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Abstract: In recent years, the technical and economic feasibility of using microalgae and cyanobacteria has been explored 
for the removal and exploitation of domestic, agricultural and industrial residual effluents with high C, N and 
P compounds content. To contribute to the understanding of the process and its technical viability for microalgae growth, 
the article discusses monitoring, flow determination, and physicochemical characteristics of two types of effluents 
generated in an experimental farm located in the east of Colombia, before (R1) and after biological treatment (R2). In 
general, the results showed the reduction of different parameters, such as total dissolved solids (TDS), hardness, salinity 
and phosphates after treatment with activated sludge. However, the conductivity value obtained in R1 and R2 showed the 
presence of a pollutant load. These findings can be attributed to the highest concentration of fats and oils in the water 
during early hours of the day. Finally, although the concentration of nitrates increased from 46.63 to 225.21 mg∙dm–3 and 
phosphate decreased slightly from 9.65 to 6.21 mg∙dm–3, no inhibition was generated in the microalgae, as evidenced in 
the growth of the microalgal biomass in effluents after nitrate and phosphate removal above 80%. 
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INTRODUCTION 

Currently microalgae are emerging as the group of microorgan-
isms with the greatest industrial potential due to the increasing 
applications of their different metabolites and derivatives to 
produce a variety of products. Microalgae are photosynthetic 
organisms that use solar energy, inorganic nutrients, and 
environmental CO2 for their growth [RAWAT et al. 2011]. 
Historically, the microalgae industry has developed around the 
production of pigments and proteins for human and animal 
consumption [BOROWITZKA 2015] by active exploitation of 
Haematococcus pluvialis to obtain astaxanthin, Dunaliella salina 
to obtain β-carotene, Chlorella zofingiensis to obtain lutein, and 
Spirulina (Arthrospira) platensis to obtain phycocyanin. These 
isolation technologies can reach the cost close to USD4000∙kg–1 

[Oilgae 2017]. For the production of both microalgae and 
cyanobacteria, three key elements are needed: 1) source of carbon 

(usually CO2 or in organic form), 2) culture medium with 
sufficient concentration of nutrients, and 3) source of energy; in 
this case light known as photosynthetically active radiation 
[CHISTI 2007; LEE 1999; ONCEL 2013]. Among the most important 
nutrients for this group of microorganisms, nitrogen (in the form 
of NO3), phosphorus (in the form of PO4) and potassium (K) are 
the most important to carry out algal photosynthetic processes. 

Various Life Cycle Analyses (LCA) of microalgae [BENEMANN 

et al. 2012; CLARENS et al. 2010] indicate that the energy required 
to obtain necessary nutrients for the production of microalgae 
biomass is very high. To overcome these energy limitations, the 
technical and economic feasibility of using sources with a high 
content of N and P, such as industrial and domestic waste-
water, has been explored in recent years. Although the use of 
domestic, agro-industrial, textile, and swine and aquaculture 
wastewater has been widely explored [ABDEL-RAOUF et al. 2012; 
CAI et al. 2013] for microalgae biomass production, the biomass is 
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used to obtain biofuels, biofertilisers, and animal feed, but there is 
no application for obtaining metabolites of high industrial value 
such as dyes or fatty acids. As an alternative to reduce the cost, 
a proposal has been made to produce algae using industrial 
effluents and by-products as a carbon source. This concept is 
known as biorefinery [CARVALHO et al. 2018; CHEN et al. 2018; 
FAZAL et al. 2018; GONZALEZ-DELGADO, KAFAROV 2011; JAIMES et al. 
2012]. According to this principle, the potential of microalgae is 
used to remove nutrients, such as nitrogen and phosphorus, and 
incorporate microalgae into the biomass. This work presents the 
process of monitoring, flow determination and physicochemical 
characterisation of two types of effluents generated in an 
experimental farm located in eastern Colombia. The paper also 
evaluates the microalgal growth and removal of the pollutant 
organic load, nitrogen, and phosphorus compounds. 

MATERIALS AND METHODS 

SAMPLING 

Wastewater samples were obtained in a composite way at the San 
Pablo Experimental Farm, located in the municipality of 
Chinácota, Colombia; at domestic water and wastewater dis-
charge from barn washing, leaching of vermicompost and 
compost, and soil runoff (fertiliser residues) [OBETA et al. 2019]. 
Samples were collected from 8:00 a.m. to 2:00 p.m. in 30-minute 
intervals, preserved by refrigeration in cellars with ice, and 
quickly transported to the Water and General Biotechnology 
Laboratories of the University of Francisco de Paula Santander 
(UFPS). Monitoring was carried out weekly for four months. 

QUANTIFICATION OF FLOWRATE 

The measurement of the effluent flow was performed by the volu-
metric method using a 8 dm3 container. The flow was monitored 
and measured from 8:00 a.m. to 2:00 p.m. every 30 minutes using 
Equation (1). At the end of the monitoring process, an average 
value was calculated based on flows measured during the day. 

Q ¼
V

t
ð1Þ

where: Q = the flow (dm3∙s–1), V = the volume collected (dm3), 
t = the time (s). 

PHYSICOCHEMICAL CHARACTERISATION  
OF EFFLUENTS 

The physicochemical analysis is relevant for the handling and 
management of wastewater. It also provides information that 
helps to determine the nature and type of pollutants found in 
water [BEKKOUCH, ZANAGUI 2018]. Therefore, effluents to be used 
as a culture medium in the biomass production were classified 
into R1 for raw wastewater from the farm and R2 for wastewater 
treated in an activated sludge pilot plant located in the UFPS Unit 
Operations Laboratory. This biological treatment system (Fig. 1) 
consists of three units: a 50 dm3 aerated reactor with an air 
compressor and dissolved oxygen (DO), and temperature and pH 
sensors; a 100 dm3 storage tank with a diaphragm pump for 
continuous performance of the process; and a sedimentation unit 
with a turbidity sensor and a paddle as a mechanical agitator 
[DOMAŃSKA et al. 2019]. 

Physicochemical analyses (Tab. 1) were performed to 
examine the physicochemical composition of the effluents R1 
and R2, and to determine important compounds affecting the 
microalgae culture. 

MICROORGANISM STUDIED 

The Chlorella sp. strain belonging to the INNOVALGAE 
Laboratory of the Francisco de Paula Santander University 
(Colombia) was used and it was kept in a basal BOLD medium 
[CUELLAR-GARCÍA et al. 2019]. The strain was cultured for 25 days 
in 1 dm3 photobioreactors (0.6 dm3 working volume) under light 
intensity of 200 µmol∙m–2∙s–1, 12 h / 12 h light/dark photoperiod 
and an air flow of 0.6 vvm. All reactors were kept under a 12 h / 
12 h light/dark cycle and coupled to a bubbling aeration system 
mixed with CO2 (1% v/v) with an air flow of 0.6 vvm. 
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Fig. 1. Diagram of activated sludge pilot plant and photobioreactor of microalgae cultivation; source: own elaboration 
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PHOTOBIOREACTOR AND CULTURE CONDITIONS 

An airlift-type photobioreactor of 7 dm3 (5 dm3 working volume) 
was used, with a light intensity of 200 µmol∙m–2∙s–1, a 12 h / 
12 h light/dark photoperiod and an air flow of 1 vvm. Effluents 
R1 (wastewater without treatment) and R2 (wastewater treated in 
activated sludge system) were used as the culture medium, 
whereas the BOLD basal medium was used as a control. A follow- 
up was carried out by taking samples every 48 h to evaluate 
biomass growth. The monitoring of COD, NO3

–, PO4
3– was 

performed at the beginning, middle, and end of the process. The 
biomass concentration was obtained from the dry weight [JAIMES 

et al. 2012; MOHEIMANI et al. 2013]. Every 48 h a sample was taken 
to carry out the measurement (in triplicates). 10 cm3 of medium 
was taken and filtered using 47 mm GF-C glass fiber filters (PALL 
Corporation). The filtered sample was dried overnight at 60°C 
and then stored in a desiccator until a constant weight was 
obtained. Phosphates were quantified using the colorimetric 
method with molybdovan-phosphoric acid. Nitrates were mea-
sured using the 4500-NO3 ion selective method, and COD was 
quantified using the 522°C method as one of standard methods 
for the examination of water and wastewater 23rd edn. [BAIRD, 
BRIGEWATER 2017]. 

RESULTS AND DISCUSSION 

QUANTIFICATION OF FLOW RATE  
AND PHYSICOCHEMICAL PROPERTIES OF WASTEWATER 

Figure 2 shows flow rate and average in situ physicochemical 
parameters measured during the four months of monitoring. 

The results obtained in the quantification phase show that 
almost 80% of the wastewater from the Experimental Farm is 
generated during washing of different stables (between 8:00 and 
9:30 a.m.). In these early hours of the day, the wastewater has the 
highest concentration of pollutant, i.e. fats and oils, which 
generates an increase in COD. In relation to dissolved oxygen, low 

levels of 1.7–3.2 mg∙dm–3 are observed, which is common in this 
type of effluent due to the consumption of oxygen by the 
microorganisms present to degrade the organic matter contained 
in the water [ORTIZ et al. 2017; URBINA-SUÁREZ et al. 2006]. 

Figure 3 shows the average wastewater flow reached during 
the study period. Average values range between 0.18 and 
0.30 dm3∙s–1. Most of these effluents are generated by the 
excessive consumption of water for washing different stables in 
the livestock units. Hence, the times when this activity is carried 
out register high peaks in the flow of wastewater. Although there 
is a variation of the average flow from month to month, the 
results of TDS, salinity, and average conductivity are similar. 

PHYSICOCHEMICAL CHARACTERISATION  
OF EFFLUENTS R1 AND R2 

Figure 4 shows the average results for physicochemical para-
meters of R1 and R2 effluents. It is observed that COD in R1 is 
considerably higher compared to R2, because in the latter 
effluent, there are aerobic degradation reactions that reduce the 
concentration of organic components by the microorganisms 
present in the activated sludge. [CRAMER et al. 2019; ORTIZ et al. 
2017; ROMERO ROJAS 1998]. 

Fig. 2. In situ parameters of wastewater; TDS = total dissolved solids; 
source: own study 

Table 1. Physicochemical analysis performed on effluents before 
(R1) and after biological treatment (R2) 

Analysis Technique Source 

Chemical oxygen  
demand 

colorimetric, reflux 
closed APHA [2017] 

Nitrates Brucine method 

Total phosphorus 
Taussky and Shorr 
method 

TAUSSKY and 
SHORR [1953] 

Iron colorimetric 

APHA [2017] 

Total dissolved solids potentiometric 

pH potentiometric 

Temperature thermometer 

Dissolved oxygen colorimetric (Winkler) 

Conductivity potentiometric  

Source: own elaboration based on literature. 

Fig. 3. Average flow rate (Q) per month; source: own study 
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Fig. 4. Physicochemical parameters of raw wastewater (R1) and treated wastewater (R2); COD = chemical oxygen demand, TDS = total dissolved solids; 
source: own study 
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The concentration of nitrates and phosphates were measured 
because they are fundamental elements in autotrophic growth in 
the production of microalgae biomass [CAI et al. 2013; JAIMES et al. 
2012; TORRES et al. 2017]. Generally, wastewater of similar types to 
those generated in the farm consists of 99% water and 1% 
suspended solids and solutions. Solids may be classified into 
inorganic and organic; the former are mainly made up of nitrogen, 
phosphorus, chlorides, sulphates, carbonates, bicarbonates, and 
some toxic substances, such as arsenic, cyanide, cadmium, 
chromium, copper, mercury, lead, and zinc [HERNANDEZ-MARTINES 

et al. 2018; OUALI et al. 2018]; while the latter can be nitrogenous 
(proteins, urea, amines, and amino acids) and non-nitrogenous 
(cellulose, fats, and soaps) [URBINA-SUÁREZ et al. 2006]. 

Protein synthesis normally depends on an adequate supply 
of nitrogen [LAM, LEE 2012; SZE 1998]. An increase in the 
availability of inorganic nitrogen leads to an increase in the 
abundance of primary producers. However, high levels of 
inorganic nitrogen that cannot be assimilated by ecological 
systems can cause adverse effects on less tolerant organisms 
[CAMARGO, ALONSO 2006]. In the case of microalgae cultures, most 
of these microorganisms can use NO3

–, NO2 or NH4
+ as a source 

of nitrogen. However, the use of inorganic forms involves the first 
step of uptake and subsequent processing to integrate into the 
organic matrix of the cell. For algae, it is more favourable to use 
ammonium when it is available in its free form as they accept it 
into metabolic pathways directly; this is not the case for nitrate 
which must first be transformed into nitrite and then into 
ammonium through four energy-requiring reduction steps 
[CUELLAR-GARCÍA et al. 2019; SZE 1998]. Therefore, when 
ammonium and nitrate appear in sufficient quantities, most 
algae use ammonium first and then nitrate, once ammonium ions 
are depleted. This preference is related to the control of nitrate 
assimilation that causes feedback, inhibition, and repression of 
enzymes responsible for nitrate reduction [RICHMOND 2004; YANG 

et al. 2000]. The results show (Fig. 4) that the concentration of 
nitrogen measured in the form of nitrate is higher in R2 than in 
R1 due to the type of treatment used for the raw wastewater and 
the level of bacteria concentration in it. On the one hand, when 
working with an aerobic activated sludge system, a nitrification 
process takes place, which causes the oxidation of ammonia and 
ammonium salts, and their subsequent conversion to nitrate. On 
the other hand, the diversity of microorganisms in raw waste-
water generates competition in nitrogen assimilation, where the 
availability of nitrogen for microalgae is limited because the 
bacteria growth rate is higher than that of microalgae [ROSA et al. 
2010; TORRES et al. 2017]. 

As for the action of phosphorus, it plays an important role 
in most cellular processes, especially those related to the 
generation and transformation of metabolic energy, essential for 
the growth and reproduction of microalgae [CUELLAR-GARCÍA et al. 
2019; YANG et al. 2000]. Total phosphorus present in the aquatic 
environment comprises dissolved inorganic phosphorus, organic 
phosphorus compounds, and dissolved organic phosphorus in the 
form of suspended particles [SZE 1998]. Soluble phosphate is 
present in small amounts in natural waters, even at lower 
concentrations than nitrogen [MARSELINA, BURHANUDIN 2018], 
except in some waters contaminated by certain organic materials. 
While algae can utilise nitrogen in different ways, phosphorus 
must be assimilated almost exclusively in the form of phosphates, 
and it is the concentration of phosphorus that determines the 

algal growth rate. The maximum algal biomass that can support 
the total amount of phosphorus present depends on the number 
of orthophosphates remaining available to growing cells [LI et al. 
2014; SZE 1998]. 

The results obtained (Fig. 4) show that the phosphate 
concentration is slightly lower in R2 compared to R1, mainly due 
to the consumption by microorganisms present in the activated 
sludge; however, the concentration that was present in the effluent 
does not inhibit the microalgae, as shown in Figure 5, where the 
growth of the microalgal biomass in this effluent was evidenced. 

In general, acidity (28.76 mg∙dm–3), hardness (142.85 
mg∙dm–3), TDS (47.89 mg∙dm–3), salinity (189.33 mg∙dm–3), 
sulphates (41.98 mg∙dm–3) and conductivity (Fig. 4) in R2 are 
lower than those found in R1 due to the effects of the treatment 
with activated sludge. The conductivity value in R1 (625.34 
±21.93 µS∙cm–1) shows excess contamination with mineral 
nutrients [BURZYŃSKA 2019] and pH shows that both types of 
effluents are slightly neutral with a tendency to alkaline (between 
7.6 and 8.4). Temperature plays an important role in the solubility 
of salts and is influenced by the origin of water [MERZOUGUI et al. 
2019]. Finally, by reducing the pollutant organic load, the 
availability of DO in R2 is higher. 

BIOMASS PRODUCTION AND REMOVAL OF COD,  
NITRATES AND PHOSPHATES 

Figure 5 shows the biomass production in media R1, R2 and the 
control medium BOLD. 

There was growth of Chlorella sp. in both R1 and R2 media, 
reaching maximum concentrations of 0.53 ±0.046 and 0.83 
±0.021 g∙dm–3, respectively. In this work, it was found that the 
Chlorella sp. strain was able to reach biomass concentrations 
above the control in R2, which can be explained by the 
concentrations of nitrate, phosphate and organic compounds 
present in R2. Microalgae have been cultivated in an autotrophic 
way, using their photosynthetic capacity, and it has been found 
that some microalgae are able to grow in heterotrophic and/or 
mixotrophic conditions, and others may have a sequential or 
simultaneous mixed metabolism [FLOREZ et al. 2017]. This 
phenomenon of mixed metabolism usually occurs in cultures in 
wastewater, photosynthesis process, which is influenced by light 
intensity, and respiration (assimilation of organic substrate), and 
they occur simultaneously [EBRAHIMIAN et al. 2014]. Therefore, 
ATP formed from the photochemical reaction enhances organic 

Fig. 5. Biomass production in different media: R1 = raw wastewater, R2 = 
treated wastewater, and control; source: own study 
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substrate anabolism and increases growth in wastewater [KONG 

2011], as evidenced in this work. 
Figure 6 shows COD, nitrate and phosphate removal 

efficiencies for each of R1, R2 and the control media in the 
activated sludge (A.S.) system. It was found that R2 and the 
control reached COD removal rates above 85%, which shows that 
both Chlorella sp. in R2 and microorganisms are present in the 
A.S. In R1, removal rates of 52% were achieved. Regarding the 
nitrates load, treatment where microalgae grew reached a removal 
rate of 98%, while in the activated sludge system, the concentra-
tion of nutrients increased considerably, which is explained by the 
fact that in an aerobic system, ammonia and ammonium salts are 
oxidised to nitrate. Finally, the phosphates removal by microalgae 
in both effluents was 81% for R2 and 78.5% for R1, both were 
above the control. It was found that Chlorella sp. has the ability to 
assimilate organic substances present in wastewater. Several 
authors have shown that microalgae of the Chlorophyta 
division have the ability to assimilate organic substrates and 
grow in mixotrophic or heterotrophic conditions [LEAL MEDINA 

et al. 2017]. In a similar vein, cultivation conditions influence 
biomass production and accumulation of metabolites. The 
characteristics of an organic substrate growth allows for a lower 
energy expenditure and the growth does not depend on light 
compared to photoautotrophic processes, whereas cell density 
increases in the process of self-shading, which limits growth 
despite the existence of nutrients in the medium [FERNANDEZ et al. 
2013; ROSENBERG et al. 2008]. In this work, this process was 
evidenced as shown in Figure 5. This enables the removal of 
organic substances, nitrogen, and phosphorus compounds. 

CONCLUSIONS 

This work shows a monitoring process used to determine the flow 
and physicochemical characteristics of domestic and wastewater 
effluents from a farm located in eastern Colombia. The effluents 
are used as a medium for microalgae cultivation. Results obtained 
after four months of study show that the average flow rate ranges 
between 0.18 and 0.30 dm3∙s–1, and the treatment performed leads 
to a reduction of acidity, hardness, TDS, salinity, and sulphate 
content. Although the characteristics of the wastewater improved, 
its conductivity has been 231.60 µS∙cm–1. Thus, it is recom-

mended to examine water generated in the first hours of the day, 
between 8:00 and 9:30 a.m., as it has the highest concentration of 
pollutants in the form of fats and oils. Nitrate concentration 
increased (from 46.63 to 225.21 mg∙dm–3) and phosphate 
concentration decreased slightly (from 9.65 to 6.21 mg∙dm–3). 
Finally, the study has found that organic substances present in the 
wastewater do not affect the growth of microalgae. This 
demonstrates their potential not only as bioremediation agents 
for this type of water, but also their biotechnological potential for 
obtaining metabolites, such as lipids, carotenoids, and proteins. 
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