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1. INTRODUCTION
The planning of the motion of WMR is one of the problems
of mobile robotics. The navigation of wheeled robots is done
through various methods, divided into local and global ones,
and their list referred to in papers [1, 2].

From a mechanical standpoint, algorithms are the higher
layer in planning motion [3–5], generating the desired kine-
matic parameters of mobile robots’ drive wheels, executed as
trajectory tracking control. The selected algorithms implement-
ing the higher control layer are: the potential field method [1],
generating the optimal trajectory with neural networks (NN) [6]
and kinematics control [5, 7]. Kinematics control is a simple
method of executing the higher layer of point-to-point control,
based on the WMR’s kinematics. It is a stabilisation task in
which the selected characteristic point of the WMR has to reach
a specific set point in space. The robot frame’s configuration
can be arbitrary or specific in this task.

The generated kinematic parameters of WMR’s wheels serve
as the basis for determining WMR’s tracking errors and gener-
alized tracking errors. On their basis, trajectory tracking con-
trol is generated, which can be implemented as optimal. This
issue is widely discussed in papers [8, 9], for example. Opti-
mal control in non-linear dynamical system is reduced to the
approximation of the solution to the Hamilton–Jacobi–Bellman
(HJB) equation [8, 10]. This is a problem of approximative dy-
namic programming (ADP) [4,8,10–13]. Optimal control prob-
lem can be extended by taking disturbances into account. In
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this approach, the theory of differential games is applicable. In
this problem, optimal controls are determined in the presence
of the worst-case disturbances, so it is possible to set the H∞
type control and ensure that the system is robust to the said
disturbances, which can be understood as changing operating
conditions of the controlled object. This approach results from
the input-output control theory [14–17].

Determining the solution of a zero-sum differential game cor-
responds with determining the saddle point in the Hamilton-
Jacobi-Isaacs (HJI) equation. Similarly to the HJB equation,
the solution to the HJI equation is only possible in a linear
case. An approximation solution is applied in a nonlinear case.
Here, the ADP structure (composed of a critic approximating
the value function and two actors) generates suboptimal solu-
tions approximating optimal control and the worst-case distur-
bances, respectively. This approach is widely discussed in liter-
ature: [4, 18–31]

Paper [24] contains an actor-critic adaptive solution to the
HJI equation, executed in real time. This case assumes the
knowledge of the dynamics system and the law of adapta-
tion of critic’s NN weights is based on a modification of the
Levenberg-Marquardt method. The requirement regarding the
knowledge of the mathematical model for the dynamic system
is also assumed in paper [4], in which the iterative recursive
least square (RLS) algorithm was used to approximate the so-
lution of a zero-sum differential game.

The condition regarding the knowledge of the model may not
always be satisfied, and therefore papers [23, 26–28] present
adaptation algorithms based on data from the system output.
Paper [31] shows a synthesis of H∞ control with the tracking
task for a system of unknown dynamics. Papers [4, 21] present
the use of a zero-sum differential game in tracking control of a
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wheeled mobile robot. Another problem concerning the WMR,
which involves differential zero-sum games, is the stabilisation
task, as described in paper [22]. In paper [30], ADP methods
were used to solve a zero-sum differential game for the control
of a modular manipulating robot.

Recognising the small number of applicable papers, this pa-
per pays special attention to this aspect through experimental
verification of the differential game theory and H∞ control. It
concerns the WMR’s behavioral control in a go-to-goal task un-
der changing operating conditions. The results of experimental
tests confirm the ability to apply differential game theory and
H∞ control for practical solutions, which extends the possibili-
ties of using advanced control methods in practical applications.

The paper is divided into several sections. Section 2 formu-
lates the problem of the theory of zero-sum differential games,
resulting from the dissipativity theory. To solve it, adaptive dy-
namic programming was used, which approximates the solution
of the HJI equation using the neural network in the critic’s struc-
ture. The critic approximates the value functions and enables
the determination of control and disturbances signals in real
time. Using the iterative recursive least squares procedure, the
NN weights of the critic can be determined in real time (without
pre-learning). Section 3 includes the WMR’s kinematics equa-
tions and formulates the problem of go-to-goal control in terms
of kinematics. The WMR’s dynamics equations are presented
and the WMR tracking task is formulated in Section 4. Sec-
tion 5 contains the results of experimental verification and pro-
vides the application aspect to the zero-sum differential game
theory. Additionally, it demonstrates that the H∞ condition is
met, so the resulting control is robust to changing operating
conditions. The last section is a summary of the findings.

2. PROBLEM FORMULATION
This section contains information on the dissipativity theory,
which is connected with input-state-output signals. Function
sv(d(t),z(t)) is called supply rate, while accumulated energy
function V (x) is a state function [14,15,32–34]. In the analysis
and synthesis of the dissipativity properties, we focus on signals
of finite energy. These signals belong to L2 spaces.

Definition 1. [17]: The function f (t) : [0, ∞)→Rn belongs to

Lp[0,∞) if
∞∫

0

‖ f (t)‖p
p)

1/p < ∞ where ‖ f (t)‖p is p-norm vector.

In particular: f (t) ∈ L2[0, ∞] if
∞∫

0

‖ f (t)‖2)1/2 < ∞.

Consider the non-linear dynamical system given by

ẋ = f (x)+g(x)u+ k(x)d, (1)

where x∈Rn is the state vector, u∈Rm is the control vector and
d ∈ Rq is the vector of parametric and structural disturbances
of a non-linear dynamical system. Functions f (.) ∈ Rn, g(.) ∈
Rn×m, k(.) ∈ Rn×q with appropriate dimensions are locally
Lipschitzian in the compact set Ω = {x ∈ Rn : ‖x‖ ≤ mx < ∞},

where mx is constant, f (0) = 0, so x = 0 is the point of equilib-
rium.

There are two outputs associated with the dynamic system
(1). The first is

y = h1(x), (2)

where y ∈ Rp is the measured output, while the other is

z = h2(x,u), (3)

where z ∈Rr is the controlled changing output (tracking errors,
control cost).

The non-linear dynamical system of (1) is dissipative when
the dissipative inequality is satisfied as

0 ≤V (x(∞))−V (x(0))≤
∞∫

0

sv(d,z)dt, (4)

where V > 0 is the accumulated energy and
∞∫

0

sv(d,z)dt is the

supplied energy [17, 34, 35].
The choice of a specific form of the supplied rate sv function

enables the synthesis of real control systems, while considering
signals of finite energy, described in the L2 space [34]. In this
assumption:

sv(d,z) = γ2‖d‖2 −‖z‖2, (5)

‖.‖ is the vector norm, γ > 0 is the design parameter. Substitut-
ing equation (5) into the inequality (4) and assuming V (x(0)) =
0 has the following result:

∞∫

0

‖z‖2 dt ≤
∞∫

0

γ2‖d‖2 dt. (6)

Dynamic system (1) is dissipative with the L2 gain lesser or
equal to γ if inequality (6) is satisfied. Satisfying inequality (6)
means that the dynamic system of (1) is dissipative and has the
L2 gain lower than or equal to γ for d ∈ L2[0,∞), which means
that the dynamic system is stable [17, 34]. Satisfying inequal-
ity (6) ensures the stability of a dynamic system (1). Assuming
the worst-case disturbances and minimising the L2 gain for the
dynamic system of (1) with a feedback loop leads to obtaining
optimal H∞ control.

2.1. H∞ control
As indicated in Section 2 and in papers [14,34], H∞ control is a
control of a non-linear dynamical system of the form (1), which
minimizes the L2 gain. The synthesis of H∞ control leads to so-
lution to solving a zero-sum differential game. This is equiva-
lent to solving the HJI equation, which is a specific type of the
HJB equation.

To define the H∞ control, a dynamic system of the form (1)
was introduced in paper [14] with full access to state variables.
Optimal H∞ control means determining control u∗, for which
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the L2[0,∞] gain (between the disturbances d and the controlled
variable output z) i.e

γ2 =

∞∫

0

‖z‖2 dt

∞∫

0

‖d‖2 dt

(7)

is minimised. Due to its difficulty, the problem of optimal H∞
control is replaced with the search for suboptimal H∞ control.
Such an approach means determining the control that cause the
gain of the closed system to be less than or equal to γ for the
assumed disturbances. This is done by successively reducing
the assumed gain γ , for which the L2[0, ∞] gain γ∗ is less than
or equal to γ [14]. Therefore, the H∞ control problem is reduced
to a set of the lowest value of γ , for which the inequality is
satisfied

γ∗ ≤ γ. (8)

This approach leads to solution a two-person zero-sum differ-
ential game that solves the minmax problem.

There is a non-linear dynamical system of (1) with the full
access output y and the norm squared controlled variable output
z in a form

‖z‖2 = xT Qx+uT Ru , (9)

where Q, R > 0 are the design matrices of appropriate dimen-
sionality. Dynamic system (1) is associated with value functions

V =

∞∫

0

[
xT Qx+uT Ru− γ2‖d‖2] dt, (10)

where control u and disturbances d are understood as minimiz-
ing and maximizing players, respectively. Based on the condi-
tion

∂H
∂u

= 0,
∂H
∂d

= 0, (11)

where H is the Hamiltonian

H(x,V,u,d) =
dV
dx

[ f (x)+g(x)u+ k(x)d]−xT Qx

+uT Ru− γ2‖d‖2 (12)

the following was determined:

u∗ =−1
2

R−1g(x)T dV ∗

dx
,

d∗ =
1

2γ2 k(x)T dV ∗

dx

(13)

where V ∗ is the optimal function of the value of (10), u∗ is opti-
mal control, and disturbances d∗ is the worst-case disturbances.
Signals u∗, d∗ satisfy the Nash inequality of the form [16]

V (x,u∗,d)≤V ∗(x,u∗,d∗)≤V (x,u,d∗) (14)

and therefore they set the saddle point.

Inserting (13) into (12) resulted in the following:

xT Qx+∇V ∗T f (x)− 1
4

∇V ∗T g(x)R−1gT (x)∇V ∗

+
1

4γ2 ∇V ∗T k(x)kT (x)∇V ∗ = 0, (15)

where ∇V ∗(x) =
dV ∗

dx
. Equation (15) is a HJI equation. The

ADP algorithm will be used to solve it.

2.2. Zero-sum differential game
In the case of non-linear dynamical system, ADP methods
are used for solving a zero-sum differential game, and their
critic structure generates the aproximation of the value func-
tion, while the actors generate the approximation of the player’s
signals.

It was assumed that the weights W in the critic neural net-
work cause the value function to be as follows [24, 36]

V (x) = WT ΨΨΨ(x)+ ε(x), (16)

where ΨΨΨ : Rn → RN is the linearly independent vector of basic
functions, N is the number of neurons and ε(x) is the approx-
imation error. Paper [24] shows that if the number of neurons
N → ∞, the approximation error is then ε → 0 and ∇ε → 0.

Ideal weights W in the critic’s neural network remain un-
known. Therefore, the output of the critic’s structure is the ap-
proximation of the value function, i.e. [24]

V̂ (x) = ŴT ΨΨΨ(x), (17)

where Ŵ is an approximation of ideal weights in the critic’s
NN, a subject to the adaptation procedure. Inserting (17) to the
HJI equation of (12) resulted in the following:

H(x,Ŵ,u,d) = ŴT ∇ΨΨΨT [ f (x)+g(x)u+ k(x)d]

+xT Qx+uT Ru− γ2dT d = ε1 . (18)

where ε1 is the estimation error. Inserting (17) to equation (13)
resulted in the following:

û =−1
2

R−1k(x)T ∇ΨΨΨ(x)T Ŵ , (19)

d̂ =
1

2γ2 g(x)T ∇ΨΨΨ(x)T Ŵ . (20)

Equations (19) and (20) are approximations of player’s signals
in a zero-sum differential game.

By choosing the iterative recursive least squares (RLS)
method, the process of weight adaptation is in accordance with
the law of adaptation for [10]

˙̂W = ξ P
σ̂σσ1

1+νσ̂σσT
1 Pσ̂σσ1

H(x,Ŵ, û, d̂). (21)
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V̂ (x) = ŴT ΨΨΨ(x), (17)
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Coefficients ξ ,ν > 0 are design parameters, while P is a sym-
metric matrix based on equation

dotP = ξPP
σ̂σσ1σ̂σσT

1

1+νσ̂σσT
1 Pσ̂σσ1

P,P(0) = αCI, αC � 0, (22)

where ξP > 0 is a design parameter,

σ̂σσ = ∇ΨΨΨ(x)
(

f (x)+g(x)û+ k(x)d̂
)
.

3. WMR’S KINEMATICS
The description of the kinematics for the selected WMR point
with drive wheels 1 and 2 and supporting wheel 3 (Fig. 1) re-
quires kinematics equations, which are described in detail in
papers [5, 37, 38]. Wheels 1 and 2, with a radius of r1 = r2 = r,
rotate around their axis, which does not change its position in
relation to frame 4. The moving wheels are driven by separate
drives consisting of electric motors and gears. Self-rotation an-
gles for drive wheels are α1 and α2, respectively.

Fig. 1. Diagram of the Pioneer 2-DX two-wheel mobile robot
in go-to-goal control

The angular velocity of drive wheels 1 and 2 is determined
through the following equation [37]:

α̇1 =
vA

r
+ β̇

l1
r
, α̇2 =

vA

r
− β̇

l1
r
. (23)

The mobile robot’s basic problem is trajectory tracking con-
trol and stabilization control. The go-to-goal control task in-
volves determining the control in which it is assumed that the
selected WMR’s point is to reach another point in the work-
ing space at any configuration of the robot’s frame. In the fixed
coordinate system x0y0, the WMR’s positions are described by
the coordinates defined as qA = [xA,yA,β ]T , where (xA,yA) are

the coordinates of point A, while β is the rotation angle for the
robot in fixed frame x0y0. The WMR’s kinematics is described
by the equation [38]




ẋA

ẏA

β̇


=




v∗A cosβ 0

v∗A sinβ 0

0 ω∗



[

uv

uβ

]
, (24)

where v∗A, ω∗ is the maximum velocity of point A and the frame
respectively, while uB = [uV ,uβ ]

T is the input (control) vector.
A set configuration of WMR’s point A was assumed

qG ∈ [xG,yG,0]T (25)

and the actual and final configuration error

q̃ = qG −qA =
[
x̃, ỹ, β̃

]T
. (26)

Error q̃ can be defined in polar coordinates, i.e.:

qb =
[
δAG ψG

]T
, (27)

where δAG =
√

x̃2 + ỹ2, ψG = arctan(ỹ/x̃)−β , ψG ∈ [−π,π].
If ψG = 0, then characteristic point A coincides with point G.
Differentiating the error qb vector resulted in the following

{
δ̇AG =−uv cosψAG ,

ψ̇G = δ−1
AG uv sinψG −uβ .

(28)

To determine the control law uB = [uV ,uβ ]
T generating the

WMR motion parameters, we have applied the Lapunov sta-
bility theory. Assuming the positively defined function [7]

VL = 0.5δ 2
AG +0.5ψ2

G (29)

and differentiating equation (28), (29) resulted in

V̇L =−δAGuv cosψG +ψG(δ−1
AG uv sinψG −uβ ), (30)

Assuming the control vector of

uV = k1δAG cosψG (31)

and
uβ = k1 sinψG cosψG + k2ψG , (32)

where k1, k2 > 0, the derivative of Lapunov function (30) is as
follows

V̇L =−k1δ 2
AG cos2 ψG − k2ψ2

G . (33)

This means that V̇L < 0 for every δAG, ψG �= 0 and the func-
tion of (29) is the Lapunov function, and the equilibrium state
δAG = 0, ψG = 0 is globally asymptotically stable. Based on
the control synthesis, the distance between WMR’s point A and
the set point G is exponentially reduced to zero, while meeting
condition ψG = 0 implies that point A of the robot is at point G.

4 Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e139390

Experimental verilication of H∞ control with examples of the movement of a wheeled robot

The system of equations (24), (26), (27), (31), (32) enables de-
termining the change of the linear velocity vA of point A and the
angular velocity of the robot frame β̇ . Knowing these values,
we can determine other essential system motion parameters.

4. WMR’S DYNAMICS
The use of Lagrange’s equations of the second kind to describe
nonholonomic systems does not allow us to obtain a dynam-
ics description suitable for the control problem, which is re-
lated to Lagrange’s multipliers. Maggi’s equations [39, 40] are
an extension of Lagrangian formalism, in which the application
of a projection operator (orthogonal complement matrix) elimi-
nates the terms containing the multipliers. By applying Maggi’s
mathematical formalism, the dynamic equations of motion of
the WMR can be expressed as [37, 38]:

Mα̈αα +C(α̇αα)α̇αα +F(α̇αα)+∆F(α̇αα) = u , (34)

where ααα = [α1,α2]
T is the self-angle vector for the WMR’s

drive wheels, u= [M1,M2]
T is the vector of torque driving these

wheels, and ∆F(α̇αα) is the parametric and structural disturbances
vector. Matrices M,C and vector F are as follows

M =

[
a1 +a2 +a3 a1 −a2

a1 −a2 a1 +a2 +a3

]
,

C(α̇αα) =

[
0 2a4(α̇2 − α̇1)

−2a4(α̇2 − α̇1) 0

]
,

F(α̇αα) =

[
F1(α̇1)

F2(α̇2)

]
,

(35)

where F(α̇αα) is the vector of friction of motion, a =
[a1,a2, . . . ,a6]

T are grouped parameters resulting from geom-
etry, masses, robot mass distribution and friction of motion.
Their values result from the parametric identification of the
WMR model. Based on experimental tests, the friction of mo-
tion was approximated by

Fi(α̇i)≈ a4+i
2−2e−cF α̇i

1+ e−cF α̇i
, i = 1,2. (36)

Parameters a5, a6 are interpreted as rolling resistance of wheels
multiplied by the forces Ni (loads applied to corresponding
wheels), while the remainder of the equation can be interpreted
as an approximation of the signum function. The H∞ control
synthesis will concern the weakening of the impact of changing
the friction of motion on the control accuracy by using ADP
methods in verification tests in the go-to-goal control problem,
the selected characteristic point of the WMR moves along the
trajectory generated by the higher control layer in real time. The
trajectory tracking error is defined as

e =αααd −ααα (37)

and the generalised error as

s = ė+ΛΛΛe, (38)

where s = [s1,s2]
T , αααd is the desired self-turn angle of wheels,

generated in the higher control layer in real time, while ΛΛΛ > 0
is the design parameter. The WMR’s dynamics can be written
in the generalised error space, i.e.

Mṡ =−C(α̇αα)s+ fWMR(.)+∆F(α̇αα)−u, (39)

where fWMR(.) = M [α̈ααd +ΛΛΛė]+C(α̇αα) [α̇ααd +ΛΛΛe]+F(α̇αα). Rela-
tion (39) can be written in the form, as equation (1), i.e

ṡ = f (s)+g(s)u+ k(s)∆F(α̇αα), (40)

where

f (s) = M−1 [−C(α̇αα)s+ fWMR(.)] ,

g(s) =−M−1, k(s) = M−1.
(41)

5. VERIFICATION TESTS ON OPTIMAL BEHAVIORAL
CONTROL

A rapid prototyping test station using the dSpace card was used
for verification tests [41]. The card generates a control (with
torque unit) that is scaled by constant 1/19.7 (19.7 – gear con-
stant). In the case of using a WMR, the feedback is based on
measurements from incremental encoders (500 PPR). Measur-
ing the increase in the angle of rotation is the basis for determin-
ing the speed of the WMR driving wheels based on the equation

α̇i =± 2π
500×19,7×h

INC, (42)

where h is discretization step and INC is the increase in the
angle of rotation. Converted measurement is filtered by a filter
whose transfer function is

Fα(p) =
1

p2 +0.03p+0.0001
, (43)

where p is Laplace operator. The angle of rotation is determined
by the numerical integration (Fig. 2).

The Pionier 2-DX Wheeled Mobile Robot [42] and a test sta-
tion consisting of a dSpace signal processor, a PC computer
with Matlab/Simulink software and a WMR with a power sys-
tem (Fig. 3) were used to verify the simulation of optimal adap-
tive control [4, 22].

5.1. Go-to-goal task
The value function resulting from the dissipativity theory
(point 2) is as follows

V (s) =
tk∫

0

[
sT Qs+uT Ru− γ∆FT ∆F

]
. (44)

To apply adaptive dynamic programming algorithms, the aprox-
imation of the value function of

V̂ = ŴT ΨΨΨ(s) (45)
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The system of equations (24), (26), (27), (31), (32) enables de-
termining the change of the linear velocity vA of point A and the
angular velocity of the robot frame β̇ . Knowing these values,
we can determine other essential system motion parameters.

4. WMR’S DYNAMICS
The use of Lagrange’s equations of the second kind to describe
nonholonomic systems does not allow us to obtain a dynam-
ics description suitable for the control problem, which is re-
lated to Lagrange’s multipliers. Maggi’s equations [39, 40] are
an extension of Lagrangian formalism, in which the application
of a projection operator (orthogonal complement matrix) elimi-
nates the terms containing the multipliers. By applying Maggi’s
mathematical formalism, the dynamic equations of motion of
the WMR can be expressed as [37, 38]:

Mα̈αα +C(α̇αα)α̇αα +F(α̇αα)+∆F(α̇αα) = u , (34)

where ααα = [α1,α2]
T is the self-angle vector for the WMR’s

drive wheels, u= [M1,M2]
T is the vector of torque driving these

wheels, and ∆F(α̇αα) is the parametric and structural disturbances
vector. Matrices M,C and vector F are as follows

M =

[
a1 +a2 +a3 a1 −a2

a1 −a2 a1 +a2 +a3

]
,

C(α̇αα) =

[
0 2a4(α̇2 − α̇1)

−2a4(α̇2 − α̇1) 0

]
,

F(α̇αα) =

[
F1(α̇1)

F2(α̇2)

]
,

(35)

where F(α̇αα) is the vector of friction of motion, a =
[a1,a2, . . . ,a6]

T are grouped parameters resulting from geom-
etry, masses, robot mass distribution and friction of motion.
Their values result from the parametric identification of the
WMR model. Based on experimental tests, the friction of mo-
tion was approximated by

Fi(α̇i)≈ a4+i
2−2e−cF α̇i

1+ e−cF α̇i
, i = 1,2. (36)

Parameters a5, a6 are interpreted as rolling resistance of wheels
multiplied by the forces Ni (loads applied to corresponding
wheels), while the remainder of the equation can be interpreted
as an approximation of the signum function. The H∞ control
synthesis will concern the weakening of the impact of changing
the friction of motion on the control accuracy by using ADP
methods in verification tests in the go-to-goal control problem,
the selected characteristic point of the WMR moves along the
trajectory generated by the higher control layer in real time. The
trajectory tracking error is defined as

e =αααd −ααα (37)

and the generalised error as

s = ė+ΛΛΛe, (38)

where s = [s1,s2]
T , αααd is the desired self-turn angle of wheels,

generated in the higher control layer in real time, while ΛΛΛ > 0
is the design parameter. The WMR’s dynamics can be written
in the generalised error space, i.e.

Mṡ =−C(α̇αα)s+ fWMR(.)+∆F(α̇αα)−u, (39)

where fWMR(.) = M [α̈ααd +ΛΛΛė]+C(α̇αα) [α̇ααd +ΛΛΛe]+F(α̇αα). Rela-
tion (39) can be written in the form, as equation (1), i.e

ṡ = f (s)+g(s)u+ k(s)∆F(α̇αα), (40)

where

f (s) = M−1 [−C(α̇αα)s+ fWMR(.)] ,

g(s) =−M−1, k(s) = M−1.
(41)

5. VERIFICATION TESTS ON OPTIMAL BEHAVIORAL
CONTROL

A rapid prototyping test station using the dSpace card was used
for verification tests [41]. The card generates a control (with
torque unit) that is scaled by constant 1/19.7 (19.7 – gear con-
stant). In the case of using a WMR, the feedback is based on
measurements from incremental encoders (500 PPR). Measur-
ing the increase in the angle of rotation is the basis for determin-
ing the speed of the WMR driving wheels based on the equation

α̇i =± 2π
500×19,7×h

INC, (42)

where h is discretization step and INC is the increase in the
angle of rotation. Converted measurement is filtered by a filter
whose transfer function is

Fα(p) =
1

p2 +0.03p+0.0001
, (43)

where p is Laplace operator. The angle of rotation is determined
by the numerical integration (Fig. 2).

The Pionier 2-DX Wheeled Mobile Robot [42] and a test sta-
tion consisting of a dSpace signal processor, a PC computer
with Matlab/Simulink software and a WMR with a power sys-
tem (Fig. 3) were used to verify the simulation of optimal adap-
tive control [4, 22].

5.1. Go-to-goal task
The value function resulting from the dissipativity theory
(point 2) is as follows

V (s) =
tk∫

0

[
sT Qs+uT Ru− γ∆FT ∆F

]
. (44)

To apply adaptive dynamic programming algorithms, the aprox-
imation of the value function of

V̂ = ŴT ΨΨΨ(s) (45)
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Fig. 2. A WMR control and kinematics parameter measurement
scheme (a) WMR’s drive module (b)

Fig. 3. Quick design test station (a) and the WMR entering a different
surface (b)

was adopted, where the basic function vector is ΨΨΨ(s) =

[s2
1,s1s2,s2

2]
T and Ŵ ∈ R3×1.

The approximation of the minimizing and maximising player
signals according to the equations (19) and (20) for the WMR
is as follows

û =
1
2

R−1g(s)T ∆ΨΨΨ(s)Ŵ ,

∆F̂ =
1

2γ2 k(s)T ∆ΨΨΨ(s)Ŵ .
(46)

Using the iterative RLS method of (21), the law of weight adap-
tation in the case of behavioral control is as follows

˙̂W = ξ P
σ̂σσ 1

1+νσ̂σσT
1 Pσ̂σσ1

H(s,Ŵ, û,∆F̂) (47)

whereas
σ̂σσ = ∆ΨΨΨ(s)

[
f (s)+g(s)û+ k(s)∆F̂

]
(48)

and

H(s,Ŵ, û,∆F̂) = ŴT ∆ΨΨΨ(s)
[

f (s)+g(s)û+ k(s)∆F̂
]

+ sT Qs+ ûT Rû− γ∆F̂T ∆F̂, (49)

The verification of this task was carried out according to the
diagram shown in Fig. 4

Figure 4 shows a go-to-goal control diagram. In the proposed
approach, the determination of the set parameters for the motion
of the WMR’s drive wheels is based on the current position and
orientation of the WMR in relation to the selected endpoint G.
The determined generalised following error s is the basis for the
suboptimal tracking control, resulting from an approximation
solution to the zero-sum differential game.

Fig. 4. Diagram of the goal-to-goal task implementation

Using the diagram in Fig. 4, verification tests of op-
timal behavioral control under changing operating condi-
tions were performed. The higher control layer performed
the task of WMR’s movement from point (0,0) to points
G1(2,5),G2(2,−3),G3(4,0). To take into account the charac-
teristic phases of the WMR’s motion, i.e. acceleration and de-
celeration, velocity v∗A is modified by the velocity profile of

vA = v∗A

(
1

1+ e−c(t−b1)
− 1

1+ e−c(t−b2)

)
, (50)

where c is the design parameter, b1,b2 are the starting and brak-
ing phases, respectively. The braking phase is determined by
associating it with the WMR reaching the target point. If at
time tG the WMR’s position is in the proximity εG of the target
point G, then b2 = tG+1. The verification assumes a number of
constants, the values of which are summarized in Table 1, and
the law of adaptation for matrix P was modified in the follow-
ing way:

Ṗ =




ξPP
σ̂σσ1σ̂σσT

1

1+νσ̂σσT
1 Pσ̂σσ1

P, ‖P‖> P0 ,

03×3, ‖P‖ ≤ P0 .

(51)

This modification helps reduce the impact of disturbances dur-
ing the weight Ŵ adaptation process.

Using parameters presented in Table 1 and the WMR’s power
system gain, the verification tests were performed for the go-to-
goal task. During the test, adaptation for weights Ŵ was per-
formed. The curves for the target point G1(2,5) are shown in
Fig. 5.

Figure 5a,b shows the self-turn angle error and the angular
velocity error for wheels in the verification. The highest value
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(46)

Using the iterative RLS method of (21), the law of weight adap-
tation in the case of behavioral control is as follows

˙̂W = ξ P
σ̂σσ 1

1+νσ̂σσT
1 Pσ̂σσ1
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f (s)+g(s)û+ k(s)∆F̂
]
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celeration, velocity v∗A is modified by the velocity profile of
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(
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, (50)

where c is the design parameter, b1,b2 are the starting and brak-
ing phases, respectively. The braking phase is determined by
associating it with the WMR reaching the target point. If at
time tG the WMR’s position is in the proximity εG of the target
point G, then b2 = tG+1. The verification assumes a number of
constants, the values of which are summarized in Table 1, and
the law of adaptation for matrix P was modified in the follow-
ing way:
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This modification helps reduce the impact of disturbances dur-
ing the weight Ŵ adaptation process.

Using parameters presented in Table 1 and the WMR’s power
system gain, the verification tests were performed for the go-to-
goal task. During the test, adaptation for weights Ŵ was per-
formed. The curves for the target point G1(2,5) are shown in
Fig. 5.

Figure 5a,b shows the self-turn angle error and the angular
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where c is the design parameter, b1,b2 are the starting and brak-
ing phases, respectively. The braking phase is determined by
associating it with the WMR reaching the target point. If at
time tG the WMR’s position is in the proximity εG of the target
point G, then b2 = tG+1. The verification assumes a number of
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This modification helps reduce the impact of disturbances dur-
ing the weight Ŵ adaptation process.

Using parameters presented in Table 1 and the WMR’s power
system gain, the verification tests were performed for the go-to-
goal task. During the test, adaptation for weights Ŵ was per-
formed. The curves for the target point G1(2,5) are shown in
Fig. 5.

Figure 5a,b shows the self-turn angle error and the angular
velocity error for wheels in the verification. The highest value
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Table 1
Constants used in verification

Constant Sym. Value

WMR dynamics parameters [a1−6,cF ]




0.0691

0.0511

0.0291

0.0014

4.3001

4.3001

0.226




Matrix proportional to the generalised
error s ΛΛΛ 5I2×2

WMR starting point (xA,yA) (0,0)

WMR end points (xG,yG)




(2,5)

(2,−3)

(4,0)




Maximum velocities v∗A, β̇ ∗ 0.4,0.7

Proximity of point G εG 0.03

Kinematics control gains k1,k2 0.4,0.25

Speed profile slope c 10

Start phase time b1 5

Design matrix in value function Q, R I2×2, 0.5I2×2

H∞ control gain γ 11

Initial values of weights Ŵ(0), P̂(0)

[
Ŵ(0)

P̂(0)

] [
0.05I1×3

100I3×3

]

Adaptation gain ξ , ξP 1.2, 80

Coefficient ν ν 0.1

Constant matrix P0 5×10−4

Sample rate (discrete step) h 0.002

Verification time tk 50

Weight adaptation time − 0–39

of the rotation angle tracking error occurs at the beginning of
the motion, in the acceleration phase, and immediately after it.
This is related to the sudden increase in the control value and
inertia of the WMR. Then, tracking error e reaches the values
of 0.0747 [rad] and 0.1015 [rad] (static error) for wheel 1 and
2, respectively, which is related to the end of the WMR’s move-
ment when it reaches proximity εG of point G.

Figure 5c shows the curve of control û, which has the di-
mension of torque. Its value is the highest in the start phase and
immediately after it. This is related to the high value of the gen-
eralised error, as indicated by the nature of the curve, analogous
to the tracking error curve. The response to the generated con-
trol aproximation curve is the disturbances aproximation ∆F̂,
as shown in Fig. 5d. Its curve is analogous to the aproxima-
tion of the minimizing player, but its amplitude is 250 times
lower. This is due to the presence of the term 1/γ2 in equa-
tion (46). Because of the non-zero static error, the control value

Fig. 5. Verification results from point G1: curves of tracking errors
(a, b), control (c) and disturbances (d) signals, curves of kinematics
control and velocity profile (e) and curves of weight adaptation for the

critic’s adaptive structure (f)

after the end of the WMR’s movement for wheels 1 and 2 is
0.74 and 0.81 [Nm], respectively. These values do not cause the
WMR’s movement. Figure 5e shows the curves of kinematics
control signals generated by the higher control layer. In addi-
tion, Fig. 5e shows the velocity profile vA, indicating that the
WMR was in the proximity of point G at time t = 40 [s]. Fig-
ure 5f shows the curve of the adaptation process of the critic’s
weights Ŵ. Their values change in the acceleration phase and
remain constant at later stages of the WMR’s movement.

Figure 6a shows the curve of value V̂ function aproximation
in relation to the zero-sum differential game. Its value in the
case of the go-to-goal G1(2,5) task is the highest in the initial
movement phase, which results from the fact that generalised
error s and control û reach high values at that time. During the
later stages of movement, its value decreases. Due to the oc-
currence of a static error, its value is different than zero after
the completed movement. Figure 6b shows the trajectory of the
characteristic point along which the WMR’s point A moved to
perform the task of driving from point (0,0) to point G1 −G3.
The position the WMR reached for the go-to-goal G1 −G3 task

Fig. 6. Aproximation of the value function in the go-to-goal G1(2,5)
task (a), trajectories of the characteristic point A of the WMR, obtained

during the verification on a real object for target points G1 −G3 (b)
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is (2.0033, 4.9759), (2.0008, –2.9751), (3.9760, 0.0023), re-
spectively.

The weights obtained in the adaptation process are used for
H∞ control, which is the second element of the verification
test. The WMR drove onto an additional foam surface (Fig. 3),
which caused a change in the friction of motion. The time in
which the change of friction of motion occurs is evaluated based
on curves of tracking errors and control. This way, the verifica-
tion was supplemented with changing operating conditions in
order to determine the H∞ condition by evaluating the distur-
bances level.

Figure 7a shows the curve of the tracking error e obtained
in the verification (for G1(2,5)) with changing conditions. The
change in operating conditions, related to the change of friction
of motion, caused disturbances in the curve of errors, as it can
be seen in the comparison of curves 7a, b and 5a, b. The tracking
error determined for wheel 1 and wheel 2 in 40 [s] of movement
is different. The same situation occurs in the case of the static
error, which is 0.0628 [rad] and 0.1783 [rad] for wheel 1 and 2
respectively. Figure 7b presents the curve of the tracking error
for the angular velocity of the WMR’s wheels.

At t = 9 [s], there are disturbances related to the entry of
the robot onto another surface and an increase in the friction
of motion. Figure 7c shows the curve of control û, reflecting
the change of the surface on which the WMR was moving. En-
try on a different surface increases the amplitude of the control
signal to aproximately 8.4 [Nm]. The remainder of the control
process is analogous to movement without changes in the fric-
tion of motion, but its amplitude is higher. This difference is
approximately 0.4 [Nm] and will be the basis for determining
the disturbances aproximation in the condition related to the
H∞ control. After the end of the deceleration phase, the con-
trol û is different from zero due to a static error. The impact of
the surface change is also visible in the curve of disturbances
approximation ∆F̂ (Fig. 7d).

Fig. 7. Tracking errors (a, b), aproximation of optimal control (c) and
disturbances (d) for the behavioral control problem under changing

operating conditions

Based on the differences between the control signals, the dis-
turbances aproximation ∆F̄ was determined according to the
equation

∆F̄i(α̇i) =

{
0 t ≤ tF
ûzi − ûi t > tF

, i = 1,2, (52)

where ûzi is the control generated during the test using an ad-
ditional foam surface, ûi is control for driving on the refer-
ence surface, and tF is the time when the disturbances oc-
curred; the time was read from the disturbance course. The
∆F̄ curve is shown in Fig. 8a. In addition, knowing the time
of the disturbances’ occurence, it was assumed that their value
for t < 8.38 [s] was equal to zero.

Fig. 8. Aproximation disturbances (a) and γ∗ gain curve (b)

Based on disturbances aproximation, the H∞ condition was
determined, resulting from a relation (7), i.e:

t∫

0

[
sT Qs+ ûT Rû

]
dt

t∫

0

[
∆F̄T ∆F̄

]
dt

≤ γ2 . (53)

The obtained curve of γ∗ gain for G1(2,5) is shown in Fig. 8b.
It demonstrates that γ∗ ≤ γ , which confirms the theoretical con-
siderations regarding the input-output stability. The same con-
dition is satisfied for target points G2 and G3 (Fig. 9). In these
cases, the γ∗ gain value is lower than aproximately 6 and 8,
respectively, therefore one could attempt to search for a subop-
timal control by reducing the value of γ .
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Table 2
Values of control quality indicators in verification of the go-to-goal task

G1(2,5) G2(2,−3) G3(4,0)

wheel RMSE RMSE RMSE

ei ėi ei ėi ei ėi

Movement without
disturbances

i = 1 0.2889 0.1037 0.1261 0.0805 0.2064 0.2329

i = 2 0.2608 0.0857 0.2271 0.0957 0.2445 0.2487

Movement under
changing operating conditions

i = 1 0.3214 0.1191 0.1253 0.0938 0.1456 0.1517

i = 2 0.2766 0.1121 0.2616 0.1141 0.1546 0.1480

Fig. 9. Curve of γ∗ gain for G2 (a) and G3 (b)

Quality indicators were used to determine the quality of con-
trol in the stabilization tasks involving target points G1 −G3.
Their values are shown in Table 2 where

RMSE(x) =

√
1
N

N

∑
i=1

x2
i (54)

is the mean square error of variable x.

5.2. Trajectory tracking control task
In order to verify the H∞ control in another control task, tests
of the optimal control in tracking control of the robot were
also performed. This task was verified according to the diagram
shown in Fig. 10

The difference between the verified tasks is that in the first
case the desired trajectory is generated in real time, but in the
tracking control task the desired trajectory is generated offline.

Fig. 10. Diagram of the tracking task implementation

In this task, the selected point if robot A is to move in a straight
line. By carrying out the same course of the experiment, the
obtained solutions are presented in Fig. 11.

Fig. 11. Tracking errors (a, b), aproximation of optimal control (c)
and disturbances (d) for the trajectory tracking control and curves of

weight adaptation for the critic’s adaptive structure (d)

Assuming selected constants from Table 1 and the values
of the coefficients from the equation (50), i.e. b1 = 5,b2 =
15[s],c = 10, a verification test of the straight line trajectory
tracking control was performed. Figure 11a shows the rotation
angle tracking error obtained during the verification. The ob-
tained curves are different in the case of wheels 1 and 2, which
is caused by measuring noise and unmodelled dynamics phe-
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nomena, including unevenness of the ground, and difference
in dynamics in the actuators. The average rotation angle track-
ing error in the steady motion phase is aproximately 0.5 [rad].
Figure 11b shows the curves of the angular velocity trajectory
tracking error. Its amplitude is the highest in the starting and
braking phases (approximately 1 [rad/s]). The desired path of
point A of the WMR is realized by suboptimal control, which
is a solution to the differential zero-sum game, the curves of
which is shown in Fig. 11c. In the starting phase, the control (a
signal has a torque unit) is increased to a level above 4 [Nm],
which is then maintained for the entire duration of the motion.
After the end of the braking phase, the control is not equal
to zero, which is related to a non-zero static error. The con-
trol level achieved, during this time does not cause the WMR’s
wheels to move. Control û is also a minimizing player in a zero-
sum differential game. The response to the minimizing player’s
signal is the maximizing player’s signal. Its approximation gen-
erated by the actor-critic algorithm, is shown in Fig. 11c. In or-
der to unify the scales, the ∆F̂ score was multiplied by 30, and
its value results from the WMR’s dynamics. The signals û and
∆F̂ were determined on the basis of the estimation of weights of
the critic’s neural network Ŵ, which approximates the adopted
value functions. Their curves are presented in Fig. 11d. It shows
that the increase in NN’s weights is related to the starting phase,
which is related to the increase in the generalized error s and
the decrease in the values of the matrix elements P. The value
of weights stabilize at approximattely 0.1, which results from
the dynamics of the WMR.

In order to determine the H∞ control condition during the
trajectory tracking control task, disturbances in the form of a
change of friction of motion were introduced. Using the critic’s
weights obtained in the adaptation process (Fig. 11d), the tra-
jectory tracking verification test was performed under changing
operating conditions. Trajectory tracking errors are shown in
Figs. 12a, b. Friction change is a characteristic point of these
curves, occuring aproximattely at 9 [s]. The sudden increase

Fig. 12. Tracking errors (a,b), aproximation of optimal control (c)
and disturbances (d) for the trajectory tracking control problem under

changing operating conditions

in the tracking error’s value results from the WMR crossing
the contact edges of the two surfaces on which it was mov-
ing. Entering the foam surface causes an increase in the control
amplitude, which is shown in Fig. 12c. In the phase of steady
motion on the foam surface, the amplitude of the control sig-
nal is higher (approximattely 0.5 [Nm]), which is related to the
change in friction. After the completion of the braking phase,
the control signal is different than zero, which results from the
presence of a static error apparent in the curves in Fig. 12a. Ad-
ditionally, Fig. 12c shows the curves of the signal of the max-
imizing player ∆F̂, the value of which was multiplied by 30 to
unify the scale.

To determine the H∞ control condition, it is necessary to
know the generalized error, control evaluation, and the worst-
case disturbances. During verification, the generalized error s
and the estimation of the control signal û are available for mea-
surement. The immeasurable disturbances signal, which is the
change in friction of motion, can be estimated on the basis of the
control difference during verification with (Fig. 13b) and with-
out disturbances (Fig. 13a), based on equation (52). From the
equation (53), based on the disturbances estimation (Fig. 13c),
the H∞ condition was determined.

Fig. 13. Course control in tracking control problem with (a) and with-
out (b) with changing operating conditions; course estimate distur-

bances (c) and γ,γ∗ gain

Figure 13d shows the value of the gain γ∗, determined on the
basis of the WMR’s disturbances estimation, which proves that
the H∞ condition is met. This fact proves that the input-output
system is stable in the presence of selected worst-case distur-
bances. Comparing the results of the experimental tests given
in Tables 2 and 3, respectively, it can be stated that the errors
obtained in the go-to-goal task are less severe than the errors
obtained in the trajectory tracking control task. A more precise
error analysis of the verified tasks was omitted, because spe-
cial attention was paid to the possibility of using the theory of
differential games as one of the methods of approximating the
solution of the HJI equation and its practical implementation.
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Table 3
Values of control quality indicators in the trajectory tracking

verification task

wheel
RMSE

ei ėi

Movement without
disturbances

i = 1 0.3412 0.1885

i = 2 0.3818 0.1871

Movement under changing
operating conditions

i = 1 0.3959 0.2016

i = 2 0.3674 0.1942

6. SUMMARY
The paper presents the results of experimental verification of
using a zero-sum differential game and H∞ control in the prob-
lems of stabilizing motion and tracking control of a wheeled
mobile robot. The concept of dissipativity was employed in the
adopted solution. The ADP methods were used to obtain an ap-
proximation solution to the HJI equation. Taking into account
changing operating conditions, understood as changing friction
of motion, the H∞ control condition was verified. Figures 8b, 9,
and 13d demonstrate that the obtained H∞ suboptimal control
reduce the impact of the estimated disturbances on the control
quality, characterised by quality indicators, shown in Tables 2
and 3. On the basis of the conducted experimental tests, and
with taking into account the results obtained in the two cases
of the robot’s movement, the robustness of the adopted solu-
tion to changing working conditions of the robot was demon-
strated.The obtained solutions suggest that it is possible to im-
plement advanced optimal control methods in practical solu-
tions.
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Experimental verilication of H∞ control with examples of the movement of a wheeled robot

Table 3
Values of control quality indicators in the trajectory tracking

verification task

wheel
RMSE

ei ėi

Movement without
disturbances

i = 1 0.3412 0.1885

i = 2 0.3818 0.1871

Movement under changing
operating conditions

i = 1 0.3959 0.2016

i = 2 0.3674 0.1942

6. SUMMARY
The paper presents the results of experimental verification of
using a zero-sum differential game and H∞ control in the prob-
lems of stabilizing motion and tracking control of a wheeled
mobile robot. The concept of dissipativity was employed in the
adopted solution. The ADP methods were used to obtain an ap-
proximation solution to the HJI equation. Taking into account
changing operating conditions, understood as changing friction
of motion, the H∞ control condition was verified. Figures 8b, 9,
and 13d demonstrate that the obtained H∞ suboptimal control
reduce the impact of the estimated disturbances on the control
quality, characterised by quality indicators, shown in Tables 2
and 3. On the basis of the conducted experimental tests, and
with taking into account the results obtained in the two cases
of the robot’s movement, the robustness of the adopted solu-
tion to changing working conditions of the robot was demon-
strated.The obtained solutions suggest that it is possible to im-
plement advanced optimal control methods in practical solu-
tions.
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