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Compiler and virtual machine of a multiplatform
control environment
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Abstract. Design and operation of a compiler and virtual machine, being the essential components of a multiplatform control programming
environment, are presented. The compiler translates source programs written in Structured Text language of the IEC 61131-3 standard into
executable code in a dedicated intermediate language. The virtual machine, i.e. a specially designed processor implemented in software, is a
runtime part of the environment executing the code in real time. Due to memory-to-memory operation principle the machine is able to process
various data types defined in the standard. The focus is given on overloading and extensibility of the functions, as well as on uniform invocations
of Program Organization Units. By selection of addressing mode, the environment can be deployed on multiple hardware platforms, beginning
from 8-bit microcontrollers up to 32/64-bit industrial PCs. Industrial applications are indicated.
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1. INTRODUCTION
The IEC 61131-3 standard [1] on programming languages for
control systems defines five languages, namely textual IL, ST,
graphical LD, FBD, and mixed SFC. Software environment im-
plementing the standard in a particular controller consists of
two essential components, i.e. compiler and runtime. The com-
piler translates a source program written in one of the IEC lan-
guages (61131-3 dropped for brevity) into an executable code
transferred to the runtime in the controller processor. The run-
time executes the code in real time with a given cycle.

Three approaches to implementation of the standard are cur-
rently in use. The first one directly compiles the IEC programs
to processor code. Relatively uncomplicated runtime executes
the code quickly, so the approach is used mostly by established
manufacturers. However, it is a single processor solution since
change of CPU requires a new compiler.

The second approach involves compilation of IEC programs
to C/C++ and then another compiler translates it to the tar-
get processor. Beremiz, a solution of academic origin, provides
capabilities to compile IEC projects to several hardware plat-
forms [2, 3]. GEB Automation [4] emphasizes educational ap-
plications of its software by using open-source C/C++ compil-
ers in the second step. Despite that the approach offers mul-
tiplatform applications, the industry often remains reluctant to
the two-step toolchain and open-source compilers.

The third approach is based on virtual machine (VM) con-
cept, i.e. an emulated abstract processor implemented in soft-
ware that executes certain intermediate code to which source
programs are compiled. The VM concept was originally intro-
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duced in ISaGRAF [5] with an intermediate Target Independent
Code. STRATON [6] also applies this approach although with-
out disclosing details. Multiplatform applications, independent
from the target CPU, are benefits of the approach while less
time efficiency due to operation of the VM itself is a disadvan-
tage.

For research reasons, the VM-based approach has been es-
pecially interesting for academic community, initially with the
assembler-like IL as the intermediate language. In particular,
compiler design involving translation of the four other IEC lan-
guages to IL is described in [7]. Since IL instructions store re-
sults in virtual registers, the authors stress importance of regis-
ter allocation by the compiler. A RISC processor executes the
final code. A VM of [8] continuously decodes IL instructions
and, if semantically correct, executes one after another. The ma-
chine is written in C and runs on 8-bit CPU. An intermediate
assembler-like language not tied up to IL is supported by a VM
of [9]. The VM has running stack and some x86-type registers.
It is written in C and runs on embedded ARM as a SoftPLC.

Other solutions, close in fact to the second approach, apply
common intermediate languages such as Java or C#, followed
by ready-to-use Java Virtual Machine (JVM) or .NET Common
Language Runtime (CLR). Multiple target platforms are thus
enabled. In [10], ST and FBD programs are compiled to Java
bytecode transferred to embedded devices running the JVM.
Likewise in [11], one module of the environment compiles IEC
projects into C# and another deploys them to CLR VMs in Win-
dows or Linux. Java, C/C++ or Objective-C may be selected as
the intermediate language in a VM implementation for secure
Internet of Things [12].

In addition to VMs implemented in software, a dedicated
runtime can also be designed in hardware, as demonstrated
in [13] for a Toshiba language processor. Nowadays hardware
processors are typically designed in FPGA technology. For ex-
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ample, a PLC design as a System-on-a-Chip with IL as the na-
tive language is described in [14].

One may also add that a general purpose LLVM (initially
Low-Level Virtual Machine) infrastructure provides a toolchain
framework to develop efficient compilers [15]. The LLVM is
an intermediate stage between the source code and the native
code of a target processor. To apply LLVM the source code,
originally in C or C++, must be converted into an intermediate
representation (IR), which is a kind of a high-level assembler.
Then the LLVM compiles and optimizes such front-end to gen-
erate intermediate code in IR. Finally, the IR code is converted
into native code by a code generator (back-end) dedicated to a
particular processor. Adaptation of the Beremiz front-end [2,3]
to create LLVM compilers of IEC languages has been described
in [16] recently.

Working with a few colleagues, the authors of this paper
began developing a control programming environment named
CPDev (Control Program Developer) over 10 years ago, as-
suming initially that it would not be restricted to any particu-
lar processor or hardware solution. This excluded the first of
the three approaches indicated above. The second approach, al-
though appropriate for teaching and research, suffers in the case
of industrial applications. Therefore, the third approach involv-
ing a custom-designed VM remained an appropriate choice.

In the proposed solution the intermediate code generated by
the compiler is portable, so there is no need to generate the na-
tive code or LLVM back-end separately for each type of the
target processor or architecture. This is advantageous in dis-
tributed systems involving controllers with various processors
where portable intermediate code can be generated and de-
ployed by the same tool. Since the layout of the code and data in
memory is identical for all targets, debugging is unified as code
interpretation is the same in the simulator, debugger and the tar-
get controller. The disadvantages compared to native compilers
or LLVM-based solutions are the significantly longer execution
time of the programs interpreted by the virtual machine and
necessity of development of custom compilation, optimization
and debugging tools.

To enable complex programming, the textual ST was selected
as the first language supported by the CPDev environment.
Graphical diagrams in LD, FBD, and SFC are translated to their
textual representation in ST and then compiled. IL programs are
executed after converting to the portable code. The original and
last versions of CPDev are described in [17] and [18], respec-
tively. Petri-net models of the VM and a list of prototype func-
tions to handle general target hardware can be found in [19].
The VM source code for some popular platforms is available in
the public repository at [20].

The available literature on environments and tools for IEC
programming and runtime, including [17–19], reports on gen-
eral characteristics, functionalities, and implementations rather
than how the environments have been created. Therefore, the
novelty of this paper rests in the presentation of solutions ap-
plied in CPDev compiler and virtual machine to such issues
as overloading and extensibility of IEC functions, components
of semantic validation of the parsed code, nested invocations
of POUs (Program Organization Units), selection of addressing

mode for multiplatform implementations, and some universal C
code.

The paper is organized as follows. The next section presents
a concept of the intermediate language called Virtual Machine
Assembler (VMASM). Section 3 describes the scanner and
parser with semantic validation, followed by an explanation
of nested POU invocations. Code generation involving digi-
tal identifiers of the VMASM instructions is presented in Sec-
tion 4. The identifiers express overloading and extensibility.
VM architecture, operation algorithm, and exemplary C code
including automatic implementation of 16- or 32-bit addressing
are described in Section 5. Two industrial implementations are
reviewed in Section 6. The last section summarizes the paper.

2. CONCEPT OF THE INTERMEDIATE LANGUAGE
The choice of how the virtual machine is going to operate deter-
mines the VMASM language. A memory-to-memory operation
principle is chosen due to numerous data types. This principle
and the extensibility of some IEC functions determine the syn-
tax of the VMASM instructions. Assuming control orientation
of the VM, one part of the instructions consists of direct coun-
terparts of the IEC standard functions, whereas the other part
involves assembler-like jumps, memory copying, subprogram
calls, etc., called system procedures.

2.1. Expression tree
Various sizes and types of IEC data imply that it would be dif-
ficult to design a conventional accumulator- or register-based
architecture of the VM. The difficulty may be overcome by
choosing an architecture based on memory-to-memory opera-
tion principle, which means that the result of instruction exe-
cution is directly uploaded into the memory. Such a solution
avoids the register scarcity problem already encountered in [7].

As an introductory example, consider control of a MOTOR
turned on after pressing START, and turned off after pressing
STOP or when an ALARM appears. The corresponding ST assign-
ment may have the form

MOTOR := (START OR MOTOR) AND NOT (STOP OR ALARM);

A tree representing the expression on the right side is shown in
Fig 1.

AND

OR NOT

START MOTOR OR

STOP ALARM

Fig. 1. Expression tree for the MOTOR example

Let the identifiers of ST variables and IEC functions AND, OR,
NOT, etc. remain unchanged in the VMASM language. Notice
that processing the tree will require some additional compiler-
generated variables. They can be distinguished from the ST
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ones by including a symbol not admitted in ST, for instance
question mark ? placed at the beginning. So ?R1 may mean a
result of the first OR in Fig. 1. If needed, another ? may appear
somewhere inside such identifier.

Due to the memory-to-memory operation, the result ?R1
must appear on the operand list of the first OR, either at the end
or at the beginning. However, since OR is an extensible function,
placing the result at the end would make its memory location
dependent on the number of operands, whereas the beginning
provides a convenient constant location. Hence the instruction
implementing the first OR may look as follows

OR ?R1, START, MOTOR

Recall that for example the x86 assembler also places instruc-
tion results at the beginning of operand list [21].

2.2. VMASM syntax
Besides the compiler-generated variables, labels for jump in-
structions are also needed. Therefore the syntax of the VMASM
instructions has the form

[:label] instruction [operand0] [, operand1]
[, operand2] ...

The label is optional, number of operands depends on in-
struction, although it is limited to 16 for practical reasons. In
the case of a function like OR the operand0 means a result,
while in the direct jump JMP it will be a label. The label itself,
as a compiler-generated identifier, has the question mark ? right
after the colon. Thus, :?L1 may be an example of the label.

Coming back to the MOTOR example, VMASM mnemonic
code implementing the expression tree of Fig. 1 may look as in
Fig. 2. JZ is the common Jump-if-Zero, whereas MCD (Memory-
Copy-Data) copies the given number of data bytes (operand1)
and the content (operand2) to the result (operand0). Notice
that if the result ?R1 of the first OR is 0 then the following JZ
jumps to :?L1 to set MOTOR to 0, thus abandoning five sub-
sequent instructions. This is an example of the so-called lazy
evaluation of an expression when a partial outcome indicates
the final result [22]. The compiler presented here translates ST
expressions for lazy evaluation.

OR ?R1, START, MOTOR
JZ ?R1, :?L1
OR ?R2, STOP, ALARM
NOT ?R3, ?R2
JZ ?R3, :?L1
MCD MOTOR, 1, 1
JMP :?L2

:?L1 MCD MOTOR, 1, 0
:?L2 ...

Fig. 2. Translation of the MOTOR example

2.3. System procedures
As indicated before, the VMASM instructions consist of IEC
function counterparts and assembler-like system procedures

[17, 19]. The total of 45 procedures can be divided into the fol-
lowing groups:
• jumps (8),
• subprograms (6),
• initializations (5),
• copying (4),

• arrays and pointers (17),
• assertions (3),
• other (5).

The subprogram group includes CALB (CALL-program-
Block) and RETURN instructions that handle invocations of
POUs. Assertions are used for debugging.

Note that the intermediate language of [9] consists of 54 in-
structions with 0, 1 or 2 operands, including boolean, mathe-
matical, bit and other operations. These are executed here by
the IEC function counterparts.

3. COMPILER
Scanner and parser involving semantic validation transform an
ST project into VMASM mnemonic code. User-defined func-
tions, function blocks, and programs are invoked in a uniform
way.

3.1. Scanner and parser
The compiler converts an XML source file with an ST project
into an executable VMASM file in the hexadecimal format. Di-
agram of the compiler operation is shown in Fig. 3.

ST source
XML file

ST source
XML file Token listToken list

Mnemonic
VMASM code

Mnemonic
VMASM code

Executable
hex file

Executable
hex file

Semantic validation

PARSER

SCANNER

CODE
GENERATOR

Fig. 3. Components of the ST-to-VMASM compiler

The scanner analyzes character stream from the source file
and decomposes it into lexical tokens classified into categories
such as identifiers, keywords, operators, constants, etc. The to-
kens with categories are collected on a list passed to the parser.

After checking whether the tokens contain valid characters
only, the parser proceeds with a top-down syntax-directed trans-
lation [23] by grouping the tokens into constructs according to
ST language grammar. If the constructs are correct the parser
builds an internal abstract syntax tree.

In the next phase the tree is semantically validated with re-
spect to variables, expressions, invocations, and nesting [3, 24]
by performing the following checks:
• variables: declaration before usage, visibility in the POU

context, consistency of data type and initial value,
• expressions: compatibility of operators and operand data

types,
• invocations: declaration of POU in the project or library,

number of operands and their types consistent with POU
interfaces, user-defined function cannot invoke function
blocks,

• nesting: nested IFs and invocations must follow the recur-
sive order.
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Having the validated tree the parser replaces the ST con-
structs with sets of mnemonic VMASM instructions like the
ones in Fig. 2. To do so it employs the built-in elementary data
types and the list of instructions. Some translations require in-
troduction of additional variables and labels. An expression in-
volving operators is first transformed into a subtree and then
an appropriate routine converts it into VMASM code. Multi-
element types such as arrays and structures, and POUs acquired
from libraries are also parsed. Finally the code is consolidated
with other mnemonic codes and written in a special text format.

3.2. Classes of the internal data
Basic elements of the compiler are designed as classes
in the C# language. The scanner generates objects of the
BasicToken class. The ST tokens acquired by the parser
become objects of relevant classes such as STVariable,
STFunctions, STLibrary, etc. The classes inherit from an ab-
stract STIdentifier class.

The mnemonic instructions passed from the parser to
the code generator are represented by instances of the
VMInstruction class. The VMOperand list is a field in this
class.

During compilation, object identifiers are collected on appro-
priate lists. So there is a list of global identifiers, lists of local
identifiers for POUs, etc. By applying predictors to find identi-
fiers on the lists the cumbersome hash tables are avoided.

3.3. POU invocations and tasks
Invocations of all POU types, i.e. user-defined functions,
function blocks, and programs are executed by the same
CALB. . .RETURN pairs. A single call has the form

CALB InstPtr, FunBlockAddr

where InstPtr denotes an instance and FunBlockAddr an ad-
dress of the POU code, here indicating a function block. Defi-
nitions of CALB, RETURN, and two other instructions are in Ta-
ble 1.

Table 1
Definitions of three VMASM procedures and OR function

<sysproc name="CALB" vmcode="1C16">
<op no="0" name="inst" type=":rdlabel"/>
<op no="1" name="clbl" type=":gclabel"/>

</sysproc>

<sysproc name="RETURN" vmcode="1C13">
</sysproc>

<sysproc name="TRML" vmcode="1C1D">
<op no="0" name="AddressStart" type=":gclabel"/>

</sysproc>

<function name="OR" vmcode="09*0" return="BOOL">
<op no="*" name="arg*" type="BOOL"/>

</function>

Although the VM architecture will be explained only later
in Section 5, it is now indicated that the VM contains regis-

ters with code and data address pointers, called code and data
registers for brevity. The type :rdlabel (relative-data-label) of
InstPtr above means an address in the data memory relative
to the content of the data register, whereas :gcdlabel (global-
code-label) of FunBlockAddr is a direct address (global) in the
code memory. Stack emulation mechanism triggered by CALB
pushes the registers on corresponding stacks. RETURN pulls the
stacks.

In the case of a user-defined function, the data memory ad-
dress of the operating area for local variables must be the same
for all invocations of the function. The address is jointly indi-
cated by the relative InstPtr and the data register.

Each program executed by the VM must be able to access
global variables. Let 0 (zero) be the beginning address of the
area for the global variables and let the data register content
while invoking a program be also 0. Hence the invocation of a
program accessing the global variables may have the form

CALB 0, ProgramAddr

Since the invoked program ends up with RETURN, the next
program will be also called with the zero data register.

For the program invocation as above, code of a task that
cyclically executes some programs PRG1, PRG2, ... may have
the form shown in Fig. 4.

:?TSK1 CALB 0, :?PRG1?CODE
CALB 0, :?PRG2?CODE
...
TRML :?TSK1

Fig. 4. Code of the task loop

The TRML instruction defined in Table 1 terminates the task.
Its AddressStart indicates the starting point used by the run-
time when the task is resumed, i.e. the label :?TSK1 is Fig. 4.

A task can be executed in one of three modes:
• cyclic – as a loop with constant cycle time,
• continuous – loop with next execution resumed immedi-

ately,
• triggered – execution when a condition is met.

A control project may involve a loop task and several single
execution tasks triggered by some events.

Before resuming a task the TRML instruction activates exe-
cution of the VM internal code dependent on implementation.
Typically it involves I/O handling, communications, and test-
ing [19]. When the internal code is completed, AddressStart
is fetched to the code register and VM begins execution of the
task.

3.4. Example with function blocks
The MOTOR control of Section 2 will now be implemented by
means of two nested function blocks according to the diagram
of Fig. 5a. The PRG program invokes an instance SS1 of a user-
defined function block SS which nests the OR function and an
instance RS1 of the standard RS flip-flop. Implementation in the
CPDev environment as a project PRO in which the PRG program
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a)
SS → SS1

RS → RS1

S

R1

Q1 OUT MOTORSTART  IN1

OR
STOP   IN2

ALARM  IN3

PRG program
b)

Fig. 5. a) Diagram of the example; b) implementation in the CPDev environment

is executed by the task TSK is shown in Fig. 5b. Global variables
START, STOP, etc. are imported by the (*$AUTO*) directive.
The IEC_61131 library includes the RS flip-flop.

Mnemonic instructions of the TSK loop and the ones im-
plementing nesting by means of CALBs are shown in Table 2
(project name PRO begins the labels). The dropped code is char-
acterized in comments with final RETURNs.

Table 2
Function block nesting in the mnemonic code

Entity Mnemonics for nested POUs

TSK
:?PRO.TSK?TSKLOOP
CALB #0000, :?PRO.PRG?CODE
TRML :?PRO.TSK?TSKLOOP

RS1

:?IEC_61131.RS?CODE
... /* RS code, RETURN */

SS1

:?PRO.SS?CODE
... /* S:=IN1, R1:=OR(IN2, IN3) */
CALB RS1, :?IEC_61131.RS?CODE
... /* OUT:=Q1, RETURN */

PRG

:?PRO.PRG?CODE
... /* IN1:=START, ... */
CALB SS1, :?PRO.SS?CODE
... /* MOTOR:=OUT, RETURN */

4. EXECUTABLE CODE
After scanning and parsing the code generator converts the con-
solidated mnemonic code into the executable hexadecimal file
(Fig. 3). Digital identifiers of the VMASM functions take into
account overloading and extensibility.

4.1. Code generator
The generator replaces instruction mnemonics by correspond-
ing digital identifiers and addresses of operands or constants.
To do so, the generator employs a Library Configuration File
(LCF) with instruction definitions as the ones in Table 1, where
the vmcodes denote digital identifiers.

A vmcode is a two-byte entity composed of the group ig
and type it components shown in Fig. 6. In the case of a func-
tion, ig denotes the name of an overloaded group, such as OR,
NOT, ADD, etc., whereas it specifies the number num of input
operands and return type. By changing it the specific func-
tions of the overloaded group are selected. An asterisk * as
num indicates extensible number of inputs, as in the case of
vmcode=09*0 for OR (09) that returns BOOL (0) (Table 1). As
another example, NOT (05) for one (1) WORD operand (4) has
vmcode=0514. System procedures such as JMP, CALB, RETURN,
etc. belong to one group ig=1C and are also selected by it.

vmcode

ig it

group num type

Fig. 6. Digital identifier of a function

4.2. Memory allocation
Besides the instructions, the LCF file also specifies particular
implementation by size of the address equal to two or four
bytes (16- or 32-bit addressing). Since the vmcode consists of
two bytes, so the code memory section occupied by a single
instruction with n operands is either 2+n*2 or 2+n*4 bytes, re-
spectively.

To make allocation of operating areas in the data memory to
POUs easier to verify during debugging it is assumed that each
area must be a multiple of a standard segment. The size of the
segment equals the size of the longest elementary data which
may be a single operand. So it is 8 bytes, as for LREAL or
DATE_AND_TIME. The operating areas are determined at the
final stage of parsing.

When a POU is invoked during execution the stack mech-
anism automatically increases the data register by the size of
relevant operating area. Nested invocations enlarge this register
accordingly.

4.3. Remarks on hexadecimal code
Because the POUs of the exemplary project use only a few
BOOL variables, the operating areas of standard eight bytes
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suffice for each of them. So when the PRG program invokes the
block SS1, the data register is increased to 8, and when SS1 sub-
sequently invokes the RS1 flip-flop it is farther increased to 16.
Hence the global variables START to MOTOR of the project are
assigned the addresses 0 to 3, the interface variables INT to OUT
of SS1 the addresses 8 to 11, and S,R1,Q1 of RS1 the addresses
16, 17, 18.

Hexadecimal representations of two initial instructions from
Table 2, for instance placed by the compiler at the addresses
:001E and :0024 (hex), respectively, are as follows

CALB :001E 1C16 0000 9200
TRML :0024 1C1D 1E00

The lines begin with the vmcodes from Table 1. The subse-
quent addresses are in the little endian form, so 1E00 in TRML
means :001E in the preceding CALB. Likewise 9200 in CALB
means the address :0092 allocated to :?PRO.PRG?CODE (Ta-
ble 2).

5. VIRTUAL MACHINE
Architecture of the virtual machine reflects the memory-to-
memory operation. By means of the group and type identifiers
selected from the vmcode, a proper instruction is acquired and
processed. According to the length of addresses the VM can be
deployed in 8, 16 or 32/64-bit platforms.

5.1. Architecture
The VM software-implemented architecture shown in Fig. 7 in-
volves Harvard separate code and data memories, instruction
processing module, code and data stacks, registers and pointers,
and a target platform interface. The instruction processing mod-
ule fetches the instructions from the code memory, executes
them acquiring the operands from data or code memories and,
in case of the functions, stores the results in the data memory.
Assembler-like system procedures change internal state of the
VM components. Stack mechanism composed of the two stacks

Fig. 7. Architecture of the virtual machine

and pointers supports invocations of POUs. The target platform
interface involves low-level functions dependent on hardware
platform and operating system [19].

The code register, in other words instruction pointer, contains
addresses of instructions and operands. The data register (data
pointer) keeps the base address of the POU operating area for
relative addressing. The task cycle length register indicates the
time till the end of the cycle. The flags register contains status
flags for operating modes, errors, and unusual events.

The components can be implemented in 16- or 32-bit ver-
sions, depending on the maximum size of code and data memo-
ries (64 kB vs. 4 GB). So a VM for a given hardware is specified
by the size of address in the LCF configuration file and the tar-
get platform interface.

5.2. Instruction processing
Each line of the executable code acquired by the instruction
processing module begins with vmcode composed of the group
and type identifiers ig and it (bytes). An algorithm for pro-
cessing a single line is shown in Fig. 8. Assuming that the code
register initially points out to the vmcode, the algorithm be-
gins with fetching ig and it followed by incrementations of the
code register. After that the register points to the first operand
of the instruction.

Fig. 8. Algorithm for processing single line of code

The following part matches the group identifier ig to partic-
ular group of functions or to procedures. In the case of a func-
tion the algorithm matches it to relevant type and executes the
code. The procedures and type conversions are selected by it.
Implementation of the algorithm in C is fairly straightforward
by means of the switch() statements.
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5.3. Addresses and instructions in C
Let unsigned short ADDRESS or unsigned long
ADDRESS define 16- or 32-bit implementation of the VM
according to the LCF file. Suppose the code register points
out to an operand of instruction, initially to the first one.
GetCodeAddress function shown in Fig. 9 transforms the
standard byte pointer *CodeMemory[CodeReg] into *ADDRESS
pointer and copies the content into a 16- or 32-bit variable addr
being returned. The code register is incremented accordingly
to point out to the next operand.

ADDRESS GetCodeAddress(void)
{

ADDRESS addr =
(*(ADDRESS*)(CodeMemory[CodeReg]));

CodeReg += sizeof(ADDRESS);
return addr;

}

Fig. 9. Getting the operand address

If the operand means a label or an immediate value then its
address in the code memory is acquired by

ADDRESS operand = GetCodeAddress();

However, if the operand is a variable or a POU instance then
the sum

ADDRESS operand = DataReg + GetCodeAddress();

involving the data register gives a global address in the data
memory.

An overloaded function may be implemented by calling a
single C function for all relevant data types to avoid repetitions
of rather similar code. In turn that single function may call a
code macrodefinition parametrized with respect to type to exe-
cute calculations.

An example of IG_ADD_01 function that implements the
overloaded extensible ADD is shown in Fig. 10. The function

void IG_ADD_01(BYTE it)
{

switch (it & 0x0F)
{

ADD_TYPE(SINT);
ADD_TYPE(INT);
ADD_TYPE(DINT);
ADD_TYPE(LINT);
... /* other types */

}
return;

}

#define ADD_TYPE(TYPE) \
case IT_ADD_##TYPE & 0x000F: \
{ \
BYTE num = it >> 4; \
...

} \
break;

Fig. 10. Outline of the ADD implementation

recognizes particular type by masking it&0x0F (see Fig. 6) and
switches to execution by ADD_TYPE. Here the shift it>>4 ac-
quires the number num of inputs and implements the adding in
a loop (not shown). Note that the ADD_TYPE definition retains
case and break for the switch from IG_ADD_01. 0x000F in
case indicates that up to 16 IEC data types can be processed
by ADD.

All system procedures from the group ig=1C are handled
by the function IG_SYSPROC_1C outlined in Fig. 11, with self-
explanatory CALB shown only.

void IG_SYSPROC_1C(BYTE it)
{
switch(it)
{
...
case 0x16: /* CALB call a function block */
{
ADDRESS instaddr =
dataReg + GetCodeAddress();
ADDRESS clbl = GetCodeAddress();
push_CodeStack(codeReg);
push_DataStack(dataReg);
dataReg = instaddr;
codeReg = clbl;

}
break;
...

}
return;

Fig. 11. System procedure group with CALB

6. IMPLEMENTATIONS
The original CPDev environment was implemented for the first
time by Lumel [25] in a small distributed control system de-
scribed in [17, 19]. The system involved 8-bit AVR processor
and several remote I/O modules with serial Modbus communi-
cation. The system is still installed by ISS [26], Philippines.

Ship navigation and automation systems from Praxis [27],
the Netherlands, are the most significant implementations of
the environment, providing for over decade continuing moti-
vation for further development. Propulsion control (Fig. 12a,
version for yachts and small ships), power management, head-
ing control (autopilot), and a few other systems are connected
to the ship main computer by redundant Ethernet. Each sys-
tem consists of a control processor, I/O units, and a TFT touch
panel, each of them equipped with 32-bit ARMs. CAN is ap-
plied for communication with I/O units and Ethernet (redun-
dant) for TFT panels. TFT displays are integrated with con-
trol software by means of global variables. NMEA serial/Ether-
net protocol is used by marine electronic devices. Programs are
written in ST language.

Remote telecontrol units (Fig. 12b) from iGrid [28], Spain,
are applied for substation automation, medium voltage con-
trol, and grid reconfiguration by means of triggered-mode tasks.
A unit involves an ARM processor, I/O board, and a few com-
munication interfaces including IEC 60870 and 61850 dedi-
cated for power systems. LD and FBD languages are preferred.
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a) b)

Fig. 12. a) Propulsion Control System [27]: control processor with I/O (left) and communication terminals (bottom), lever
with TFT 2.5" operator panel; b) Remote Telecontrol Unit [28]

Some information on runtime for complex software involv-
ing several cooperating VMs running with different cycles and
on domestic implementations can be found in [18]. The run-
time is called WinController and runs on 32/64-bit industrial
PC with Windows Embedded OS.

7. CONCLUSION
The paper has presented solutions applied in the compiler and
virtual machine of the CPDev control environment to a few is-
sues related to the IEC standard, namely overloading and ex-
tensibility, semantic verification, nested invocations, selection
of addressing mode, and outline of some code. Standard IEC
functions are built into the VMASM language.

The platform-independent code generated by the compiler
facilitates deployment on a variety of hardware, from 8-bit mi-
crocontrollers to 32/64-bit industrial PCs.
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[18] D. Rzońca, J. Sadolewski, A. Stec, Z. Świder, B. Trybus,
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