
(

qk+1
2k

)
k
)

=
1

λak(pk−1)
− 1

λbk(1−qk)
.

The upper bound convergent time of the RZNN-1 model (10)
attacked by DBDN is obtained as:

ts = max(ti j)≤
1

λak(pk−1)
− 1

λbk(1−qk)
.

Based on the above analysis, it can be observed that the
RZNN-1 model under the attack of DBDN can obtain the solu-
tion of DSE in (1) within the predetermined time ts.

Case 3: Attacked by DBNDN
In the situation that the RZNN-1 model is attacked by DBNDN,
we can obtain the following theorem 3 for stability of the RZNN-
1 model in (10).

Theorem 3. If the solution of DSE (1) exists, the noise N(t)
in (10) is a DBNDN, and |ni j(t)| ≤ δ and λc2 ≥ δ (δ ∈ (0,+∞))
hold. The state solution X(t) of the RZNN-1 model (10) can
converge to the theoretical solution X ∗ (t) of DSE (1) within
a predefined-time ts for arbitrary initial system state.

ts ≤
1

λak(pk−1)
+

1
λbk(1−qk)

.

Proof. As done in Theorem 2, the evolution formula of the

RZNN-1 model (10) can be written in the form of
dE(t)

dt
=

−λΓ1(E(t)) + N(t), and its n2 subsystem can also be ob-
tained as:

dei j(t)
dt

=−λτ1(ei j(t))+ni j(t) i, j ∈ {1,2, . . .n}. (19)

Consider the Lyapunov candidate v(t) = |ei j(t)|2. Then the
time derivative of v(t) can be expressed as:

dv(t)
dt

= 2ei j(t)ėi j(t) = 2ei j(t)(−λτ1 (ei j(t))+ni j(t)) . (20)
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Substituting PVAF-1 (6) and the inequalities |ni j(t)| ≤ δ and
λc2 ≥ δ into (20) results in:

dv(t)
dt

= 2ei j(t)ėi j(t) = 2ei j(t)(−λτ1 (ei j(t))+ni j(t))

= 2ei j(t)
(
−λ

((
a
∣∣ei j(t)

∣∣p +b
∣∣ei j(t)

∣∣q)k sgn(ei j(t))

+ c1ei j(t)+ c2sgn(ei j(t))
)
+ni j(t)

)
=−2λ

((
a
∣∣ei j(t)

∣∣p +b
∣∣ei j(t)

∣∣q)k ∣∣ei j(t)
∣∣+ c1

∣∣ei j(t)
∣∣2

+ c2
∣∣ei j(t)

∣∣)+2ei j(t)ni j(t)

=−2λ

(
a
∣∣ei j(t)

∣∣(p+1/k)
+b
∣∣ei j(t)

∣∣(q+1/k)
)k

+2
(
ei j(t)ni j(t)−λc2

∣∣ei j(t)
∣∣)−2λc1

∣∣ei j(t)
∣∣2

≤−2λ

(
a
∣∣ei j(t)

∣∣(p+1/k)
+b
∣∣ei j(t)

∣∣(q+1/k)
)k

+2
(
δ
∣∣ei j(t)

∣∣−λc2
∣∣ei j(t)

∣∣)
≤−2λ

(
a
∣∣ei j(t)

∣∣(p+1/k)
+b
∣∣ei j(t)

∣∣(q+1/k)
)k

=−
(
(2λ )(1/k)

(
a
∣∣vi j(t)

∣∣( pk+1
2k

)
+b
∣∣vi j(t)

∣∣( qk+1
2k

)))k

.

According to Lemma 1, it can be found that the bounded
convergent time ti j of the i j-th subsystem is:

ti j ≤
1

2λak

((
pk+1

2k

)
k−1

) +
1

2λbk

(
1− (

qk+1
2k

)k
)

=
1

λak (pk−1)
+

1
λbk (1−qk)

.

The upper bound convergent time of the RZNN-1 model (10)
attacked by DBNDN is obtained.

ts = max(ti j)≤
1

λak(pk−1)
+

1
λbk(1−qk)

.

Based on the above results, it can be observed that the RZNN-
1 model (10) under the attack of DBNDN can obtain the solution
of DSE in (1) within predetermined time ts.

4.2. RZNN-2 model analysis
In this section, the stability of RZNN-2 in various cases will be
demonstrated.

Case 1: No noise
Using PVAF-2 (7), we can obtain the following theorem 4 for
stability of the RZNN-2 model (9).

Theorem 4. If the solution of DSE in (1) exists, the state solution
X(t) of the RZNN-2 model (9) will converge to the theoretical
solution X ∗ (t) of DSE (1) within ts for arbitrary initial system
state.

ts ≤
1

λbk

(
b
a

)(1/p)(
1+

1
pk−1

)
.

Proof. According to (4), the evolution formula of the RZNN-2

model (9) can be written in the form of
dE(t)

dt
=−λΓ1(E(t)),

and its n2 subsystems can be obtained as:

dei j(t)
dt

=−λτ2 (ei j(t)) i, j ∈ {1,2, . . .n}. (21)

Consider the Lyapunov candidate function v(t) = |ei j(t)| for
the DSE in (1). After substituting PVAF-2 into the evolution
formula (21), the derivative of v(t) can be computed as:

dv(t)
dt

= ėi j(t)sgn(ei j(t)) =−λτ2 (ei j(t))sgn(ei j(t))

=−λ

((
a
∣∣ei j(t)

∣∣p +b
)k sgn(ei j(t))+d1ei j(t)

+d2sgn(ei j(t))
)

sgn(ei j(t))

=−λ

((
a
∣∣ei j(t)

∣∣p +b
)k
+d1

∣∣ei j(t)
∣∣+d2

)
≤−λ

(
a
∣∣ei j(t)

∣∣p +b
)k

=−
(

λ
(1/k) (avp(t)+b)

)k
.

According to Lemma 2, the corresponding bounded conver-
gent time ti j of the i j-th subsystem can be obtained:

ti j ≤
1

λbk

(
b
a

)(1/p)(
1+

1
pk−1

)
.

Then the upper bound of the convergent time of the RZNN-2
model in (9) can be expressed as:

ts = max(ti j)≤
1

λbk

(
b
a

)(1/p)(
1+

1
pk−1

)
.

It can be noted that ts is only dependent on some parameters of
the system, which indicates that the RZNN-1 model (8) achieves
predefined-time convergence in the situation without noise.

Case 2: Attacked by DBDN
In the situation that the RZNN-2 model is attacked by DBDN, we
can obtain the following Theorem 5 for stability of the RZNN-2
model in (11).

Theorem 5. If the solution of DSE (1) exists, the noise N(t)
in (11) is a DBDN, and |ni j(t)| ≤ δ |ei j(t)| and λd1 ≥ δ (δ ∈
(0,+∞)) hold. The state solution X(t) of RZNN-2 model (11)
can converge to the theoretical solution X ∗(t) of DSE (1) within
a predetermined time ts for arbitrary initial system state.

ts ≤
1

λbk

(
b
a

)(1/p)(
1+

1
pk−1

)
.

Proof. The evolution formula of the RZNN-2 model (11) with

noise can be written in the form of
dE(t)

dt
=−λΓ1(E(t))+N(t),

and its n2 subsystem can be obtained as:

dei j(t)
dt

=−λτ2(ei j(t))+ni j(t) i, j ∈ {1,2, . . .n}. (22)
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Consider the Lyapunov candidate function v(t) = |ei j(t)|.
Then, the time derivative of v(t) can be computed as:

dv(t)
dt

= ėi j(t)sgn(ei j(t))

= (−λτ2 (ei j(t))+ni j(t))sgn(ei j(t)). (23)

Based on PVAF-2 and the inequalities |ni j(t)| ≤ δ |ei j(t)| and
λd1 ≥ δ , we have:

dv(t)
dt

= ėi j(t)sgn(ei j(t)) = (−λτ2 (ei j(t))+ni j(t))sgn(ei j(t))

=
(
−λ

((
a
∣∣ei j(t)

∣∣p +b
)k sgn(ei j(t))+d1ei j(t)

+d2sgn(ei j(t))
)
+ni j(t)

)
sgn(ei j(t))

=−λ
(
a
∣∣ei j(t)

∣∣p +b
)k−λd1

∣∣ei j(t)
∣∣

−λd2 +ni j(t)sgn(ei j(t))

≤−λ
(
a
∣∣ei j(t)

∣∣p +b
)k
+
(
δ
∣∣ei j(t)

∣∣−λd1
∣∣ei j(t)

∣∣)
≤−λ

(
a
∣∣ei j(t)

∣∣p +b
)k

=−
(

λ
(1/k) (avp(t)+b)

)k
.

According to Lemma 2, the corresponding bounded conver-
gent time ti j of the i j-th subsystem is:

ti j ≤
1

λbk

(
b
a

)(1/p)(
1+

1
pk−1

)
.

The upper bound convergent time of the RZNN-2 model (11)
attacked by DBDN is obtained as:

ts = max(ti j)≤
1

λbk

(
b
a

)(1/p)(
1+

1
pk−1

)
.

Based on the above analysis, it can be observed that the
RZNN-2 model under the attack of DBDN can obtain the solu-
tion of DSE in (1) within the predefined-time ts.

Case 3: Attacked by DBNDN
In the situation that the RZNN-2 model is attacked by DBNDN,
we can obtain the following theorem 6 for stability of the RZNN-
2 model in (11).

Theorem 6. If the solution of DSE (1) exists, the noise N(t)
in (11) is a DBNDN, and |ni j(t)| ≤ δ and λd2 ≥ δ (δ ∈ (0,+∞))
hold. The state solution X(t) of RZNN-1 model (10) can con-
verge to the theoretical solution X ∗ (t) of DSE (1) within a pre-
determined time ts for arbitrary initial system state.

ts ≤
1

λbk

(
b
a

)(1/p)(
1+

1
pk−1

)
.

Proof. As done in Theorem 5, the evolution formula of the

RZNN-2 model (11) can be written in the form of
dE(t)

dt
=

−λΓ1(E(t)) + N(t), and its n2 subsystem can also be ob-
tained as:

dei j(t)
dt

=−λτ2(ei j(t))+ni j(t) i, j ∈ {1,2, . . .n}. (24)

Consider the Lyapunov candidate v(t) = |ei j(t)|. Then the
time derivative of v(t) can be expressed as:

dv(t)
dt

= ėi j(t)sgn(ei j(t))

= (−λτ2 (ei j(t))+ni j(t))sgn(ei j(t)). (25)

Substituting PVAF-2 (7) and the inequalities |ni j(t)| ≤ δ and
λd2 ≥ δ into (25) results in:

dv(t)
dt

= ėi j(t)sgn(ei j(t)) = (−λτ2 (ei j(t))+ni j(t))sgn(ei j(t))

=
(
−λ

((
a
∣∣ei j(t)

∣∣p +b
)k sgn(ei j(t))+d1ei j(t)

+d2sgn(ei j(t))
)
+ni j(t)

)
sgn(ei j(t))

=−λ
(
a
∣∣ei j(t)

∣∣p +b
)k−λd1

∣∣ei j(t)
∣∣

−λd2 +ni j(t)sgn(ei j(t))

≤−λ
(
a
∣∣ei j(t)

∣∣p +b
)k
+(δ −λd)

≤−λ
(
a
∣∣ei j(t)

∣∣p +b
)k

=−
(

λ
(1/k) (avp(t)+b)

)k
.

According to Lemma 2, it can be found that the corresponding
bounded convergent time ti j of the i j-th subsystem is:

ti j ≤
1

λbk

(
b
a

)(1/p)(
1+

1
pk−1

)
.

The upper bound convergent time of the RZNN-2 model (10)
attacked by DBNDN is obtained as:

ts = max(ti j)≤
1

λbk

(
b
a

)(1/p)(
1+

1
pk−1

)
.

Based on the above results, it can be observed that the RZNN-
2 model (11) under the attack of DBNDN can obtain the solution
of DSE in (1) within predetermined time ts.

Combining Theorems 1–6, it can be concluded that the two
proposed RZNN models (PVAF-1 activated RZNN-1 and PVAF-
2 activated RZNN-2) converge to the theoretical solution of
DSE (1) within fixed-time and they are robust to noise.

5. NUMERICAL SIMULATION VERIFICATION
In this section, numerical examples are carried out to verify
their effectiveness in calculating the solution of DSE (1). In this
section, a comparison with the SBPAF-activated ZNN model (5)
in Table 1 is also conducted.

The proposed RZNN models activated by the two new PVAFs
in Table 2 are applied to solve the DSE (1). In addition, recently
reported AFs and the proposed PVAFs are listed in Table 2.
Based on Table 2, it can be observed that all the AFs have differ-
ences in their structure, which leads to different performance of
the ZNN models.

It is worth pointing out that the variable k in PVAF-1 and
PVAF-2 is a parameter designed by the user, and the VAF in
Table 1 is a special case of the new proposed PVAF-1 with k = 1.
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Table 2
Recently reported AFs and proposed PVAFs

Models Activation functions

ZNN in [35] n(x) = (α1|x|ρ +α2|x|ϕ )s sgn(x)+α3 exp
(
|x|λ
)
|x|λ−1sgn(x)/λ +α4sgn(x)

RFCZNN in [36] ϕ(x) = sgnp/q(x)+ sgnq/p(x)+ k1x+ k2sgn(x)

BFCZNN in [37] φ(x) = w1 exp(|x|p) |x|1−psgn(x)/p+
(

w2|x|q +w3|x|1/q
)

sgn(x)

RZNN in this work
τ1(x) = (a|x|p +b|x|q)k sgn(x)+ c1x+ c2sgn(x)

τ2(x) = (a|x|p +b)k sgn(x)+d1x+d2sgn(x)

The dynamic coefficient matrices of DSE (1) are given below.

D =

 sin3t cos3t sin t
−cos3t sin3t cos t
−sin t −cos2t sin3t

 ,

G =

20 0 10
0 30 0
0 15 20

 ,

M =

 sin3t cos3t sin t
−cos3t sin3t cos t

sin t cos t sin3t

 .

For arbitrary initial system state, the RZNN-1 and RZNN-2
models activated by the PVAF-1 and PVAF-2 with k = 0.5, k = 1
and k = 2 are applied to compute the solution of DSE (1) under
the attack of the four noises which are given in Table 3.

Table 3
Noises

No. Noise item Expression

1 Periodic noise (PN) n(t) = 1.5cos(t)

2 Constant noise (CN) n(t) = 1.5

3 Non-disappearing noise (NDN) n(t) = 0.1t

4 Disappearing noise (DN) n(t) = exp(−t)

The state solutions of DSE (1) obtained by the RZNN-1
model (10) with k = 0.5,1,2 under the attack of PN n(t) =
1.5cos(t) are presented in Fig. 1(a–c), respectively. The red
dotted curves and blue solid curves represent the theoretical
solutions of DSE (1) and the state solutions obtained by the
RZNN-1 model (10), respectively. As shown in Fig. 1(a–c), the
RZNN-1 model (10) activated by the PVAF-1 solves DSE (1)
quickly and robustly. Moreover, we can observe that the conver-
gent performance of the RZNN-1 model (10) improves as the
value of k increases.

The neutral state solutions of DSE (1) solved by the ZNN
model (5) activated by SBPAF in Table 1 is presented in Fig. 1(d),

from which it can be observed that the ZNN model (5) cannot ac-
curately solve DSE (1) under the attack of PN n(t) = 1.5cos(t).

The residual errors ‖D(t)X(t)−X(t)G(t)+M(t)‖F of the
RZNN-1 model (10) activated by the PVAF-1 and the ZNN
model (5) activated by the SBPAF are illustrated in Fig. 2 and
Fig. 3, from which it can be observed that the RZNN-1 model
(10) solves DSE (1) under the attack of various noises, while
the ZNN model (5) activated by the SBPAF fails. Additionally,
it also can be observed that the convergent speed of RZNN-
1 model (10) is dependent on parameter k, which means that
the convergent rate of the RZNN-1 model can be adjusted by
choosing an appropriate k.

The state solutions of DSE (1) obtained by RZNN-2
model (11) with k = 0.5, k = 1, k = 2 under the attack of PN
n(t) = 1.5cos(t) are described in Fig. 4(a–c), respectively, from
which it can be observed that the RZNN-2 model (11) activated
by the PVAF-2 also solves DSE (1) quickly and robustly. More-
over, it also can be seen that the convergent performance of the
RZNN-2 model (11) improves as the value of k increases. The
corresponding residual errors of RZNN-2 and ZNN activated by
SBPAF with PN n(t) = 1.5cos(t) is presented in Fig. 4(d).

The residual errors ‖D(t)X(t)−X(t)G(t)+M(t)‖F of the
RZNN-2 model (11) activated by the PVAF-2 with k = 0.5,1,2
and the ZNN model (5) activated by the SBPAF for solving
DSE (1) are shown in Fig. 5 and Fig. 6, which show that the
RZNN-2 model (11) solves DSE (1) effectively in noise-polluted
environment. It can be observed that the proposed RZNN-2
model (11) has better performance than the ZNN model (5) in
noisy environment. Moreover, it also can be observed that the
convergent speed of the RZNN-2 model (11) is dependent on
parameter k. Specifically, the convergence and anti-noise perfor-
mance of the RZNN-2 model (11) become better as k increases,
which means that the convergent rate of the RZNN-2 model can
be adjusted by choosing an appropriate k.

Remark 1. Parameter k is the key technique of the two pro-
posed new PVAFs, and the convergence and robustness of the
RZNN models become better as k increases. Although it should
be better to choose a large k, the choice of k may be constrained
by some hardware conditions, such as the value of capacitance,
inductance or diodes. Thus, it needs a tradeoff between perfor-
mance and hardware in practical applications.
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(d) simulated residual errors
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Fig. 1. (a–c) Solved by the RZNN-1 model with PN n(t) = 1.5cos(t)
and (d) solved by ZNN model (5) activated by SBPAF

with PN n(t) = 1.5cos(t)
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Fig. 2. Residual errors of RZNN-1 and ZNN activated by SBPAF
a) without noise and b) with CN n(t) = 1.5
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Fig. 3. Residual errors of RZNN-1 and ZNN activated by SBPAF
a) with PN n(t) = 1.5cos(t) and b) with NDN n(t) = 0.1t
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(d) simulated residual errors
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Fig. 4. (a–c). Solved by the RZNN-2 model with PN n(t) = 1.5cos(t)
and (d) residual errors of RZNN-2 and ZNN activated by SBPAF with

PN n(t) = 1.5cos(t)

a)

0 510

10

0

20

30

40

50
RNN-2 with k=0.5
RNN-2 with k=1
RNN-2 with k=2

SBPAF

R
es

id
ua

l e
rr

or
s

time (s)

b)

0 510

10

0

20

30

40

50
RNN-2 with k=0.5
RNN-2 with k=1
RNN-2 with k=2

SBPAF

R
es

id
ua

l e
rr

or
s

time (s)

Fig. 5. Simulated residual errors of RZNN-2 and SBPAF-based ZNN
a) without noise and b) with CN n(t) = 1.5
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Fig. 6. Simulated residual errors of RZNN-2 and SBPAF-based ZNN
a) with NDN n(t) = 0.1t and b) with DN n(t) = exp(−t)
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6. APPLICATION OF MECHANICAL ARM
With the development of artificial intelligence, intelligent cir-
cuits [ ] and robots have become a hot research topic in recent
years [38–43]. In this section, the RZNN-2 model is applied to
control the robotic manipulator to track a given trajectory under
the attack of constant noise. Additionally, a comparison with
a SBPAF-based ZNN model is conducted.

The kinematic model of an MRM is described below [44, 45].

r(t) = ξ (θ(t)), (26)

where r(t) represents the position of the end-effector, θ(t) de-
notes the joint angle and ξ (·) is a nonlinear function. The motion
equation of the velocity level is:

ṙ(t) = J(θ)θ̇(t), (27)

where J(θ) =
∂ξ (θ)

∂θ
is the Jacobian matrix.

The control objective is to design control law µ = θ̇ , such that
the tracking error e(t) = r(t)− rd(t) converges to 0 within pre-
defined time in noisy environment, where rd(t) is the reference
trajectory. To achieve such an objective, the proposed RZNN-2
model (11) and the SBPAF-based ZNN model (5) are applied
to design the control law, respectively. The kinematic control
models to generate control input are shown as follows.

Jµ̇ =−J̇θ + r̈d−λΓ2 (Jµ− ṙd)+n(t), (28)

Jµ̇ =−J̇θ + r̈−λΓ(Jµ− ṙd)+n(t). (29)

Equations (28) and (29) are the kinematic control models of
the MRM when the RZNN-2 model (11) and SBPAF-activated
ZNN model (5) are used, respectively.

The RZNN-based model (28) is used for the MRM to perform
task tracking of a windmill under the condition of CN n(t) = 0.5,
and the simulation results are presented in Fig. 7. Figure 7(a)
is the tracking trajectory of the MRM, Fig. 7(b) is the desired
path and actual trajectory of the MRM, and Fig. 7(c) is the
tracking error of the MRM based on (28). As seen from Fig. 7,
the MRM based on (28) completes the windmill-shaped tracking
task successfully, and the actual tracking trajectory of the MRM
matches the desired path exactly.

Then, the ZNN-based model (5) activated by SBPAF is also
used for the MRM to complete the same task under the same
condition, and the related simulation results are shown in Fig. 8.
We can observe from Fig. 8 that owing to the influence of addi-
tive CN n(t) = 0.5, the actual tracking trajectory of the MRM
cannot coincide with the expected windmill-shaped path. In
other words, the MRM based on (29) fails to accomplish the
tracking task of a windmill-shaped path owing to the additive
interference.

A six-joint manipulator is driven to track a circle with radius
r = 5 cm by using the RZNN-based model (28). The simulated
results are presented in Fig. 9, which further verifies effective-
ness of the proposed RZNN models.

A real robotic manipulator is also used to further validate the
correctness and effectiveness of the RZNN-based model (28).
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Fig. 7. Trajectory tracking results of MRM synthesized by RZNN-2
with n(t) = 0.05. (a) Top view of the tracking trajectory. (b) Actual
trajectory and desired tracking path. (c) Tracking errors. (ex, ey and
ez in (c) are the position errors between the desired path and the end-

effector trajectory in X, Y and Z directions, respectively)

The desired task of the real robotic manipulator is also to track
a circle with radius r = 5 cm. In this physical experiments, the
snapshots during the completion of the circle tracking task syn-
thesized by the RZNN-based model (28) are presented in Fig. 10.
It can be observed from Fig. 10 that the real robotic manipulator
synthesized by the RZNN-based model (28) fulfills the circle
tracking task successfully, which further verifies the practicality
and effectiveness of the proposed RZNN models.
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Fig. 8. Trajectory tracking results of MRM synthesized by SBPAF-
based ZNN with n(t) = 0.5. a) Top view of the tracking trajectory.
b) Actual trajectory and desired tracking path. c) Tracking errors. (ex,
ey and ez in (c) are the position errors between the desired path and the

end-effector trajectory in X, Y and Z directions, respectively)

7. CONCLUSIONS

In this paper, the main contribution lies in the design of two
new PVAFs. Then, two RZNN models for solving DSE are con-
structed by employing these two activation functions. Compared
with the existing ZNN models, the proposed two models have sig-
nificant advantages in fixed-time convergence and anti-jamming
capability. In order to verify their unique advantages, we first

Fig. 9. Simulated circle tracking experiments synthesized
by the RZNN-based model (28)

Fig. 10. Physical circle tracking experiments synthesized
by the RZNN-based model (28)

prove strictly from mathematical analysis. Then, similarly to
theoretical analysis, noises are also taken into consideration in
the simulation experiments. The experimental results are con-
sistent with theoretical discussion, which further emphasizes
reliability of the RZNN models. Future research directions could
be focused on improvement of the structure of the existing ZNN
model and the expanded applications of the RZNN models in
practical engineering problems.
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