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Abstract
Heart rate is constantly changing under the influence of many control signals, as manifested by heart rate
variability (HRV). HRV is a nonstationary, irregularly sampled signal, the spectrum of which reveals distinct
bands of high, low, very low and ultra-low frequencies (HF, LF, VLF, ULF). VLF and ULF components
are the least understood, and their analysis requires HRV records lasting many hours. Moreover, there are
still no well-established methods for the reliable extraction of these components. The aim of this work was
to select, implement and compare methods which can solve this problem. The performance of multiband
filtering (MBF), empirical mode decomposition and the short-time Fourier transform was tested, using
synthetic HRV as the ground truth for methods evaluation as well as real data of three patients selected
from 25 polysomnographic records with a clear HF component in their spectrograms. The study provided
new insights into the components of long-term HRV, including the character of its amplitude and frequency
modulation obtained with the Hilbert transform. In addition, the reliability of the extracted HF, LF, VLF
and ULF waveforms was demonstrated, and MBF turned out to be the most accurate method, though the
signal is strongly nonstationary. The possibility of isolating such waveforms is of great importance both in
physiology and pathophysiology, as well as in the automation of medical diagnostics based on HRV.
Keywords: heart rate variability, nonstationary signal analysis, multiband filtering, empirical mode decom-
position, short-time Fourier transform, Hilbert transform.

© 2021 Polish Academy of Sciences. All rights reserved

1. Introduction

Heart rate (HR) is constantly changing under the influence ofmany internal signals.Heart rate
variability (HRV), resulting from decelerations and accelerations in the HR [1], is traditionally
determined by founding the RR intervals from the QRS complexes of the electrocardiographic
(ECG) signal, however, alternative methods for analysing cardiac activity are also being devel-
oped [2]. In general terms, the autonomic nervous system (ANS) controls the HR through the
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activity of the sympathetic (SNS) and the parasympathetic nervous system (PNS). Increased SNS
activity or decreased PNS activity causes an increase in the HR and vice versa [3], however their
relationship is quite complex [4].

When analysing the HRV spectrum, it is possible to distinguish frequency bands with factors
which affect them. The high frequency (HF) band (0.15–0.4 Hz) mainly reflects the activity of
the PNS with the vagus nerve. It is also synchronised with the respiratory cycle (respiratory
sinus arrhythmia) which causes the HR to increase during inhalation and decreases it during
exhalation. Respiration affects cardiovascular parameters not only through the ANS but also
through mechanical paths [4–8]. The low frequency (LF) band (0.04–0.15 Hz) is affected pri-
marily by blood pressure (BP) through the baroreflex system and both PNS and SNS. During
rest, the LF band reflects baroreflex activity without the SNS [4–8]. The very low frequency
(VLF) band (0.004–0.04 Hz) is not known well enough to precisely define factors affecting it.
They may include physical activity [9], thermoregulation [10, 11] renin-angiotensin [12] and
humoral factors [13], as well as the intrinsic nervous system [4]. The ultra-low frequency (ULF)
band (< 0.004 Hz) is all the more not well understood. The effect of the circadian rhythm
on ULF is most commonly suggested [7, 8, 14]. Other potential factors may include core body
temperature, metabolism and the renin-angiotensin system. There is no consensus on the con-
tribution of PNS and SNS to the ULF component [4]. In conclusion, there are no clearly iden-
tified factors influencing VLF and ULF, and quantitative information is lacking in all cases.
The only exception is the well-known relationship between the respiratory rhythm and HF.
The premises above emphasize both the significance of information inherent in the traces of
these four components as well as the importance of methods for their extraction and deeper
analysis.

HRV frequency analysis can be performed on short or long signal fragments. The short-term
analysis usually includes fragments of 5 minutes or less. This approach allows minimising the
impact of signal non-stationarity [15, 16]. However, such analysis is not suitable for extracting
the lowest frequencies of the ULF band. Long-term analysis (e.g. 24 hours) shows the ULF [7],
but then the stationarity problem is much more important [17]. Outliers in the HRV signal
can be modified, but in the case of short-term analysis, often unrepresentative fragments are
simply entirely discarded [18–20]. Yet another approach is online analysis [21, 22], which, by
definition, shares many features with the short-term one. HRV is an irregularly time-sampled
signal and many researchers have followed the suggestion to work with an evenly spaced signal
after interpolation [17]. The most common method is cubic spline interpolation, often with 4 Hz
sampling rate in the case of humans [16, 22–25].

Most often, frequency analysis is performed using the fast Fourier transform algorithm
(FFT) or autoregressive modelling, which requires to find an optimal model order [25, 26].
Other methods include higher-order moment spectra and cumulants of a signal [3] or short-time
Fourier transform (STFT) used to determine the local frequency components of quasi-stationary
signal fragments [3, 22, 25]. An alternative to STFT for studying nonstationary signals is the
continuous wavelet transform returning the correlation coefficients between the signal and the
rescaled wavelet of finite length and energy [3, 25]. Another popular method is the empirical
mode decomposition (EMD), which extracts oscillating components with symmetric envelopes
(called the intrinsic mode functions, IMFs) from a nonlinear and nonstationary signal and is
suitable for further determination of instantaneous amplitudes and frequencies with the use
of the Hilbert transform (collectively called the Hilbert-Huang transform, HHT) [27]. It was
used, among others, to study the information transaction among the IMFs [26] or to identify
the HRV component associated with breathing [29]. Likewise, EMD was applied to analyse
the HF component of foetal HRV reconstructed from IMFs with frequency content higher than
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0.3 Hz [30]. Foetal HRV was also investigated in [25], where the sum of the last IMFs was
used as a surrogate for the VLF component. Echeverria et al. applied HHT to derive IMFs
from 5 min long series gathered from the PhysioNet database. In this way they succeeded in
showing the frequency content of the IMFs, which, however, overlapped in the range of VLF to
HF [23]. Similarly, EMD was used to investigate changes in the HRV spectrum after atropine
administration [31]. Neto et al. proposed to enhance the analyses of IFMs by successively adding
them from the coarse to fine and from fine to coarse ones [32]. Ihlen in his work [33] concluded
that instantaneous frequencies and amplitudes estimated for HF and LF components from normal
sinus arrhythmia should be interpreted with caution because of the mode mixing which produced
artificial fluctuations. Similar observations were reported in [16]. Another interesting attempt was
the use of EMD to online analysis of HRV by the extrapolation of IMFs related to LF and HF,
to determine instantaneous frequencies and powers, with delays reduced to 60% compared to the
STFT [22].

The above-mentioned applications of EMD for HRV frequency analyses demonstrate also
a potential usefulness of other time-domain methods for signal decomposition when combined
with HT. In the 1980s,multiband filtering (MBF) was popular in partitioning HRVwithin specific
frequency bands [24]. However, this approachwas later generally abandoned in favour of nonlinear
methods, better suited to nonstationary signals, including adaptive filters operating on irregularly
sampled data [34, 35]. Since then, MBF or high-pass filters have usually been applied to correct
the HF spectrum [25, 29, 30, 37], though they showed no significant difference in comparison
with the adaptive nonlinear filters [36]. Nevertheless, MBF has recently been used to separate the
original HRV waveform into the higher frequency bands [28, 38].

The survey of related research above reveals that the problem of reliable extraction of the
well-recognised frequency components from overnight HRV remains unsolved. Many studies
analysed the HRV spectrum, in particular by determining its power in certain ranges using FFT
or autoregressive modelling [39]. In addition, the HF range was often investigated due to its
connection to the respiratory signal, but lower frequencies were not so popular, in particular ULF.
On the other hand, knowledge of actual waveforms of the HF, LF, VLF and ULF components
is vital in better identification and analysis of the function of various physiological systems and
relations between them. Therefore, the work is aimed at analysing the effectiveness of methods
with potential to extract physiological components (especially of low and ultra-low frequencies)
from long-term HRV to finally identify the most accurate approach to this highly nonstationary
signal processing. Based on the literature to date, it was decided to test the performance of MBF,
EMD and STFT first. The main hypotheses underlying this work are that HRV represents a non-
uniformly sampled sum of the effects of distinct physiological drives regulating HR which can
be separated in the frequency domain, and these effects are taken as components of hypothetical
continuous heart rate variability (cHRV).

In the following, the data used and applied methodology are described, the results obtained
are presented and discussed, and finally the main conclusion is drawn about the best method
among the tested ones.

2. Material and methods

All simulations and calculations were made in MATLAB R2020a (MathWorks, USA) using
its standard functions with default parameters (unless stated otherwise) on a PC (Windows 10,
Intel Core i3-4130, CPU@3.40 GHz, RAM 8 GB).

645

https://doi.org/10.24425/mms.2021.137700


K. Adamczyk, A.G. Polak: COMPARISON OF MULTIBAND FILTERING, EMPIRICAL MODE DECOMPOSITION . . .

2.1. Physiological data

The data come from the St. Vincent’s University Hospital Sleep Disorders Clinic in Dublin
available from the PhysioNet database [40]. There are many other databases on the PhysioNet
platform, but patients were either physically active or were influenced by changing conditions
or medications. What was needed was a database of ECG records and breathing signals in
neutral state, lasting many hours. Polysomnographic studies [41] meet the criteria and in addition,
potential sleep apnea extends the range of HF values related to respiration. The chosen database
contains 25 overnight polysomnographic recordings of patients with no known cardiac disease,
autonomic dysfunction, and no medication affecting heart rate. ECG sampled at 128 Hz and the
respiratory signal sampled at 8 Hz were used in this study.

These ECG recordings were used to derive HRV signals (next subsection), and then HRV
spectrograms were computed for each subject using the STFT. The spectrograms were compared
by visual inspection and three of them (from Patients #5, 7 and 11), with the most visible trace of
HF, were selected for further processing. The criterion of good quality HF traces is important due
to subsequent comparisons of the HF components extracted from HRVwith recorded respiration,
as these are directly correlated signals. In addition, the first 54 min of Patient #11 data were
removed due to visible effects of electrode disconnection.

2.2. Data preprocessing

The ECG was upsampled ten times (nonlinear interpolation) to 1280 Hz to get a higher
resolution of R peaks in time, and thus to more accurately define the RR intervals. PhysioToolkit
software package was used to find the QRS complex [40] and the exact location of the R peak was
determined as the signal maximum near this region. The RR signal was created as the difference
in time between consecutive R peaks.

It is common that the ECG (and thus HRV) signal is disrupted by artefacts of various origins,
and the effects of some of them may be seen as extreme values [42]. Many methods for HRV
artefacts removal have been proposed, but in this work special attention was paid to keeping the
timeline unchanged, otherwise the component phases would be distorted in the rest of the signal.
For this reason, any extreme value representing instantaneous HR above 98 bpm (RR < 0.61 s)
was added to its larger neighbour, creating a new surrogate RR. On the contrary, when HR was
lower than 49 bpm (RR > 1.22 s), the corresponding RR was split into two equal surrogates.
These limits of 49–98 bpm were adopted taking into account sleep conditions. Although the
above procedure modified the outliers of HRV, it only happened locally, preserving all other data
and the original timeline.

Giving this restored HRV, the timeline was reconstructed as a cumulative sum of its values
(RR intervals). Then cubic splines were applied to interpolate the non-uniformly sampled HRV
at 10 Hz. After using an antialiasing zero-phase filter (0.5 Hz cut-off frequency), the signal was
finally resampled to 2 Hz, and is hereinafter referred to as HRV2.

The respiratory signal (Resp) was preprocessed in a similar way. First, it was bandpass filtered
in the range of 0.15–0.40 Hz, and then resampled to 2 Hz for comparisons with the HF component
of HRV2.

2.3. Multiband filtering

The first of analysed methods was classical multiband filtering (MBF). It allows to preserve
the frequency content of a signal in a given passband while attenuating all others and can be used

646



Metrol. Meas. Syst.,Vol. 28 (2021), No. 4, pp. 643–660
DOI: 10.24425/mms.2021.137700

only when the lower and upper cut-off frequency are defined. Therefore the frequency ranges
of searched components, hereinafter referred to as: HFc (0.15–0.40 Hz), LFc (0.04–0.15 Hz),
VLFc (0.004-0.04 Hz), and ULFc (0–0.004 Hz) were used. The digital passband, zero-phase (not
distorting the shapes of the extracted components), minimum-order, finite impulse response (FIR)
filters were designed to have a stopband attenuation of 60 dB. Their outputs are convolutions of
filter coefficients and last signal samples, the number of which is called the filter order. These
filters were used to extract the three higher frequency components, and an analogous lowpass one
(only with the upper cut-off frequency) for the ULFc.

2.4. Empirical mode decomposition

Empirical mode decomposition (EMD) is a method dedicated to the analysis of nonstationary
signals. It allows to automatically extract a finite number of oscillating components called the
intrinsic mode functions (IMF) without any a priori assumptions. The IMFs are characterised
by the number of extrema being the same as the number of zero crossings and symmetrical
envelopes in relation to the zero line. The EMD recurrent procedure, first proposed in [27], was
also extensively described in [23, 28, 29, 32]. After decomposition, the signal can be represented
as a sum of IMFs denoted here as xc (t) and the final residue rp (t):

x(t) =
p∑

c=1
xc (t)+rp (t). (1)

The number of IMFs as well as their frequency contents are not known in advance, depending
only on the nature of the analysed signal. In particular, several IMFs may represent a given
physiological component. Therefore, the maximal number of extracted IMFs was set at 16, and
for each of them, the instantaneous frequencies were calculated (Subsection 2.6) and an empirical
histogram was generated from their values. A given IMF was labelled as representing one of the
searched components based on the maximum number of counts which fall within the specified
frequency range on the histogram. Then all IMFs with the same label were summed up to obtain
the corresponding HFc, LFc, VLFc and ULFc. The residue, representing the slowest variations,
was finally added to the initial ULFc.

2.5. Short-time Fourier transform

One of the most popular methods for frequency analysis of nonstationary signals is the short-
time Fourier transform (STFT), assuming signal local stationarity inside a short-time moving
window. At each window position, the FFT is calculated from its samples (the result is often
converted to power density and presented in dB), giving a local spectrum associatedwith a specific
time coordinate. This discrete spectrum is, unfortunately, only an estimate of the real one due
to windowing (resulting in spectrum leakage and scalloping) and it changes with the position of
the window. A set of such spectra, arranged one after another, with the power density shown on
a colour scale, form together a time-frequency graph called the spectrogram.

Since the searched components have defined, but different frequency contents, the widths
of the analysing windows were selected as equal to the period of the lowest frequency in the
corresponding range of HF, LF and VLF, i.e. 6.5, 25 and 250 s respectively. For ULF it was
arbitrarily set to 30 min. The windows were shifted by 1 sample of HRV2 and the results of
computations were assigned to time coordinates corresponding to their centres.

647

https://doi.org/10.24425/mms.2021.137700


K. Adamczyk, A.G. Polak: COMPARISON OF MULTIBAND FILTERING, EMPIRICAL MODE DECOMPOSITION . . .

The analysis took several steps. After the mean removal, the Hann window was applied, then
the signal was zero-padded to 2000 samples (giving a frequency resolution of 1 mHz) and the
FFT was computed. Having a complex spectrum X ( f ), the spectral energy density E( f ) for each
frequency was computed taking into account the squared amplitude E = A2 = |X |2, lengths of
signal and Hann window, and the coefficient of energy loss caused by windowing. Finally, the
instantaneous amplitude was assessed as:

Ac (t) =

√√√√ fhi∑
f= flo

E( f ) , (2)

where t is the coordinate of the window centre, and f lo and fhi denote the limits of the given
frequency range. Analogously, the instantaneous phases were calculated as angles of X ( f ), and
then their average value ϕc (t) in the given frequency range. The instantaneous magnitudes of
searched components were synthetized as:

xc (t) = Ac (t) sin (ϕc (t)) . (3)

In addition, the instantaneous mean from the ULF analysis was added to the initial ULFc.
Finally, all the extracted components were passband or lowpass filtered using the filters designed
for the MBF method.

2.6. Instantaneous amplitudes and frequencies

As the nonstationary HRV components and Resp signals are supposed to be amplitude (AM)
and frequency modulated (FM), the instantaneous amplitudes (envelopes) and frequencies are of
great interest. They can be derived using the Hilbert transform (HT).

The applied HT returned analytic signals Xc from the real components xc:

Xc (t) = xc (t) + jhc (t) = Ac (t)e jϕc (t), (4)

where hc is the HT of xc . The analytic signals clearly determined Ac and ϕc , and then the
instantaneous frequencies of components fc were calculated after ϕc unwrapping:

fc (t) =
1

2π
dϕc
d t

. (5)

2.7. Signal postprocessing

One of the well-known issues with the use of HT are the emerging negative frequencies [43].
They result from numerical differentiation of instantaneous phases which are not sufficiently
smooth. To deal with this effect, all frequency samples outside the range of analysed component
were discarded and the rest smoothed with a median filter of the same order as the relevant
window size. The instantaneous amplitudes were also smoothed in the same way.

2.8. Generation of synthetic HRV

Ground truth is necessary to compare and quantify the proposed methods, but it cannot be
deduced for real HRV data, therefore synthetic signals are used to this end [16,22,23,25,31,33].
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In this work, a synthetic 6-hour HRV series was generated, consisting of nonstationary HF,
LF, VLF and ULF components. All the components were simulated as AM and FM signals.
This means that both component amplitudes and frequencies had their own ranges of magnitude
variation represented by Aam0 , Aam and Af m0 , Af m respectively, and modulation frequencies
fam and f f m:

Ac (t) = Aam0 + Aam sin
(
2π famt

)
,

ϕc (t) = 2πAf m0t + Af m/ f f m sin
(
2π f f mt

)
.

(6)

These parameters were assessed from the analyses of Patient #5, 7 and 11 data (Subsection 3.3,
Table 1). Then (3) was applied to compute the synthetic components which were finally summed
together and further shifted up by a constant of 0.95 s, forming the continuous cHRV sampled
at 1 kHz [17]. Next, taking into account the relationship between HRV values and the timeline
(every new value HRV(ti) lies on cHRV and is equal to RR(ti) = ti − ti−1), the irregularly spread
HRV samples were found. Finally, HRV was made more realistic by adding Gaussian noise [25],
with the standard deviation of 0.01 s.

2.9. Evaluation of methods accuracy

The effectiveness of the analysed methods could be evaluated in two ways. Firstly, the HF
components extracted from the real HRV were compared with the simultaneously recorded Resp
signal, and secondly, all the components extracted from simulated HRV were compared to their
synthetic counterparts (ground truth). In the former case, both signals were standardised before
matching them due to their different magnitudes. In the latter one, two measures of similarity
were calculated: the relative error of extraction:

δex =
‖xc − xs ‖2
‖xs ‖2

· 100%, (7)

where ‖ · ‖2 stands for the Euclidean norm, xs is for a synthetic and xc for an extracted component,
as well as the Pearson correlation coefficient r between corresponding samples.

3. Results

3.1. Validation of HRV simulation and reconstruction

The primary question in extracting the continuous components from irregularly spread data
is the quality of the relationship between reconstructed, regularly resampled HRV2 and the
underlying cHRV, as well as whether the simulated cHRV covers the main properties of real
HRVs. To this end, power spectral densities (PSD, Welch method, Hann window of 60 samples,
zero-padding to 2000 samples, 90% overlapping) of real HRVs were compared with that of cHRV
(Fig. 1a), and the HRV2 samples obtained from the simulated undistorted and distorted HRVs
were plotted against the cHRV (Fig. 1b). The obtained results show that the PSD of the synthetic
signal (black curve) matches the real PSDs well. Also it is visible that the resampled HRV2 with
the timeline restored from undistorted HRV (red dots) perfectly fits cHRV. It is otherwise with
the samples of HRV2 restored from distorted HRV which show the effect of additional random
disturbances, preserving, however, the main course of cHRV.
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a) b)

Fig. 1. (a) Power spectral densities of HRVs from three patients and synthetic distorted data; (b) synthetic undistorted and
distorted HRVs resampled to 2 Hz plotted against the underlying continuous cHRV.

3.2. HF, LF, VLF and ULF components

The traces of frequency components extracted from HRVs of Patient #5, #7 and #11 using
the three proposed methods are shown in Figs. 2, 3. To the best of our knowledge, such overnight
nature of physiological drives has not yet been demonstrated, especially in the case of VLF and
ULF. The main observation is that the methods yielded virtually very similar patterns of the
components for a given patient, proving both their usefulness in solving the problem, as well as
the reliability of the extracted waveforms.

Fig. 2. Standardised high frequency components (HFc) extracted from HRVs of three patients using the three proposed
methods: MBF (blue), EMD (green) and STFT (red) shown against the standardised respiratory signals (black).
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On the other hand, matching among respiratory waveforms and HFc magnitudes is weak
(Fig. 2), which draws more attention to the known frequency dependency between these two
signals. The phases extracted from the corresponding Resp and HFc signals showed good consis-
tency and high correlation between their samples (r = 0.84, 0.93 and 0.93 forMBF and Patient #5,
7 and 11, respectively), confirming the high compatibility of phases characterising both sources.

Fig. 3. Low (LFc), very low (VLFc), and ultra-low (ULFc) frequency components of three patients extracted using the
three proposed methods: MBF (blue), EMD (green) and STFT (red).

3.3. Amplitude and frequency modulation of components

The instantaneous amplitudes and frequencies of the HFc, LFc, VLFc and ULFc extracted
with MBF (blue), EMD (green) and STFT (red, as shown in Figs. 2, 3 for Patient #7 on the
middle panels) were calculated using the HT and presented in Fig. 4. It can be seen that the
amplitude modulation assessed with the three methods is consistent (with a slight overestimation
in the case of VLFc). However, this does not apply to frequency modulation, where only the
results obtained for the ULFc are very similar. In the remaining three cases, the results obtained
with EMD are overestimated and the outcomes of STFT underestimated (especially in the case
of VLFc) compared to those obtained by the MBF. Nevertheless, the frequency ranges of specific
components were always located in the ranges traditionally ascribed to HF, LF, VLF and ULF.

All such results of AM and FM analyses of the frequency components extracted with these
three methods from the three patient data series were visually inspected, and the average ranges
of magnitudes and frequencies of the modulating signals were then deduced and summarized
in Table 1. It can be noticed that the AM amplitude increases as the component frequencies
decrease, but the FM amplitude range decreases. Simultaneously, AM and FM frequencies are
similar (usually a little higher for FM), slightly decreasing as the component frequencies decrease,
which is obvious as the absolute ranges of frequency variation also decrease. This information
was further used to generate the synthetic HRV waveform (Section 2.8).

651

https://doi.org/10.24425/mms.2021.137700


K. Adamczyk, A.G. Polak: COMPARISON OF MULTIBAND FILTERING, EMPIRICAL MODE DECOMPOSITION . . .

Fig. 4. Instantaneous amplitudes (left panel) and frequencies (right panel) of the HFc, LFc, VLFc and ULFc extracted
with MBF (blue), EMD (green) and STFT (red) from the HRV data of Patient #7.

Table 1. Assessed magnitude ranges and frequencies of the AM and FM of the HRV components.

Modulation HF LF VLF ULF

AM
Magnitude range [s] 0.01–0.04 0.01–0.06 0.02–0.08 0.04–0.11

Modulation frequency [Hz] 0.00105 0.00067 0.00037 0.00022

FM
Magnitude range [Hz] 0.18–0.30 0.06–0.10 0.010–0.025 0.2–1.4×10−3

Modulation frequency [Hz] 0.00096 0.00081 0.00045 0.00027

3.4. Methods efficiency

The accuracy of the tested methods was analysed on the basis of synthetic HRV, consisting of
four nonstationary components, each subjected to AM and FM, and additionally distorted by some
random noise. These components together with the known modulation characteristics constitute
the ground truth when compared with the extracted signals. In general, all reconstructed signals
resembled their ground truth, however, the components obtained withMBFwere the most regular.

The quantitative measures of the methods’ performance are gathered together in Table 2. Both
the relative errors (δ) and correlation coefficients (r) indicate thatMBF is themost accuratemethod
for each frequency component. Moreover, the performance indices improve as the component
frequencies decrease, except STFT yielding δ = 124% for VLF and a very low r for VLF andULF.
This outperformance of MBF is clearly visible in the reconstructed AM and FM traces shown
against the real waveforms of the modulating signals in Fig. 5, where only the instantaneous
amplitude of the ULFc has a very approximate trajectory. Another performance indicator is the
data processing time, which was completely different for the methods tested. MBF of synthetic
HRV2 (43200 samples) took about 6.7 s (from 10 averaged runs), whereas EMD and STFT:
0.3 and 46.7 s, respectively, and finally HT with smoothing the instantaneous amplitude and
frequency about 3.9 s.
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Table 2. Relative errors (δ) and correlation coefficients (r) of components extracted by the analysed methods.

Component
Method accuracy

MBF EMD STFT
δ [%] r δ [%] r δ [%] r

HF 36.0 0.938 58.2 0.856 84.4 0.725

LF 16.7 0.986 41.1 0.915 60.7 0.855

VLF 13.0 0.992 30.3 0.956 124.0 0.292

ULF 0.01 1.000 0.95 0.985 6.34 0.243

Fig. 5. Instantaneous amplitudes (left panel) and frequencies (right panel) of the HFc, LFc, VLFc and ULFc extracted
with MBF from synthetic HRV against their true traces (black).

4. Discussion

The aim of this study was a use case-based comparison of three methods: MBF, EMD and
STFT, used to extract the well-known frequency components (HF, LF, VLF and ULF) from
long-term HRV.

The quantitative evaluation of these methods was done on the basis of synthetically generated
HRV, where all the details of nonstationary components subjected to AM and FM were known.
This HRV generation routine did not use the frequently applied integral pulse frequency mod-
ulation (IPFM) model, linking continuous autonomic drive with the discrete and irregular HR.
The IPFMmodel was first introduced by Bayly et al. [44] and then modified and used extensively
by others [16, 22, 23, 25, 31, 33, 45]. Admittedly, the IPFM model conveys some features of the
input drive spectrum to the HRV spectrum, it has been shown that the former spectrum cannot
be recovered fully from the latter one [46, 47]. Moreover, it is clear from this model that the
instantaneous magnitude of HRV (RR intervals) is roughly inversely proportional to the temporal
magnitude of the continuous drive. Summarising, the correct reconstruction of the physiological
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drives from the extracted components of HRV is a separate inverse problem which has so far
received little attention, and is not addressed in this work either. On the other hand, looking at
Fig. 1 it is clearly visible that the proposed generation procedure yielded the synthetic signal with
spectral properties well matched to the real HRV spectra. Also the preprocessing scheme allowed
capturing the true course of cHRV in the regular HRV2 samples. This means that the synthetic
HRV used correctly represented the recovered continuous components. Moreover, it was ensured
that changing the regular HRV sampling from 2 to 1 or 4 Hz did not alternate the results of further
analyses.

The first of tested methods was MBF. This linear approach has been commonly abandoned
since it was realized that HRV is a nonstationary and nonlinear signal [24]. Nevertheless, each
of the designed zero-phase FIR filters was matched to a given frequency band which resulted
in its specific order (i.e. the number of contiguous samples taken into account), lesser for high
frequencies and bigger for low ones. In other words, the filters acted locally like moving windows,
focusing only on the set frequencies and suppressing others. The discussion above explains why
this linear tool is still suitable for this particular problem. However, one has to remember that
MBF limitation lies in the a priori adopted frequency ranges which can potentially distort the
components when their true spectra are outside these boundaries. On the other hand, at present it
seems that the frequency ranges of the autonomous control processes applied are well-established
from many other studies, which justifies this approach. Moreover, the components extracted by
EMD, which was the only one of the methods tested which did not explicitly assume frequency
ranges, are in very good agreement with the results obtained with the MBF, as shown in Figs. 2,
3 and in [28], which proves that the bands were selected correctly. Ultimately, MBF turned out to
be the best method among the tested.

The second method was EMD, and the analyses started with the separation of IMFs from
tested HRVs. Ten IMFs were identified in all three patients (16 maximally were allowed) along
with residual signals (Fig. 6). This is a larger number than in other studies, where 3-9 IMFs
were usually extracted from real data [23, 28, 29]. This difference stems from much shorter
HRV sequences investigated in those works, typically 5 minutes long, so they contained fewer

Fig. 6. Intrinsic mode functions (IMFs) and residue resulting from EMD of Patient #7’s HRV data.
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intrinsic modes due to the reduced complexity of such series. Indeed, the EMD of our synthetic
6-hour HRV also returned 10 IMFs, although it consisted of only 4 nonstationary components.
The advantage of EMD is that the IMFs do not have predetermined frequencies. Although they
were grouped in this work to represent specific frequency components by taking into account
the dominant frequencies shown by their histograms, the resulting spectra could still exceed the
boundaries and overlap between the components. This can explain why the modulating frequency
ranges obtained with EMD were slightly overestimated compared to MBF (Fig. 4).

The third method, STFT, belongs to the most popular in this field, especially due to its
suitability for calculating the power spectra of the analysed HRV fragments. Although this
approach resulted in components very similar to those from MBF and EMD in terms of their
basic shapes and instantaneous amplitudes (Figs. 2, 3), the instantaneous frequencies assessed
for HF, LF, and particularly, VLF components were more and more suppressed with increasing
frequency (right panel). Concurrently, it appears that this reduced FM assessment is compensated
for with slightly overestimated AM magnitudes. This may be the effect of double averaging, first
used to calculate the instantaneous phases from their temporary spectra (Section 2.5) and then to
smooth the modulating frequencies (Section 2.7), so in the future a different approach should be
sought to solve this issue. Both the STFT results (as opposed toMBF and EMD) and the averaging
effects strongly depend on the sliding window width, which was initially set equal to the longest
period characterizing the given frequency band. To investigate the effect of window width, HRV
processing was repeated at half width as well as multiplied by 2, 3 and 4, but overall accuracy (in
terms of relative standard error) did not improve. Summarising, STFT turned out to be the least
accurate approach to extracting physiological components and their properties from HRV.

Despite the observed minor differences in the waveforms extracted with the three methods,
the obtained results (especially those presented in Fig. 4) clearly indicate the non-stationarity of
the components occurring in HRV, being subjects to amplitude and frequency modulation. It is
also worth noting that AM, similarly recovered from HRV with all the methods (and therefore
with greater precision than FM), has a much greater practical significance as it directly represents
the magnitude of physiological activity. Summarising, Figs. 2, 3 as well as Table 1 give a better
insight into the overnight impact of the ANS on the HR, at least in terms of the effects which
determine the course of HRV, and all the investigated methods followed by the HT are useful in
recovering the instantaneous energy of these physiological components.

The methods analysed were quantitatively evaluated in two stages. Firstly, the Resp signals of
three patients were compared with the corresponding HF components extracted from HRV, and
secondly, performance of the methods was assessed on the basis of synthetic data – both in terms
of the extracted waveform similarity and their instantaneous amplitudes and frequencies. Detailed
inspection of Fig. 2 shows that Resp and HFc shapes are poorly related to each other, which means
that the depth of breathing has no direct impact on HRV in the HF range. However, this conclusion
does not apply to frequency dependency between these signals. The high correlation obtained
between both instantaneous phases (r = 0.93 for Patient #7 and 11) is a well-known relationship
and proves that MBF combined with the HT is a useful tool for HRV decomposition, at least in
the range of HF. The observed correlation can be even greater when the resampling frequency is
4 Hz and the phase shift between the signals can be better fine-tuned [29].

The final comparison between method performances is qualitatively presented in Fig. 5 and
quantitatively in Table 2. Admittedly, all the reconstructed components are very similar to the
synthetic nonstationary waveforms, nevertheless those extracted with MBF are the smoothest
ones and best covering the underlying signals. The effectiveness of MBF, and especially EMD,
has also been demonstrated in [28], but in that paper the authors did not provide any details about
the filters used. The ultimate outperformance of MBF is presented in Table 2, taking into account

655

https://doi.org/10.24425/mms.2021.137700


K. Adamczyk, A.G. Polak: COMPARISON OF MULTIBAND FILTERING, EMPIRICAL MODE DECOMPOSITION . . .

all the extracted components as well as both indices – the relative error of component recovering δ
and the correlation coefficient r . As recent research on HRV suited to the analysis of nonstationary
signals had focused on more modern and advanced methods than MBF, the results obtained here
were not obvious. The situation is different with the calculation time, the shortest in the case of
EMD (0.3 s), and the longest for STFT (46.7 s). Although EMD is a recurrent routine, it works
once on the whole data, while MBF and STFT use the convolution or analysing window, sliding
across the data separately for each searched component. Additionally, the instantaneous amplitude
and phase are estimated immediately within the applied STFT algorithm. This predestines EMD
for online analyses (after appropriate modification).

Looking closer at instantaneous amplitudes and frequencies returned by MBF and HT, it is
clear that these features are most precisely defined in the range of LF and VLF (Fig. 5). AM
and FM recovered from the HFc show random interference which disappears when synthetic
undistorted HRV is analysed (checked but not presented here), proving that this effect is due to
random perturbations presented in HRV. On the contrary, the distortions in AM and FM of the
ULFc remain in this case, showing that they are caused by the processing algorithms themselves,
in particular, the known influence of linear filtering on the beginning and end of the processed
signal and the applied averaging of instantaneous amplitudes and frequencies (Section 2.7). Since
the instantaneous amplitudes and frequencies resulting from HT had been smoothed, also in this
case the effect of the window width was checked. As with the STFT tests, also here the pre-set
window width turned out to be the best.

The above results and analyses provided an abundance of valuable information both in terms
of physiological processes regulating HR and methods which can be used to study them. Nev-
ertheless, this work has also some limitations. The first crucial one was to investigate the HRV
data from only three patients, although many other records exist in the PhysioNet and other
public databases. This can be explained by focusing not on the properties of the physiological
components themselves, but on methods appropriate for their proper extraction from HRV, and
the real data were needed primarily to correctly generate the synthetic waveforms. Another fact
worth noting is that the extracted components only represent the effect of ANS activity on HRV
and not the underlying physiological drives. As mentioned earlier, recovering the ANS drives
from the HRV components is an additional inverse problem which needs to be addressed, but is
not covered by this work.

5. Conclusions

This study brings new insights in the area of heart rate variability analysis. It has been shown
that the extracted overnight HFc, LFc, VLFc and ULFc are reliable, their nature can therefore be
assessed in terms of the instantaneous amplitudes and frequencies. The possibility of isolating
such waveforms is of great importance both in physiology and pathophysiology, as well as in the
automation of diagnostics.

The main conclusion is that MBF is more accurate in overnight HRV frequency analysis than
the other two testedmethods, i.e.EMDand STFT, even though the signal is strongly nonstationary.
Moreover, it enables precise recovering the instantaneous amplitudes and frequencies of the
HRV components containing HF, LF, VLF and somewhat less accurately ULF, and thus their
instantaneous powers and ratios. In summary, the key contribution of this work relies in indicating
this best method for extracting HRV components from among the three tested ones.

Future work will focus on several areas, namely: other up-to-date methods capable of extract-
ing frequency components from nonstationary signals with their reference to MBF, the level of
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attenuation of ECG/HRV artefacts with these methods, online HRV processing once the basic
properties of both its components and the analysing methods are known, as well as the recon-
struction of internal ANS drives using the extracted HRV components and the IPFM model.
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