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Vibro-acoustic response of an isotropic beam under the action of variable axial loads (VALs), is presented
in the study. Effects of six different types of VALs and three types of end conditions on buckling, free vi-
bration and sound radiation characteristics are investigated. Static buckling and free vibration behaviours
using shear and normal deformable theorem and Ritz method. However, the forced vibration response is evalu-
ated using modal superposition method and the acoustic radiation characteristics are obtained using Rayleigh
integral. The nature of variation of VALs and end conditions are influencing buckling and free vibration charac-
teristics remarkably. Results indicate that the acoustic response is highly sensitive to the nature of VAL and
intensity of the VAL. In general, sound power at resonance decreases when the magnitude of VAL is increased.

Keywords: Ritz method; variable axial load; buckling; vibration; sound radiation.

Copyright © 2022 S.N. Balireddy et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International
(CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/) which permits use, distribution, and reproduction in any
medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made.

1. Introduction

Thin-walled beam like structural members are used
in automobile, aerospace, marine and nuclear indus-
tries. Elastic stability study of these thin-walled beams
subjected to compression is very important due to
the risk and safety issues. Furthermore, the compres-
sive load also influences dynamic characteristics of the
beam. This motivated several researchers to investi-
gate buckling and dynamic characteristics of beams
under pre-stress. The changes in dynamic characteris-
tics such as free vibrational frequencies and acoustic
response also can be effectively used to analyse the
stability of the pre-stressed structural members. Most
of the buckling and vibration studies are performed
with an assumption of edge compressive load. Howe-
ver, variable axial loads (VAL) along the longitudinal
direction is of more practical importance in applica-

tions like stiffener of blend wing body aircraft which is
subjected to parabolically varying stress in the longitu-
dinal direction (Hu et al., 2003). In general, structure
made of an isotropic material is considered first for
any type of new investigation. Furthermore, the study
based on the isotropic materials gives great motivation
for the analysis of structures made of alloys, fibre rein-
forced composites, functionally graded materials, and
other advanced nano composites.

As the current study is focussed on the buckling
and dynamic analysis of beam under variable axial
load, the related research articles published recently
are cited herein. Vo et al. (2017) presented normal de-
formation theory for the analysis of laminated beams.
Karamanli and Aydogdu (2019a) analysed buck-
ling of composite beam using Ritz method and re-
ported that nature of VAL affects the buckling load
significantly. Karamanli and Aydogdu (2019b) ob-
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served that dimensionless fundamental frequencies of
laminated composite micro beam is influenced to or-
thotropy ratios, hub ratios, fiber orientation angels etc.
Melaibari et al. (2020a) investigated buckling be-
haviour of sigmoid functionally graded (FG) beam
subjected to the VAL using differential quadrature
method (DQM) and found that grading of material
and nature of the VAL influences the buckling load.
Melaibari et al. (2020b) analysed stability of a func-
tionally graded beam under the VAL using DQM con-
sidering the shear effect and found that the buck-
ling mode shape is influenced by the gradation in-
dex. Hamed et al. (2020a) carried out numerical study,
based on DQM, to analyse buckling characteristics of
sandwich beam under the effects of the VAL and elastic
foundation. They concluded that the findings will be
useful for the design of structural components of air-
craft’s and ships subjected to the VAL and shear load.
Eltaher et al. (2020b) used DQM to analyse buckling
response of unified composite beams subjected to the
VAL and reported that symmetry associated with the
buckling mode is altered by the nature of the VAL load.
Hamed et al. (2020b) performed optimisation study
on a porous FG sandwich beam subjected to the VAL
using DQM. They reported that nature of porosity
variation, porosity coefficient and type of VAL affects
the buckling load. Eltaher and Mohamed (2020a)
investigated buckling and dynamic response of sand-
wich beam subjected to VALs and concluded that the
analysis is important for the better design of aircraft
and naval structural members subjected to nonuni-
form compressive loads. Abo-bakr et al. (2021), using
DQM, studied for obtaining optimal weight of func-
tionally graded (FG) in order to improve its buckling
strength. Harsha et al. (2021) studied effect of graded
porosity and nature of variation VAL on buckling and
dynamic behaviour of a FG beam using Ritz method.
Kanade et al. (2021) studied influence of VAL on fre-
quencies of a laminated composite beam using Ritz
method and concluded that lamination scheme and na-
ture of variation of the VAL significantly influences the
buckling and free vibration characteristics.

For the effective design of a structural component,
it is important to predict its static, buckling, and dy-
namic characteristics accurately. Ritz obtained free vi-
bration characteristics using several admissible func-
tions and minimising a functional involving the to-
tal energy (Leissa, 2005). Aydogdu (2005) used Ritz
method to analyse frequencies of composites beams un-
der different boundary conditions. Aydogdu (2006)
also demonstrated the use of Ritz method to analyse
buckling of composite beams by comparing the results
with the literature. Jaworski and Dowell (2008)
predicted the natural frequencies of a multiple stepped
beam using Rayleigh-Ritz formulations, finite element
code, and component modal analysis. Zhu (2011) stud-
ied on natural frequencies of a pre-twisted beam us-

ing Ritz method. Ghannadpour et al. (2013) used
Ritz method to analyse nonlocal effect on dynamic
performance of Euler beams. Ritz method, a numer-
ical method, has been used successfully to analyse the
structural mechanics problems (Ilanko et al., 2014)
using which combination of trial functions are used
to approximate the displacement field. Lord Rayleigh
proposed his approach in 1877 to obtain fundamental
frequency of beams based on vibration mode shape.
Chakraverty and Behera (2015) studied frequen-
cies of nano beams using Ritz method. Nguyen et al.
(2018) analysed structural behaviour of composite
beam for static, buckling, and dynamic characteristics
using the Ritz method. Omidi Soroor et al. (2021)
studied frequencies of magnetorheological fluid sand-
wich beams based on Ritz method.

Sound radiated from vibrating members is an im-
portant problem in order to address the noise control
issues arises from structural members during their ser-
vice. The amount of research work carried out on sound
radiation characteristics of beam is very less compared
to the plate and cylindrical panels. Vibro-acoustic re-
sponse studies associated with vibrating beam are pre-
sented here. Zheng and Cai (2004) reduced acous-
tic response from a beam using optimized constrained
layer damping method. They used Rayleigh integral
to obtain the sound power radiated from the vibrat-
ing beam under steady state harmonic excitation.
Ruzzene (2004) investigated vibro-acoustic response
characteristics of truss core sandwich beam using ana-
lytical method. Spadoni and Ruzzene (2006) investi-
gated vibro-acoustic response of chiral truss core sand-
wich beam using finite element method and Rayleigh
integral. Majkut (2006) studied acoustic diagnostics
on crack detection of structural element of a CF beam.
Denli and Sun (2007) performed optimisation study
to minimise the sound power radiation of a cellular
core sandwich beam. They used finite element based
numerical method to obtain the vibration response
and Rayleigh integral to obtain the sound power re-
sponse. Alshabatat and Naghshineh (2014) worked
on optimization of sound power and fundamental fre-
quencies of FG beams by numerical methods. They
used finite element method to obtain vibration para-
meters and Rayleigh integral for the acoustic response
evaluation. Tang and Xu (2017) analysed sound ra-
diation of a beam in subsonic flow using theoretical
models. They used an analytical method for the struc-
tural analysis and Helmholtz equation based theoreti-
cal model for the sound radiation analysis.

An experimental procedure for beam type struc-
tures was proposed by Torres-Romero et al. (2018)
for vibro-acoustic studies. Tiryakioglu and Demir
(2019) studied on radiation of sound waves from
semi-infinite circular cylindrical duct using modi-
fied Wiener-Hopf solution. Continuation study on
the above circular cylindrical duct was carried by
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Tiryakioglu (2020). He used perforated end and with
outer wall coated with acoustically absorbent mate-
rial. Li and Yang (2020) studied sound radiation
behaviour of cellular structures with metamaterials.
They used Euler-Bernoulli theorem based analytical
model to study the vibration response and Rayleigh’s
first integral to study the sound radiation response.
Recently, Gunasekaran and co-authors analysed the
influence of nonuniform load on sound radiation of
metal (Gunasekaran et al., 2020a), porous grapheme
nano composite (Gunasekaran et al., 2020b), and
FG grapheme composite (Gunasekaran et al., 2021)
plates and highlighted the importance of studying the
effect of varying edge load on the vibro-acoustic re-
sponse.

From the literature, it is evident that it is impor-
tant to analyse stability and dynamic behaviour of
beams subjected to varying load along the longitudinal
direction. For example, the stiffeners used to connect
different panels in aircraft structures may be subjected
to nonuniform shear forces. These members are sub-
jected to steady state mechanical excitation also, due
to the engine vibration, apart from the axially varying
in-plane loads. However, most of the dynamic response
studies are performed with an assumption of compres-
sion load applied at the ends of the beam. Further-
more, there is no study available in open literature re-
lated to vibro-acoustics of beams under pre-stress and
subjected to a harmonic excited mechanical load. The
present study analyses vibro-acoustic response of an
isotropic beam subjected to VALs under the action of
a steady state mechanical load excitation. Ritz method
is used to study the buckling and free vibration pa-
rameters while Rayleigh integral is used to study the
acoustic response parameters.

2. Methodology

The schematic diagram of the studied problem is
given in Fig. 1. The beam is studied for simply sup-
ported (SS), clamped clamped (CC), and clamped free
(CF) boundary conditions. As shown in Fig. 2, six dif-
ferent types of VAL’s are considered to analyse the
effect of nature of axial load variation along the length
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Fig. 1. Schematic diagram of proposed work (N(x) is vari-
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Fig. 2. Distribution of the VALs along the length
of the beam (Karamanli, Aydogdu, 2019a).

for the vibro-acoustic response of the beam. The varia-
tion of the in-plane loads along the length is defined
by the following expression

Ne
x(x) = N0 {β1 (x +

L

2
)

2

+ β2 (x +
L

2
) + β3},

Ne
x(x) = N0P (x).

(1)

The values of β1, β2, and β3 used in Eq. (1) will
define the type of VAL and their respective values
are given in Table 1. The displacement field based
on shear and normal deformable theory is considered
(Karamanli, 2019a; 2019b; Nguyen, 2018; Vo, 2017)

U(x, z, t) = u(x, t) − z
dwb(x, t)

dx
−

4z3

3h2

dws(x, t)
dx

= u(x, t) − zw′
b(x, t) − f(z)w

′
s(x, t),

W (x, z, t) = wb(x, t) +ws(x, t) + (1 −
4z2

h2
)wz(x, t)

= wb(x, t) +ws(x, t) + g(z)wz(x, t),

(2)

where u is axial displacement, wb and ws are compo-
nents of bending and shear displacements, and wz is

Table 1. Axial distributed loads coefficients.

Type
of loading

Category of loading β1 β2 β3

N1
x Uniformly distributed load 0 0 1

N2
x Gradually increasing load 0 2 0

N3
x Gradually decreasing load 0 −2 2

N4
x Exponentially increasing load 3 0 0

N5
x Exponentially decreasing load 3 −6 3

N6
x Parabolic load −6 6 0
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accounts for normal deformation effect. The strains of
the axial, normal, and shear are described by:

εxx =
∂U

∂x
= u − zw′′

b − f(z)w
′′
s ,

εzz =
∂W

∂z
= g′(z),

γxz =
∂W

∂x
+
∂U

∂z
= g(z)(w′

s +w
′
z).

(3)

The potential energy is given as

U =
1

2
∫
v

(σxxεxx + σzzεzz + σxzγxz)dV. (4)

Work done by VAL is

V = −
1

2

L
2

∫

−L2

Ne
x(x)

⋅

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x

∫

−L2

[(
∂wb
∂x

)

2

+ 2
∂wb
∂x

∂ws
∂x

+ (
∂ws
∂x

)

2

]dx

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

dx. (5)

The kinetic energy of the system is

K = −

L

∫
0

b

∫
0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h
2

∫
−h
2

ρ (U̇δU̇ + Ẇ δẆ ) dz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dy dx

=

L

∫
0

[δu̇(m0u̇ −m1ẇ
′
b −mf ẇ

′
s)

+ δẇb[m0(ẇb + ẇs) +mgẇz]

+ δẇ′
b(−m1u̇ +m2ẇ

′
b +mfzẇ

′
s)

+ δẇs[m0(ẇb + ẇs) +mgẇz]

+ δẇ′
s(−mf u̇ +mfzẇ

′
b +mf2ẇ′

s)

+ δẇz[mg(ẇb + ẇs) +mg2ẇz]]dx, (6)

where

(m0,m1,m2) =

h
2

∫
−h
2

ρ(1, z, z2
)bdz,

(mf ,mfz,mf2) =

h
2

∫
−h
2

ρ(f, fz, f2
)bdz, (7)

(mg,mg2) =

h
2

∫
−h
2

ρ(g, g2
)bdz.

Total potential energy is

Π = U + V −K. (8)

or

0 =

t2

∫
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s(−mf u̇ +mfzẇ
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+ δẇz[mg(ẇb + ẇs) +mg2ẇz]]dx
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(9)

The stiffness coefficients are

(A,B,Bs,D,Ds,H)=

h
2

∫

−h2

Q11b (1, z, f, z
2, f2, fz, g′2)dz,

(10)1

As =

h
2

∫

−h2

Q55g
2 dz, (10)2
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(X,Y,Ys) =

h
2

∫

−h2

Q13bg
′(1, z, f)dz, (10)3

Z =

h
2

∫

−h2

Q33bg
′2 dz. (10)4

For isotropic lamina,

Q11 = Q22 =
E

1 − ν2
, Q12 = Q21 =

νE

1 − ν2
,

Q33 = Q44 = Q55 = G.

(11)

The kinematic relations associated with the SS
and CC boundary conditions are shown in Table 2.
The functions u(x, t), wb(x, t), ws(x, t), and wz(x) are
given as (Karamanli, Aydogdu, 2019a):

u(x, t) =
m

∑
j=1

AjΘj(x)e
iωt,

Θj(x) =
⎛

⎝
x +

L

2

⎞

⎠

pu
⎛

⎝
x −

L

2

⎞

⎠

qu

xj−1,

(12)1

wb(x, t) =
m

∑
j=1

Bjϕj(x)e
iωt,

ϕj(x) =
⎛

⎝
x +

L

2

⎞

⎠

pwb
⎛

⎝
x −

L

2

⎞

⎠

qwb

xj−1,

(12)2

ws(x, t) =
m

∑
j=1

Cjζj(x)e
iωt,

ζj(x) =
⎛

⎝
x +

L

2

⎞

⎠

pws
⎛

⎝
x −

L

2

⎞

⎠

qws

xj−1,

(12)3

wz(x, t) =
m

∑
j=1

Djψj(x)e
iωt,

ψj(x) =
⎛

⎝
x +

L

2

⎞

⎠

pwz
⎛

⎝
x −

L

2

⎞

⎠

qwz

xj−1.

(12)4

Table 2. Boundary exponents of SS and CC boundary
conditions.

BC
Left end Right end

pu pwb pws pwz qu qwb qws qwz

SS 1 1 1 1 0 1 1 1
CC 1 2 2 1 1 2 2 1
CF 1 2 2 1 1 2 2 1

In Eq. (12), Aj , Bj , Cj , and Dj are unknown coef-
ficients, Θj(x), ϕ(x), ζj(x), and ψj(x) are trial func-
tions and pξ and qξ are the boundary exponents. The
boundary exponents are ξ = u,wb,ws,wz.

By using the minimum energy principle and substi-
tuting Eqs (12) into Eq. (10), the following eigenvalue
problem is obtained (neglecting the inertia terms)

([K] −N0[S]){∆} = 0,
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⎜
⎜
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⎢
⎣

[K11] [K12] [K13] [K14]

[K12]
T [K22] [K23] [K24]

[K13]
T [K23]

T [K33] [K34]
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,

(13)

where ′λ′ is dimensionless critical buckling load, [K]

and [S] are stiffness and geometric matrices, respec-
tively. The dimensionless critical buckling load can be
defined by:

λ =
N0 ∗L

2

E1 ∗ b ∗ h3
. (14)

Critical buckling load of the beam under six differ-
ent VALs is obtained first. Then, free vibration fre-
quencies of beam subjected to VALs are calculated
considering the pre-stress effect caused by the in-plane
load. The Rayleigh-Ritz method formulated based on
the shear and normal deformable theorem is used to
investigate static stability and free vibration charac-
teristics. The free vibration is analysed with:
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,

(15)
where [M] is the mass matrix, and its coefficients are
defined in Appendix.

Followed by this forced vibration, response is eval-
uated using the modal superposition method:

[M]{∆̈} + [C]{∆̇} + [K]{∆} = [H]ejωt. (16)

In the above equation, [C] is damping matrix, ∆ is
displacement, and [H] is harmonic load vector.

The Rayleigh integral (Gunasekaran et al., 2020a)
is used in determining the acoustic radiation behaviour
of the beam:

p(r) =
jωρ0

2π
∫

S

Ẇ (rs)
e−jk∣r−rs∣

∣r − rs∣
ds, (17)
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here p(r) is pressure, ω(r) is surface velocity, k wave
number, ρ0 is fluid density, and ∣r − rs∣ represents for
the distance among the surface and field. The sound
intensity is

I(r) =
1

2
Re (p(r)ẇ∗

(rs)) , (18)

and the sound power radiated is

W = ∮ I(r) n(rs)ds, (19)

here n(rs) is surface normal

W =
1

2
Re(∮ p(r)Ẇ ∗

(r)ds) . (20)

From the above equation, the sound power level (SWL)
of an isotropic beam can be determined by solving
Eq. (21):

SWL = 10 log
W

Wref
, (21)

where Wref is reference sound power level, which is
10−12 W, and the sound radiation efficiency (σ) can be
obtained from the following formula:

σ =
W

ρ0C0S ⟨Ẇ
2

⟩

. (22)

In the above equation, C0 is speed of sound in m/s,

⟨Ẇ
2

⟩ = ẆH
n NẆn, and N = (1/2)NI. ’I’ is a unit ma-

trix in a respective size, N is elements number used in
discretization, Ẇn and ẆH

n represents normal velocity
with its conjugate velocity.

3. Validation study

The present study on isotropic beams is validated
with earlier studies.

Table 3. Comparison of buckling loads calculated using present method with Karamanli and Aydogdu (2019a) results.

BC Study N1
x N2

x N3
x N4

x N5
x N6

x

Karamanli and Aydogdu (2019a) 18.55 15.34 23.21 14.14 26.64 18.33
SS Present study 18.76 15.51 23.47 14.30 26.94 18.53

Absolute error [%] 1.11 1.10 1.12 1.10 1.13 1.11
Karamanli and Aydogdu (2019a) 74.59 56.23 107.78 50.21 139.50 72.68

CC Present study 75.42 56.86 108.97 50.77 141.04 73.51
Absolute error [%] 1.11 1.12 1.11 1.12 1.10 1.13

Karamanli and Aydogdu (2019a) 7.85 5.13 16.14 4.23 27.35 8.73
CF Present study 7.92 5.18 16.27 4.27 27.55 8.80

Absolute error [%] 0.84 0.85 0.79 0.86 0.74 0.82

3.1. Buckling load calculation

The present study is validated for buckling load
by considering isotropic beam analysed by Kara-
manli and Aydogdu (2019a). Both Karamanli and
Aydogdu (2019a) present methods used the same
theorem and the Ritz method to evaluate the nondi-
mensional buckling load (λ) of Eq. (14). The isotropic
beam with length 1 m, cross section b×h assumed
to be square and for L/h ratio of 50 is used for the
comparison. The results of nondimensional buckling
load obtained using present study are presented along
with results of Karamanli and Aydogdu (2019a) in
Table 3. The percentage in error in Table 3 is found
to be considerably less.

3.2. Natural frequency sound radiation calculation

The present study is also validated for SWL calcu-
lation of an isotropic beam studied by Zheng and Cai
(2004). Aluminium beam with 0.4× 0.03× 0.004 m3

under SS boundary condition is considered for com-
parison. Zheng and Cai (2004) used Rayleigh’s inte-
gral in calculating the sound power level. The sound
power responses calculated using the present approach
are compared with Zheng and Cai (2004) in Fig. 3.

Frequency [Hz]
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d 
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w
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ve

l [
dB
]

Present
ZHENG and CAI

Fig. 3. Comparison of natural frequency and SWL
with (Zheng, Cai, 2004).
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From all the comparison studies, it is very clear
that the present study can be extended for the analysis
that are discussed earlier.

4. Results and discussion

The vibro-acoustic response of an isotropic beam
under various VALs, and boundary conditions is in-
vestigated in this section. The study is presented for
six types of VALs and under SS, CC, and CF end con-
ditions. To start with, the buckling loads are calcu-
lated first for each boundary condition under different
VALs and the same are tabulated in Table 4 and plot-
ted in Fig. 4. Then vibration and acoustic response
studies are carried out at different intensities of the
VAL by considering the pre-stress effect. An isotropic
beam made of aluminium with cross section b×h and
length L = 1 m is used in the study. The beam is hav-
ing square cross section and aspect ratio L/h = 50 de-
fines thickness of the beam and E = 70 GPa; ν = 0.3;
ρ = 2700 kg/m3 are its material properties. The six
variants of the VALs (Fig. 2) are obtained by changing
the coefficients β1, β2, and β3 in Eq. (1) as given in
Table 1.

Ax
ia
ll
oa
d
[k
N
]

Load type
Nx1 Nx2 Nx3 Nx4 Nx5 Nx6

Fig. 4. Variation in buckling loads for the three boundary
conditions under various VALs.

4.1. Buckling behaviour

Figure 4 depicts the effect on critical buckling loads
with change in boundary conditions and VALs. As an-
ticipated stiffness of the beams is influencing the buck-
ling strength. The difference between the critical

Table 4. Buckling loads for various VALs.

BC N1
x N2

x N3
x N4

x N5
x N6

x

SS 19050.38 15751.79 23842.64 14522.32 27368.42 18821.46
CC 77144.71 58115.54 111650.02 51881.54 144745.89 75190.83
CF 8083.92 5279.79 16639.04 4350.24 28221.40 8990.26

buckling load values of SS and CF beams is marginal
comparing with SS beams having higher magnitudes
than CF beams except forN5

x loading. The trend in the
variation of critical buckling loads across VALs is the
same for all the three boundary conditions and is also
depicting the same as earlier studies of Karamanli
and Aydogdu (2019a) as well. The lowest and highest
values in buckling load across each boundary condition
is reporting to be for N4

x and N5
x axial loads, respec-

tively. In comparison to uniformly distributed load N1
x ,

the bell shaped (N6
x) axially variable in-plane load is

having lower critical buckling load value. From Fig. 4
it is evident that N3

x and N5
x load distributions report

higher critical buckling loads, and N2
x , N

4
x , and N6

x

loads reporting relatively lower critical buckling loads.
Hence, the nature of variation of VAL highly influences
the buckling behaviour of the beam. N4

x loading is con-
sidered for case 2 studies as the least critical buckling
load is observed for this loading. Influence of nature of
variation of VAL on the fundamental buckling mode
shapes of the beam under different boundary condi-
tions is not much seen as shown in Fig. 5.

4.2. Free vibration frequency

Free vibration and acoustic response studies are
carried out at different magnitudes of the axial load
for the given type of VAL. This study is done in two
different ways:

(i) Case 1: the magnitude of the applied load is
changed according to buckling load associated with the
corresponding VAL load.

(ii) Case 2: the applied load is changed according
to least critical buckling load out of all the VALs.

The case studies on the effect of varying critical
buckling loads on natural frequency for the three differ-
ent boundary conditions are plotted in Figs 6–8. Each
figure consists of two case study plots, variation of fun-
damental frequency under case 1 loading as shown in
plot (a), and variation of fundamental frequency under
case 2 loading as shown in plot (b).

Plots in Fig. 6 present the effect on the funda-
mental frequency of SS beam due to increase in axial
load intensity under different VALs. For case 1, as the
respective critical buckling load of each axial load is
considered for the analysis, the variation of natural
frequency under the given VAL is observed to be zero
at their associated critical buckling load. This trend in
natural frequency is also observed by other researchers
in earlier studies. The difference in the trends of funda-
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Fig. 5. Effect of nature of VAL on fundamental buckling
mode shape of various beams: a) SS, b) CC, c) CF.

mental frequency for the two cases can be easily de-
picted from Fig. 6. As Fig. 6b is plotted by taking Pcr
of N4

x load, its corresponding fundamental frequency
is observed to be zero at the Pcr and for the remain-
ing load cases the natural frequencies are following
a reducing trend with increase in the load without ap-
proaching to zero. The similar variation in natural fre-
quency is observed for higher modes also. Variation in
natural frequency with rise in axial load is similar to
all the three beams as shown in Figs 7 and 8. Simi-
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Fig. 6. Influence of increase in axial load on the fundamen-
tal frequency of SS beam: a) case 1, b) case 2.
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Fig. 7. Influence of increase in axial load on the fundamen-
tal frequency of CC beam: a) case 1, b) case 2.
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Fig. 8. Influence of increase in axial load on the fundamental frequency of CF beam: a) case 1, b) case 2.
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Fig. 9. Influence of increase in axial load intensity on free vibration modes of CC beams under N4
x loading:

a) 1st mode, b) 2nd mode, c) 3rd mode.

larly, influence of type of VAL on fundamental mode
of CC beam subjected to N4

x load case is presented in
Fig. 9. The plots in Fig. 9 depict marginal variation
across the first three mode shapes with variation in
axial compression load.

4.3. Acoustic response

Effect of variation in VAL on acoustic response
characteristics is investigated in this section. The beam
is excited with 1 N of harmonic force in 0 to 1500 Hz

frequency range. The acoustic response analysis in the
present study is carried for the least critical buckling
load (Pcr), which is observed for N4

x axial load. The
effect of variation in VAL is determined by consider-
ing respective loadings in fraction of 0Pcr, 0.5Pcr, and
0.99Pcr. The beam is excited at 0.7 m form the left
extreme end of the beam so that the response of first
few modes can be analysed.

The sound power level of the SS, CC, and CF
beams under N4

x and N5
x cases at different intensities

of applied load, in terms of fractions of Pcr of the
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corresponding load case, is shown in Fig. 10. Due to
the reduction in beam stiffness with rise in magnitude
of applied load, there is a decrease in natural frequen-
cies of each mode. This shift in natural frequencies
can be clearly seen for the CC beam compared to
the other cases. Similarly, in most of the cases the
resonant amplitudes of each mode reduces with rise
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Fig. 10. Effect of magnitude of VAL on sound power response: a) SS beam under N4
x loading, b) SS beam under N5

x

loading, c) CC beam under N4
x loading, d) CC beam under N5

x loading, e) CF beam under N4
x loading, f) CF beam under

N5
x loading.

in magnitude of VAL. This trend can be clearly seen
for the peak amplitudes of the fundamental mode.
Basically, the reduction in beam stiffness should lead
to increase in response amplitudes, but reverse trend
is observed here. The sound power is a function of
normal velocity which is a function of displacement
amplitude and frequency. The reduction in natural



S.N. Balireddy et al. – Acoustic Response of an Isotropic Beam Under Axially Variable Loads. . . 107

frequency in turn reduced the velocity and sound,
which resulted in reduction of sound power radiated.
However, the trend in variation of resonant amplitudes
with rise in magnitude of VAL is reverse for the fifth
mode which can be clearly seen for the CC beam.
The shift in natural frequencies and variation in peaks
with rise in the intensity of applied VAL are not
clearly seen for SS beams (Figs 10a and 10b) and CF
beams (Figs 10e and 10f). However, the variations in
natural frequency and peaks are similar to the CC
beams as seen in the sub-figures. The variation seems
to be insignificant in the actual figure due to very low
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Fig. 11. Effect of magnitude of VAL on sound radiation efficiency: a) SS beam under N4
x loading, b) CC beam under N4

x

loading.
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Fig. 12. Effect of magnitude of VAL on overall sound power level: a) SS beam under N4
x loading, b) CC beam under N5

x

loading, c) CF beam under N5
x loading.

stiffness associated with the SS and CF beams. The
resonant amplitude increases with rise in magnitude
of the load for the fifth mode. Influence of rise in
magnitude of the load and boundary condition is
negligible on sound radiation efficiency of the beams
as shown in Fig. 11. This indicates that the radiation
efficiency is not sensitive to increase in axial load
intensity. The results of SS, CC, and CF beams
under N4

x loading of Fig. 10 are presented as constant
octave bands in Fig. 12. Figure 12 charts depicts the
effect of increase in axial load is following nonunifor-
mity trend for increase in octave band frequencies.
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Increase in the amplitude is due to the association of
natural frequency in that respective loading fraction.
From the charts it is evident that more the stiffness
of the beam more will be the variation in the natural
frequency and more is the variation in the SWL in the
octave bands. The overall SWL for increase in load-
ing fraction for SS, CC, and CF beams is plotted in
Fig. 13. Figure 13 depicts that with increase in axial
load there is decreasing in the overall SWL amplitudes
for SS and CC beams. For CF beams the trend is uni-
form from 0Pcr to 0.5Pcr axial load and marginally
increasing from 0.5Pcr to 0.99Pcr axial load.
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Fig. 13. Effect of increasing VAL on overall sound power.

The sound pressure level (SPL) radiated from the
beams is represented as contour plot in Table 5 upto

Table 5. Contour representation effect of increasing axial load sound pressure level radiated.
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a distance of 1.5 m above the beam. Contour plots
shown in Table 5 are plotted at fundamental frequency
across the distances along length and thickness direc-
tions of the beam. Graphs in Table 5 are plotted for
fundamental mode of SS and CF beams for increase
in loading fraction. Similarly, contour plots for funda-
mental mode of CC beams are represented in Table 6.
As anticipated the structural stiffness effected the
SPL, which is observed to be more for CC beams than
compared to SS and CF beams. The shift of sound
radiation in CF beams is due to the variation in edge
stiffness of the beam. For SS and CC beams sound
radiation is observed to be concentric from center due
to their equal edge stiffness. Effect of loading fraction
on SPL is found to be less significant on all the three
beams for their fundamental frequencies. From the
plots it is evident that with increase in compression
load there is marginal decrement in intensity of sound
radiation. The marginal decrement is reporting to be
of the same trend of SWL plotted in Fig. 10. To have
better understanding in the behaviour of the beams
for higher order modes, CC beams under N4

x axial
loading is analysed for varying loading fraction. From
the 5th modal frequency trends of Table 6 contour
plots and Fig. 10 SWL plots, it is evident that with
increase in axial compression load there is increase
in sound radiation. The SPL directivity pattern at
a distance of 1.0 m from the beam is studied for the
three beams and is presented in Fig. 14. Figures 14a,
14c, and 14e are plotted for fundamental mode of SS,
CC, and CF beams for increase in axial compression
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Table 6. Contour representation effect of increasing axial load sound pressure level radiated for CC beam.
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Fig. 14. Effect of increase in VAL on directivity pattern: a) for SS beam under N4
x loading, b) third mode of SS beam

under N4
x loading, c) for CC beam under N4

x loading, d) third mode of CC beam under N4
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load. The variation in SPL with increase in loading
fraction is marginal for the fundamental mode of the
three beams. From these plots it is evident that with
increase in axial compression load the SPL is partially
reducing. The plots in Figs 14b, 14d, and 14f depict
the effect of loading fraction on third mode. The effect
of loading fraction in directivity pattern is more sig-
nificant in third modes of SS and CC beams compared
to CF beams.

5. Conclusion

Aluminium beam is investigated for vibro-acoustic
response for the six different types of VALs and for
three boundary conditions SS, CC, and CF. Variation
in buckling and free vibration characteristics under the
different VALs also analysed. From the study the fol-
lowing conclusions are drawn:

• Critical buckling loads are sensitive to nature of
variation of VAL and boundary conditions.

• Rise in the intensity of VAL leads to significant re-
duction in natural frequencies and the fundamen-
tal frequency approaches zero when the magnitude
of the applied load is equal to buckling load.

• Sound power resonant values are influenced by the
intensity of VAL and the variation in the resonant
amplitude is clearly seen for the CC beam com-
pared to the SS and CF beams.

• Significant changes in sound power level are seen
in lower frequency bands while there is not much
variation in overall sound power level with varia-
tion in magnitude of the applied VAL.
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K23(i, j) =H

L
2

∫

−L2

ϕi,xxζj,xx dx,

K24(i, j) = −Y

L
2

∫

−L2

ϕi,xxψj dx,

K33(i, j) =Ds

L
2

∫

−L2

ζi,xxζj,xx dx +As

L
2

∫

−L2

ζi,xζj,x dx,

K34(i, j) = −Ys

L
2

∫

−L2

ζi,xxψj dx +As

L
2

∫

−L2

ζi,xψj,x dx,

K44(i, j) = Z

L
2

∫

−L2

ζiζj dx +As

L
2

∫

−L2

ζi,xζj,x dx,

S22(i, j) =

L
2

∫

−L2

P (x)

⎛
⎜
⎜
⎝

x

∫

−L2

ϕi,xϕj,x dx
⎞
⎟
⎟
⎠

dx,

S23(i, j) =

L
2

∫

−L2

P (x)

⎛
⎜
⎜
⎝

x

∫

−L2

ϕi,xζj,x dx
⎞
⎟
⎟
⎠

dx,

S24(i, j) =

L
2

∫

−L2

P (x)

⎛
⎜
⎜
⎝

x

∫

−L2

ζi,xζj,x dx
⎞
⎟
⎟
⎠

dx,

M11(i, j) =

L
2

∫

−L2

m0ΘiΘj dx,

M12(i, j) = −

L
2

∫

−L2

m1Θiϕj,x dx,

M13(i, j) =

L
2

∫

−L2

mfΘiψj,x dx,

M22(i, j) =

L
2

∫

−L2

(m0ϕiϕj +m2ϕi,xϕj,x)dx,

M23(i, j) =

L
2

∫

−L2

(m0ϕiζj +mfzϕi,xζj,x)dx,

M24(i, j) =

L
2

∫

−L2

mgϕiψj dx,
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M33(i, j) =

L
2

∫

−L2

(m0ζiζj +mf2ζi,xζj,x)dx,

M34(i, j) =

L
2

∫

−L2

mgζiψj dx,

M44(i, j) =

L
2

∫

−L2

mg2ψiψj dx.
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