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Abstract. The number of scanner stations used to acquire point cloud data is limited, resulting in poor data registration. As a result, a cloud point
block registration approach was proposed that took into account the distance between the point and the surface. When registering point cloud
data, the invariant angle, length, and area of the two groups of point cloud data were affine transformed, and then the block registration parameters
of point cloud data were determined. A finite hybrid model of point cloud data was created based on the coplane four-point nonuniqueness during
the affine translation. On this basis, the point cloud data block registration algorithm was designed. Experimental results prove that the proposed
method has great advantages in texture alignment, registration accuracy and registration time, so it is able to effectively improve the registration
effect of point cloud data. The point cloud data block registration algorithm was built on this foundation. Experiments show that the suggested
method has significant improvements in texture alignment, registration accuracy, and registration time, indicating that it can significantly improve
point cloud data registration.
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1. INTRODUCTION
With continuous updating of point cloud acquisition technology
and continuous improvement of measurement means, the stor-
age quantity of point cloud data is also greatly increased. The
point clouds collected by single station can research 100 000
or one million, and the distribution of point clouds is different.
Before modeling the massive point cloud data, it is necessary
to preprocess the point cloud and thus to ensure the robustness
and timeliness of model [1]. Meanwhile, the point cloud regis-
tration is the most important link. The accuracy and efficiency
of registration influence the final results.

Point cloud registration is unifying the point cloud data ob-
tained by multiple stations into the same coordinate system, and
then build a complete point cloud data model [2]. In the actual
process of data acquisition, single station measurement is dif-
ficult to conduct all-round data acquisition for the object to be
measured, especially when the surface structure of an object is
complex, or the volume is relatively large [3]. The registration
process of point cloud data is to align the point clouds of mul-
tiple stations in the same coordinate system, so as to calculate
the 3D geometric model of an object.

Since the 1990s, the continuous updating of point cloud reg-
istration algorithm has provided a variety of materials for re-
searchers. Z. Lanming [4] proposed a registration method for
the point cloud data on a rotating platform. Firstly, the cen-
tral axis of the rotating platform was calibrated by three-point
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clouds with different angles on the cylindrical surface, so that
the relative relationship between the scanning equipment and
the rotating platform could be obtained. Then, the rotation ma-
trix between multiple point clouds was calculated by the angle
of the rotating platform. Finally, the point clouds obtained from
any angle were registered in a unified coordinate system. This
method only used the rotation angle of a platform to construct
the rotation matrix and thus to realize automatic registration.
Moreover, this method was stable and efficient. Its stitching ac-
curacy is equivalent to that of iterative closest point (ICP) reg-
istration method and marker registration method. It was used
with laser scanners or structure light scanners. L. Xiaoyan [5]
used the micro tangent plane to estimate the normal vector of
scattered point cloud data and adjusted the normal vector di-
rection globally. The stable quadric surface fitting method was
used to estimate the Gaussian curvature and mean curvature of
point cloud data. The coordinates, normal vectors and curva-
ture of points were combined into 8-dimensional feature vec-
tors. The vectors with similar geometric features were com-
bined into one group by fuzzy maximum likelihood estimation
clustering technology. Thus, the segmentation of point cloud
data was completed. W. Xia [6] developed a point cloud regis-
tration method based on overlapping region. Firstly, the point
cloud was divided into some blocks by the angle between nor-
mal lines and curvature features with distance weight, and then
multi-dimensional feature descriptor of point cloud block was
constructed. By comparing the similarity of variance distribu-
tion between point cloud blocks, the overlapping region of ad-
jacent point clouds was extracted. Then, the point cloud in the
overlapping region was brought into the super four-point fast
robust matching algorithm for registration. According to the
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consistency constraint, the optimal rigid transformation matrix
was applied to the original data and thus to build the point cloud
registration model, so as to enhance the registration accuracy.
J.H. Xiao [7] proposed a 3D point cloud registration method
without odometer based on area attribute. This method only
needs to extract the area of each segment and plane parame-
ters, without the prior attitude estimation of sensors. R. Lai [8]
proposed a computational model and a point cloud registration
algorithm based on non-rigid transformation. Firstly, the lead-
ing feature values and feature functions of LB operators which
were inherently defined on manifolds. Secondly, the original
point clouds were transformed into the point clouds embedded
in Euclidean space by Laplace-Beltrami feature mapping. The
LB feature map was invariant under the isometric transforma-
tion of the primitive manifold. On this basis, the model and
algorithm of point cloud registration in the form of distribu-
tion/probability was designed based on the optimal transmis-
sion theory.

Although 3D scanning technology based on point cloud data
is ahigh precision, high efficiency and high-tech measurement
method, there are still many challenges [9–11]. Based on the
above background, the point cloud registration is not only the
key technology of processing point cloud data, but also an im-
portant part of reverse engineering, which provides technical
support for 3D modeling of reverse engineering. In the face of
massive point cloud data, it is necessary to research a method of
point cloud registration with high precision and high efficiency
to meet the different requirements of projects. Therefore, a new
method of point cloud data block registration based on the point
to surface distance was put forward.

2. DESIGN OF BLOCK REGISTRATION METHOD
FOR POINT CLOUD DATA

2.1. Calculation of point cloud data block registration
parameters

The finite hybrid model of point cloud data block registra-
tion is built by rigid body transformation in 3D transforma-
tion [12–14]. The essence of rigid body transformation is to
rotate and translate the object in 3D space, and keep the gra-
dient, divergence, and curl unchanged. In the process of data
registration, two groups of point cloud data need to be trans-
formed into the same coordinate system by rigid body transfor-
mation, so that the affine transformation with invariable angle,
length and area can be carried out. The affine transformation H
is defined by equation (1)

H =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
vx vy vz S

 . (1)

Equation (1) can also be converted into (2):

H =

[
R T
V S

]
. (2)

In equation (2), R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 is the rotation matrix.

T =

tx
ty
tz

 is the translation matrix. V =

vx

vy

vz


T

is the perspective

transformation matrix. S is the transformation scale.
After the rigid body transformation, the point cloud is only

rotated and translated without deformation. The point cloud
data rotates around X axis, Y axis and Z axis.

When it rotates around X-axis:

RX (θ) =

1 0 0
0 cosθ sinθ

0 sinθ cosθ

 . (3)

When it rotates around Y-axis:

RY (θ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 . (4)

When it rotates around Z-axis:

RZ(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 . (5)

The translation along X axis, Y axis and Z axis is:

T(3×1) =

 tx
ty
tz

 . (6)

The source point cloud set R and target point cloud set Q are
transformed by rotation matrix R and translation matrix T , and
the point cloud set Q′ is obtained.

Q = R(3×3)×P+T(3×1) . (7)

After transforming (3) to (7), the rotation matrix R3×3 can be
obtained.

R(3×3) =

r11 r12

r21 r22

r31 r32

 , (8)

where

r11 = cosβ cosγ,

r12 = cosβ sinγ,

r21 =−cosα sinγ− sinα sinβ cosγ cosα cosγ

+ sinα sinβ sinγ,

r22 = sinα cosβ ,

r31 = sinα sinγ + cosα sinβ cosγ,

r32 =−sinα cosγ− cosα sinβ sinγ cosα cosβ .
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According to (8), if we want to get the value of R3×3, it is nec-
essary to find the value of six unknown numbers (α , β , γ , tx, ty,
tz). At least six linear equations should be determined. Mean-
while, at least three-point pairs that are not on the same line
should be determined in the overlapping region of two groups of
point clouds. Finally, the values of six unknown parameters can
be calculated to solve the rigid transformation matrix [15–17].

2.2. Build a finite hybrid model of point cloud data
The overlapped region in point cloud data is regarded as the ini-
tial data of registration, which is marked as Pc and Qc. In point
cloud Pc, three points are randomly selected, and then the fourth
point is selected to make the four points on the same plane,
which is marked as B = {p1, p2, p3, p4}. In the process of se-
lecting these points, the distance among four points should be
as large as possible, and the four points must fall in the overlap-
ping region at the same time. Therefore, the overlapping region
is taken as the initial data to meet this condition.

In order to find the coplanar four-point set U which is
nearly congruent with B in point cloud data Qc, the distance
and cross ratio of two lines in B are calculated by equations
(9) and (10). According to the constraints of consistent dis-
tance and consistent cross ratio, all coplanar four-point sets
U = {U1,U2,U3, . . . ,Un} satisfying the conditions are found in
point cloud Qc. For each Ui, the rigid transformation matrix is
solved according to the correlation information between B and
Ui, and then the rigid transformation with the best registration
accuracy is selected as the final global registration parameter by
comparing and maximizing the common point sets.

d1 = ‖p2− p1‖ , d2 = ‖p4− p3‖ , (9)

λ1 =
‖p1−o1‖

d1
, λ2 =

‖p3−o1‖
d2

. (10)

In Fig. 1, {q1,q2,q3,q4} and {q′1,q′2,q3,q4} are alternate
four-point bases under the conditions. Obviously, the latter is
not a congruent coplanar four-point basis, which leads to the
increase of matching time cost. On this basis, the finite hybrid
model of point cloud data introduces the angle consistent con-
straint ∠p1o1 p3 = ∠q1o2q3, which greatly reduces the number
of candidate coplanar four-point bases, and thus increasing the
matching accuracy.

Fig. 1. Nonuniqueness of coplanar four-point base under
affine transformation

Based on the above analysis, the establishment of finite hy-
brid model of point cloud data is described as follows:
Step 1: according to the distance (d1,d2) between the line seg-

ments of coplanar four-point base given by B, we can find
the point pair sets (R1,R2) with the distance d1 ± ε and
d2± ε in the point cloud Qc respectively;

Step 2: construct a three-dimensional grid G with size of ε , and
rasterize the surface of point cloud [18];

Step 3: for p1 p2(p2 p1) and p3 p4(p4 p3), traverse all candidate
point pairs in R1 and R2, calculate all cross nodes by cross-
ratio consistency, store them in grid Gand normalize the
vectors at the same time;

Step 4: suppose that the angle between the two-point pairs is
θ , according to the intersection point stored in grid G and
the corresponding vector index, all the included angles are
θ . They are matched by four-point based within error range
of ξ [19].

According to the nonuniqueness of coplanar four-point base
under affine transformation, the finite hybrid model of point
cloud data is built. Next, the block registration algorithm of
point cloud data is designed to realize the block registration.

2.3. Block registration of point cloud data
In general, the point cloud data to be registered are partially
overlapped, the registration algorithm based on global geomet-
ric invariants is difficult to directly provide good initial posi-
tion for it. Theoretically, we can find the overlapped part of
point cloud data at first, but it is not easy to find the overlap
part [20, 21]. In order to quickly make the relative position of
point cloud data be approached, the distance from point to sur-
face is adopted as the initial registration of point cloud data,
and then accurate registration is adopted to improve the regis-
tration accuracy and efficiency. The flow of algorithm is shown
in Fig. 2.

RGB-D data of color object is collected by Kinect. Before
registration, the source point and target point clouds are read,
and then the color RGB mode is converted to the gray mode. As
given in Fig. 2 gray range is mapped to depth range mixed fea-
ture. Meanwhile, the repeated points are deleted. Moreover, the
two-point clouds to be registered are quickly closed by the prin-
cipal direction application algorithm [22]. The principal direc-
tion application algorithm mainly calculates the variance ma-
trix of the two-point clouds, and thus to get the eigenvectors
and feature values corresponding to the covariance matrices.
Taking the center of gravity of point cloud as the origin, we
can build he reference coordinate system based on eigenvector,
and then get the coordinate transformation matrix by the unit
quaternion method. Next, the feature points are obtained based
on the mixed features. According to the points corresponding
to the search feature points (x,y,z,gray), The corresponding
point pairs are formed, and the mean value between point pairs
(x,y,z,gray) is calculated. The point pairs that are bigger than
the mean value are eliminated. The point pairs are iterated until
the conditions are met. The optimal rotation matrix R and trans-
lation direction T are obtained. Thus, the block registration of
point cloud data is completed.
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Fig. 2. The flow of block registration algorithm of point cloud data

3. IMPLEMENTATION OF POINT CLOUD DATA BLOCK
REGISTRATION

The block registration of point cloud data includes two stages:
initial registration and accurate registration. The initial registra-
tion is to provide a good initial position for accurate registra-
tion, and the accurate registration algorithm is used to further
improve the registration accuracy.

3.1. Extraction of distance from point to surface in point
cloud data

In the precise registration process, the point-to-surface distance
is used to search the corresponding points. The rigid transfor-
mation is calculated to change the position of point cloud. Re-
ducing the time in each iteration will reduce the overall reg-
istration time. The point-to-surface distance can also show the
key information of point cloud. In the iterative process of ac-
curate registration, the point-to-surface distance is adopted for
iterative registration. The number of points in different point
cloud data is different, so the number of distances extracted is
different. The mixed features of source point cloud are arranged
from large to small, and 20% of the point-to-surface distance is
extracted to approximately describe the whole point cloud.

3.2. Selection of points
KNN algorithm and (x,y,z, [gray) are adopted to search for the
corresponding points of the distance from point to surface. The
process is to calculate the minimum 2 norm of 4D descriptors

between point sets and thus to obtain the corresponding points
and establish corresponding point sets. Some point pairs with
large distance are eliminated. Due to the limited range of depth
data collected by Kinect, the range of gray value obtained by
RGB conversion is much larger than the range of depth data.
During the calculation of Euclidean distance, it is necessary to
keep the rage of gray value consistent with the rage of depth
value and map the rage of gray value to the rage of depth value
by equation (11).

gray′ =
dmix−dmin

graymax−graymin
(gray−graymin)+dmin . (11)

4D search space is 3D geometry data and gray value after
mapping. That is (x,y,z,gray′). The color information is added
to the search space to assist geometric information to search
for more accurate points. The point-to-face distance coordinates
in source point cloud are transformed into (xi,yi,zi,gray′i). The
corresponding points of the point-to-surface distance in point
cloud data by equation (12).

ri j =

√
(xi−x j)

2+(yi−y j)
2+(zi−z j)

2+
(

gray′i−gray′j
)2
. (12)

In (12), (x j,y j,z j,gray′j) represents the geometric coordi-
nates of all points in target point cloud data and the color value
after transformation. Formula (12) is used to find out the clos-
est point of the point-to-surface distance in target point cloud
as the corresponding point. That is to search the point with the
minimum value of 4D Euclidean distance in target point cloud
as the corresponding point.

After the corresponding points are searched by 4D, the cor-
responding points and the distance from point to surface consti-
tute the point pair set. In order to better calculate the rigid trans-
formation, we should eliminate the corresponding point pairs
which are too large in 4D space and calculate the Euclidean
distance of the corresponding set of point pairs in 4D space.
The mean value of Euclidean distance is µ f . We can take the
point pair less than the mean value, and then 4D-ICP iteration
continues.

3.3. 4D-ICP Iterative Process
In the iterative process, the data mode of the distance from point
to surface and the corresponding point is 4D (3D geometric data
and gray value mapped to the geometric range). The specific
steps are described as follows:

Input: the distance from point to surface and the target point
cloud.

Output: optimal rotation matrix and translation vector.
Step 1: Set the number of iterations N;
Step 2: While i < N & emi > 1×10−7;
Step 3: Use KNN algorithm to search the nearest point in the

target point cloud of 4D space and eliminate the error point
pair by Euclidean distance threshold method. The mean
value of corresponding point pair on space (x,y,z,gray) is
calculated, and the point pair less than the mean value is
selected;
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Step 4: Use the unit quaternion method to solve the rotation
matrix and translation vector between the remaining point
pairs and calculate the root mean square error of the point
pair;

Step 5: emi =
∣∣RMSEi−RMSEi−1

∣∣, i = 2, . . . ,N;
Step 6: Apply the rotation matrix and translation vector to the

point-to-face distance set and then update the position of
distance set;

Step 7: Until the condition is met, otherwise the iteration con-
tinues.

The 4D-ICP iteration mainly aims at the point cloud regis-
tration of low-quality RGB-D data with high noise collected by
Kinect. In the accurate registration stage, the color information
is added for 4D-ICP iterative registration. In the low-quality
and high-noise RGB-D data, the point-to-surface distance is
obtained by mixed features. Correspondingly, the points are
searched by 4D descriptor during the iteration so that the points
are more accurate. Moreover, RGB information is added for
4D search to improve the accuracy of the corresponding points.
Therefore, the point-to-surface distance is used to improve the
accuracy, and thus to accelerate the iterative convergence.

4. EXPERIMENTAL RESULTS
To validate the effectiveness of the method that considers the
distance from point to surface, an experiment was designed.

Due to the lack of public RGB-D data set, the low-precision
RGB-D data collected by Kinect was used to validate the effec-
tiveness of the method with considering the distance from point

to surface. The data model includes two David models and two
pillow models.

To demonstrate the effectiveness of the proposed method in
point cloud registration, the classic ICP registration method, the
improved ICP registration method based on curvature feature
point and 4D-ICP registration method were compared.

The experimental object is a single-color object. The compar-
ison results of four groups of experiments are shown in Figs. 3,
4, 5, and 6, where (a) denotes the initial relative position of
the two-point clouds that need to be registered. Four different
registration methods (b), (c), (d), (e) are to make the two-point
clouds in (a) make approach each other by the initial registra-
tion, so as to provide good space initial position for the iteration
of accurate registration. However, the accurate registration part
is different. (b) is to use the classical ICP method to search for
all the point clouds in the iteration process, and then the mini-
mum distance between the three-dimensional points is used as
the corresponding points to perform the iteration. (c) is the im-
proved ICP method. In the iteration process, the 3D-ICP point
cloud registration method based on curvature feature points is
used to obtain 20% of the feature points, and then the curvature
feature points are used to search, and then the minimum dis-
tance between the three-dimensional points is used as the cor-
responding points to perform the iteration. (d) is the iterative
registration results of 4D-ICP method. All the points in source
cloud, the corresponding points are searched by (x,y,z,gray)
composed of the depth data and the hue in HSL color mode.
After that, 4D-ICP iteration is carried out. (e) is the registration
result of the proposed method. The mixed features are used to

Fig. 3. Registration effect of different registration methods on david model 1

Fig. 4. Registration effect of different registration methods on david model 2

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140259, 2022 5



Yinju Lu, Mingyi Duan, and Shuguang Dai

Fig. 5. Registration effect of different registration methods on pillow model 1

Fig. 6. Registration effect of different registration methods on pillow model 2

get the feature points. The number of feature points is 20% of
the points of source point could. The corresponding points of
feature points are searched by (x,y,z,gray) composed of the
geometric data and the color data converted from RGB mode
to gray mode.

5. DISCUSSION
To further understand comparison results, the iteration times,
registration time and global color error of all methods were
compared. The number of iterations shows that each algorithm
has the same stop condition of iteration error when the error
stop condition is reached. The registration time is from the pre-
cise registration to the optimal rigid transformation. In the mea-
surement of registration error, there may be the corresponding
deviation between point pairs, and the best registration refers
to the good registration between color and texture. The global
color error is to search the nearest point of Euclidean distance
of RGB data in target point cloud by the transformed source
point cloud, and calculate the root mean square error between
the transformed source point cloud and its nearest point.

The global color error and registration time of different meth-
ods on each model are compared in the column chart and the
line chart respectively, and then the results are shown in Figs. 7
and 8.

Compared with Table 1 and Fig. 7, we can see that the point
cloud data block registration method considering the point-
to-face distance has the smallest global color error than the
other methods. Moreover, the comparison of registration results
proves good registration effect of the proposed method.

Fig. 7. Global distribution of color error of different registration
methods on different models

In terms of registration time, Table 1 and Fig. 8 show that in
the color David model, black-and-white David model and pil-
low model, 3D-ICP method and 4 D-ICP method use all points
in source point cloud to search corresponding points during the
iteration, but the improved ICP and the proposed method use
feature points to search corresponding points, so the running
time of the proposed method is reduced, which is better than
3D-ICP method and 4 D-ICP method. Meanwhile, the proposed
method has advantages in running time of other methods of
searching corresponding points by feature points. For the pillow
model 2, after comparing with the registration effect in Fig. 6
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Table 1
Comparison of four methods of block registration for point cloud data

Registration
model

Number
of point
clouds

Number
of deleted
duplicate

points

Registration
method

Number
of iterations

/ times

Registration
time / s

Global color
error / duv

Registration
effect

David model 1

120631 20387
ClassicICP 161 17.7235 49.8052 Fig. 3b

Improved ICP 154 8.3427 50.0112 Fig. 3c

116847 19778

4D-ICP 107 15.3436 50.2114 Fig. 3d

The proposed
method

100 6.8474 48.6082 Fig. 3e

David model 2

140057 24034
ClassicICP 124 16.1423 50.4238 Fig. 4b

Improved ICP 117 7.3358 47.3204 Fig. 4c

134314 22909

4D-ICP 86 18.2052 44.4927 Fig. 4d

The proposed
method

68 5.5377 44.0261 Fig. 4e

Pillow model 1

174106 29216
ClassicICP 92 11.7359 42.3426 Fig. 5b

Improved ICP 42 4.1295 38.3378 Fig. 5c

157488 26387

4D-ICP 58 9.9268 34.9757 Fig. 5d

The proposed
method

19 3.0359 31.2352 Fig. 5e

Pillow model 2

82437 14079
ClassicICP 41 2.8497 87.1143 Fig. 6b

Improved ICP 47 2.4495 84.1447 Fig. 6c

80783 13682

4D-ICP 192 19.9205 82.7664 Fig. 6d

The proposed
method

125 5.2762 68.3915 Fig. 6e

Fig. 8. Running time of different registration methods
on different models

and the data in Table 1, we can see that other methods have ad-
vantages in terms of registration time, but the registration effect
is not good. Although the running time of the proposed method
is not as good as other methods, it is superior to other methods
in registration effect and global color error.

The registration results of two David models and two pillow
models show that the proposed method has good registration

results for color information model and black-and-white tex-
ture model, or RGB-D model whose geometry structure is not
complicated enough. Based on the overall experimental results,
the proposed method is effective in low-precision RGB-D data
registration. Compared with other improved ICP methods, the
proposed method has advantages in texture alignment, registra-
tion accuracy and registration time.

6. CONCLUSIONS
This paper proposes a block registration approach for point
cloud data that takes into account the distance between point
and surface. The operation time of this method is slightly slower
than that of other ways, according to experimental results. The
proposed technique outperforms existing methods in terms of
the diagram’s registration effect and the global color error in
the table. However, the proposed method’s registration effect
is primarily determined by the extraction effect of overlapping
regions. Extracting overlapping regions for a data model with
a complicated surface is difficult, and the registration accuracy
suffers as a result. In the future, more efficient methods for ex-
tracting overlapping regions will need to be investigated in or-
der to improve the accuracy and universality of the point cloud
registration approach.
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