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Abstract: The main theme of this paper is to study two important aspects of precise geoid
determination using Helmert’s second method of condensation. This work illustrates via numerical
investigations the importance of using actual density information of topographical bulk and the
effects that different gravimetric reductions have on gravity interpolation in Helmert geoid
computational process, in addition to the commonly used Bouguer scheme. A rugged area in the
Canadian Rockies bounded by latitude between 49°N and 54°N and longitude between 236°E and
246°E is selected to carry out numerical investigations. The lateral density information is used in all
steps of the Helmert geoid computational process. The Bouguer and residual terrain modelling
(RTM) topographic reductions, the Rudzki inversion scheme, and the topographic-isostatic
reductions of Pratt-Hayford (PH) and Airy-Heiskanen (AH) are used for gravity interpolation.
Results show that the density information should be applied in all steps of the Helmert geoid
computational process and that the topographic-isostatic gravimetric reduction schemes like the
PH or AH models or the RTM reduction, should be applied for smooth gravity interpolation instead
of the commonly used Bouguer reduction scheme for precise Helmert geoid determination.
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1. Introduction

The actual density information plays an important role in the solution of the geodetic boundary
value problem using Stokes’s formula. The classical Stokes’s solution assumes that there are no
masses above the geoid. Different gravimetric reduction schemes exist to treat the topographical
masses above the geoid. Realistic density information is required for every gravimetric terrain
reduction scheme to effectively and rigorously model the topographical masses above the geoid.
Constant density is practically often used due to unavailability of actual crust density
information. Real density information, however, is available these days in some parts of the
world in the form of a two-dimensional digital density model (DDM). This actual density data
should be incorporated to rigorously remove all masses above the geoid before using Stokes’s
formula. A three-dimensional DDM containing the information on the vertical variation of
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density has not yet been available, though it is required to represent the real topographical
density distribution of crustal masses. Some studies using actual density information have been
recently carried out by Tziavos et al. (1996). Kiihtrelber (1998), Huang et al. (2000), Tziavos
and Featherstone (2000), Bajracharya et al. (2002), Kuhn (2003). These studies suggest that the
effect of actual density information can alter the geoid as much as decimetre and the actual
density information is important for precise geoid determination with centimetre accuracy.
Tziavos and Featherstone (2000) illustrated the importance of using actual density information
in gravity interpolation for precise geoid determination using Helmert’s second method of
condensation. The geoid computational methodology presented here is different from the one
used by Huang et al. (2000). This paper uses the planar approximation of the geoid, free air
reduction to transfer gravity points from the topography to the geoid and GPS/levelling geoid
solution for the validation of total gravimetric geoid model. In this paper. a two-dimensional
DDM is applied for geoid determination using Helmert’s second scheme of condensation. There
are three steps in the computational process of Helmert geoid determination, where the lateral
density information are applied: (i) computation of Bouguer anomalies which is commonly used
in interpolation of free-air anomalies: (ii) computation of terrain correction. which represents the
direct topographical effect on gravity and is equal to the difference between the attraction of
topography evaluated on the topographical surface and the attraction of condensed masses
evaluated on the geoid; and (iii) computation of indirect topographical effects on geoid. It should
be noted that the use of lateral density variation assumes that the horizontal variation in density
of topographical bulk continues vertically down to the geoid. The GPS/levelling geoid model is
generally used for the validation of gravimetric geoid solution. The GPS/levelling geoid
solution based on constant density is used in this paper though that using the actual density
information is required for rigorous and fair comparison with gravimetric geoid solution using
variable density.

The interpolation of free-air anomalies is another important issue using this reduction
method. Though Helmert’s second method of condensation is mostly used in practice as the
mass reduction technique, Helmert anomalies based on this method are very rough (e.g. Li
et al., 1995; Omang and Forsberg, 2000; Bajracharya, 2003; Heck, 2003; Kuhn, 2003). For
this reason, the Bouguer reduction is commonly used in practice for the interpolation of
free-air anomalies. The main principle of using this indirect method for the interpolation is
that all the topographical masses above the geoid are removed before gridding free-air
anomalies and then the corresponding Bouguer effect is added back to the gridded gravity
values. In this paper, different reduction schemes are used for interpolation. The Bouguer
and RTM topographic reductions, the Rudzki inversion scheme, and the topographic-
isostatic reductions of PH and AH are used to remove terrain effects before gridding free-air
anomalies, and then their corresponding topographic or topographic-isostatic or inverted
masses are restored to produce gridded FA anomalies.

2. Computational formulae

Helmert gravimetric geoid determination is carried out using remove-compute-restore
(RCR) technique in this investigation. In a remove step, the reduced gravity anomalies
according to Helmert’s second method of condensation can be expressed as:
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Ag = Agr + ¢ + Agia — Agou (1)

where Agr 1s the free-air (FA) anomaly, ¢ (terrain correction) is the direct topographical
effect on gravity in Helmert’s second method of condensation, Ag,,, is the indirect effect on
gravity (which reduces gravity anomaly from the co-geoid to the geoid), and Agey is the
reference gravity anomaly from a geopotential model (which represents the low frequency
part of the gravity signal).

The main objective of second investigation of this paper is to study the differences
between using different gravimetric terrain schemes for interpolating Agrin (1) in addition
to usual Bouguer reduction method. The procedure for interpolation of free-air anomalies
using different gravimetric reduction schemes is given in subsections. In this study, the
Helmert geoid models obtained from using the Bouguer, Airy-Heiskanen, Pratt-Hayford,
Rudzki, and RTM gravimetric reductions for gravity interpolation are named Bouguer-
Helmert, Airy-Helmert, Pratt-Helmert, Rudzki-Helmert, and RTM-Helmert, respectively,
and the one obtained from directly interpolated FA anomalies is termed direct-Helmert.
This section presents the mathematical formulations for Helmert gravimetric geoid
determination.

The commonly used normal gravity gradient of 0.3086 mGal/m is applied for the
computation of free-air anomalies Agr (in equation (1)). The terrain correction, ¢, which is
equal to the difference between the attraction of the topography evaluated on the surface of
the topography and the attraction due to the condensed masses evaluated on the geoid, in (1)
is given by (Heiskanen and Moritz, 1967)

h p

a=dff] g tod

En S =Xy, —yh,—2)

dxdydz ()

where G is the universal gravitational constant, /i, and & are the height of the computation
point and running point respectively. (x,, y,,) and (x, y) are the rectangular coordinates of the
computation and running point, £ is the area, pis the density of topographical masses, and
s is the distance between computation and running point. The terrain correction algorithm
(when the integral (2) is expanded into binomial series) is evaluated by two-dimensional
fast Fourier transform (FFT) for mass prism model. The details on algorithms using digital
terrain model (DTM) and constant density or digital density model (DDM) can be found in
Tziavos et al. (1996) and Li et al. (2000). The indirect effect on gravity, Agi.. in (1) can be
expressed as (Sideris and She, 1995):

271Gl
B ~R—p 3)

where R is Earth’s mean radius. The reference gravity field is computed from the EGM96
geopotential model complete to degree and order 360. In spherical approximation, the
reference gravity anomaly at latitude @, and longitude A, is expressed by (Heiskanen and
Moritz, 1967)
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where (_f,,,,, and §,,,,, are the fully normalized spherical harmonic coefficients of the
anomalous potential. and P, is the fully normalized associated Legendre function.
The total geoid undulation obtained from the restore step can be formulated as:

N =Ny + Nyg + Noy (5)

where N,,, N, and Ngy denote residual geoid undulation, the indirect effect on the geoid
and the long wavelength part of the geoid. respectively. Stokes’s integral formula with the
rigorous spherical kernel by the one-dimensional fast Fourier transform (1D-FFT)
algorithm is used in this paper (Haagmans et al., 1993). The formula for the computation of
Ngy is given in Heiskanen and Moritz (1967). The indirect effect on geoid, in (5), for
Helmert's second scheme of condensation can be expressed as (Wichiencharoen, 1982):

Npg = — o h? j j b,

dxdy (6)

where ¥ is the normal gravity and s, = [(x — x,)* + (v — y,)"]".

2.1. Bouguer reduction

The Bouguer reduction is a common method to interpolate free-air anomalies in the
computation of Helmert geoid. The Bouguer reduction in this paper represents only the
removal of topographical masses contained in the Bouguer plate without taking rough part
of the topography into account and can be mathematically expressed by the following
formula:

Agg = Ag[: - ZﬂGphp (7)

After gridding Bouguer anomalies (which are computed at randomly distributed gravity
points using equation (7)), they are converted into gridded free-air anomalies using the
following formula:

Agp(grla') = Agg(grld) + 27[GphDEM (8)

The second term in equation (8) is Bouguer plate correction using the cell height (hpgs).

2.2. Pratt-Hayford topographic-isostatic reduction

The Pratt-Hayford reduction method is one of the topographic-isostatic reduction schemes
used in physical geodesy. According to this mass reduction scheme, the density underneath
high mountains is uniformly smaller than that under moderate lands. The compensation
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starts from directly under the mountains and reaches down to a compensation depth D,
where isostatic equilibrium exists. The density contrast between standard crustal density
and the actual density in this model can be given as (Heiskanen and Moritz, 1967)

1 h
Ap=p—-p =——p(forland); Ap=p-p = 2
p=p=p D+/zp(Or e p=p=p D - h,

(p— p,) (for ocean) (9)

The compensation depth D is assumed equal to 100 km. The normal or standard density
value is taken equal to 2.67 g/cm’. p, is the actual crust density. h, and p, are the depth
of the ocean and the density of the water, respectively. The Pratt-Hayford gravity anomalies
can be mathematically expressed as

Agf‘mn = AgF — Apran ( 10)

where Ap,, is the direct topographical effect in the PH model, which can be regarded as the
attraction change due to the topographical masses above the geoid and compensated masses
below the geoid, which lie within the depth of compensation and can be expressed as
follows:

h . 0 o
Apran=Gp ][ S dxdydz - GAp[[ | = (*y—2) dxdydz (11)
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where the first and second terms represent the attraction of the topographical masses and the
compensated masses according to PH model, respectively. The integrals in (11) are
evaluated by the numerical integration using standard prism method (Nagy, 19606)

A=Gpll xIn(y + ) + yln(x + r) — zarctan 2 22 |2 (12)
ZFr

nig

where coordinates x;, x,, y1, ¥, 71 and z, represent the corners of a prism. The Pratt-Hayford
anomalies, obtained in gravity stations after applying computed values of attraction change
from equation (11) to equation (10), are gridded and they are converted into gridded free-air
anomalies using the following formula:

Agr (grid) = Agpyan (grid) + Apran (hpes) (13)

The second term in above equation represents the correction to the direct topographical
effect on gravity according to PH scheme.

2.3. Airy-Heiskanen topographic-isostatic reduction

The AH model is based on the principle that mountains are floating on material of higher
density forming roots under mountains and anti-roots under the oceans. The density contrast
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between the Earth’s crust and the upper mantle in the AH model can be expressed as
(Heiskanen and Moritz, 1967)

/ - 0w
Ap=p,—p= %? (for land); Ap=p,—p= /—),,—p/z,, (for ocean) (14)

where 7 and ¢’ represent the thickness of root and anti-root, and p,, is density of upper mantle,
which is equal to 3.27 g/lem’. h, and p,, are the depth of the ocean and the density of the
water. respectively. The normal crust thickness, 7. is assumed to be 30 km. The
Airy-Heiskanen gravity anomalies are formulated as

AgAin' = Agr - AAin‘ (15)

The second term in equation (15) is the direct topographical effect due to AH
topographic-isostatic scheme, which is the difference in the attraction between topograp-
hical masses and their compensating masses within the depth of the root or anti-root and can
be given by

h i o .
Aun=Go[[[o—"D etz Gapff | oD

TR ih—n s T
50 S =%, Y= = 2) 2y 8 (=% Y= Vs Hp—%

] dxdydz (16)

The above integrals are evaluated by the equation (12). The gridded Pratt-Hayford
anomalies obtained using equations (15) and (16) are converted to free-air anomalies using
the following formula:

Agr(grid) = Again (grid) + Anin (Npear) (17)

The term, A ,;,,, s a correction for the direct topographical effect on gravity according to AH
mass reduction technique.

2.4. Rudzki inversion gravimetric scheme

The topographical masses above the geoid are inverted into its interior in Rudzki reduction
scheme. The Rudzki anomalies are given as

Agrudri = A8 — Arudzi (18)

Aruasi» Which is equal to the difference between the gravitational attraction due to all
topographical masses above the geoid and that due to the mirrored topographical masses
inside the geoid in Rudzki’s scheme, can be expressed as

h o 0 —
ARudki = pr” (= 2) D dxdydz - Gp '” _[ =2 = dxdydz (19)
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where p” and 1i” are the density and depth of inverted masses which are equal to the density
and height of the topographical masses in planar approximation (Heiskanen and Moritz.
1967: Bajracharya. 2003), respectively. The integrals in equation (19) are evaluated by the
prism formula (12). The gridded Rudzki anomalies obtained using equations (18) and (19)
are used to obtain free-air anomalies after applying the correction term of direct Rudzki
terrain effect (Ag.:) as follows:

AgF (é’”d) e AgRurl:ki (g"fd) + ARMHJ (hD[;'_ll) (20)

2.5. Residual terrain model

The topographical masses above the reference surface, which is defined by low pass
filtering of local terrain heights, are removed and masses are filled up below this surface in
the RTM gravimetric reduction scheme (Forsberg, 1984). The RTM anomalies are
expressed as

Agkm = Agp — Agrru (21)
Agry. the attraction change due to the difference between the gravitational attraction of all

topographical masses above the geoid and that due to the referenced masses, can be
expressed as

h h,
(h,—2) o (h,—2)
Arr=G dxdydz -G dxdydz 22
i pfg S (X=X, Y=y, h,—2) ; '0“5‘ { S =Xy~ h=2) (22)

where h,, represents the height of reference surface.

The direct RTM topographical effect in equation (22) can be computed using
rectangular prisms given by formula (12). The gridded RTM anomalies obtained from the
equation (21) are transferred to gridded free-air anomalies using the following formula

Agr(grid) = Agrru (grid) + Agrru (hpew) (23)

where Agpy represents a correction term of direct RTM terrain effect using the cell height.

In the first part of this investigation, the Bouguer reduction described in section (2.1) is
used for interpolating free-air anomalies for the study of density effects on Helmert geoid
solution. The actual density information is incorporated in equations (2), (6). (7). and (8) for
the computation of terrain correction, indirect etfects on gravity, Bouguer anomalies. and
Bouguer correction, respectively.

For the study of interpolation effects (second part of investigation), the gridded free-air
anomalies obtained using equations (8), (13), (17), (20), and (23) are applied in equation (1)
to get a set of reduced Helmert anomalies, which is used to obtain different gravimetric
Helmert solutions as described from section (2.1) to section (2.5). This part of investigation
1s carried out using constant density.
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3. Numerical tests

A test area in this investigation covers the part of Canadian Rockies bounded by latitude
between 49°N and 54°N and longitude between 236°E and 246°E. The test area and all data
sets used are same for both investigations, except for the DTM grid resolution. There are
9477 gravity measurements available. the coverage of which is given in Fig. L.

Latitude 7]

Longitude []

Fig. 1. Distribution of gravity points in the test area

The constant density of topographical masses is assumed to be 2.67 g/cm®. A digital
terrain model with 15” grid resolution is used for the study of gravity interpolation effect on
Helmert geoid determination. The grid resolution of two-dimensional DDM available for
this study is 30” and thus a 30" grid spacing of DTM and DDM is used for the study of
density effects on Helmert’s second technique of condensation. The topography of the test
area is shown in Fig. 2.
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Fig. 2. Digital terrain model i the test area [m]

The topography has a maximum elevation of 3937 m with a standard deviation of
543 m and a mean elevation of 1396 m. A radius of 300 km is used around the computation
point to compute the gravitational attraction of the topography. the attraction of the
compensating masses, and the attraction of the inverted masses in the second test. The long
wavelength part of the gravity field is computed from the EGM96 geopotential model



Density and Graviy Interpolation Effects on Helmert Geoid Determination 59

complete to degree and order 360. The compensation depth of 100 km for PH model and the
normal crust thickness of 30 km for AH model are assumed to compute the gravitational
attraction of compensating masses according to these models. The density contrast between
the crustal masses and the upper mantle is taken equal to 0.6 g/em’. Figure 3 shows large
contrasts in the topographic density of the test area, with maximum and minimum values of
2.98 g/lcm® and 2.49 g/cm’, respectively.

3.c

E 128

Latitude []

Longitude [)

Fig. 3. Digital density model in the test area [g/cm’)

The GPS/levelling data set is used to assess the precision of Helmert gravimetric geoid
solutions for both studies. There are altogether 258 GPS benchmarks available for this test
area and their distribution is given in Fig. 4.

Latitude | ]
[i
.

51 NP T e - = R W

Longitude (]
Fig. 4. Distribution of GPS/levelling points in the test area

3.1. Density effects

The information on density. which is available as a two-dimensional digital density model
for the test area, is incorporated in all steps of the geoid computational process. The actual
density information is used in the computation of Bouguer anomalies (which are used for
the interpolation of free-air anomalies). in the computation of terrain correction, and in the
computation of the indirect effect on geoid for this mass reduction scheme.



60 Swjan Bajracharva, Michael G. Sideris

The topographical density effect on Helmert anomalies includes both the direct
topographical density effect (DTDE) and the density interpolation effect (DIE) on gravity
(given in Table 1).

Table I. The statistics of DTDE and the density effect on Bouguer and Helmert anomalies [mGal]

Gravimetric quantities Max Min Mean Std
DTDE 10.87 -491 0.13 0.36
Bouguer anomalies 29.08 —~28.27 -4.05 554
Helmert anomalies 32.75 -4191 -4.01 7.24

The magnitude of density effect on Helmert anomalies (74.7 mGal in range), in which
DTDE (15.8 mGal) contributes 21% in range and the rest is contributed by DIE, clearly
exhibits the importance of using density information in gravity interpolation. The variable
density has a large effect in the modelling of topographical masses using Bouguer scheme,
which is used in the interpolation procedure of Helmert anomalies. The DTDE, shown in
Fig. 5, is correlated both with topography and topographical density of test area.

54

53

w0
N

)

Latitude []

50

49
236 238 240 242 244 248
Longitude []

Fig. 5. DTDE on gravity [mGal]

The DTDE, indirect density effect (IDE), DIE, and total density effect (direct, indirect
and interpolation effects) on geoid undulation are shown in Table 2.

Table 2. The statistics of DTDE, IDE, DIE, and total density effect on geoid [m]

Effects on geoid Max Min Mean Std
DTDE 0.11 -0.01 0.05 0.02
IDE 0.05 -0.03 0.00 0.01
DIE -0.41 -2.56 -1.51 0.48
Total density effect -041 -2.52 -1.47 0.48
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The DTDE and IDE can alter the geoid as much as 10 cm and 5 cm, respectively
(presented in Table 2). These values show that the incorporation of actual density
information in the computation of direct topographical effect and indirect effect is crucial in
centimetre geoid determination. The IDE on geoid. shown in Fig. 6, is correlated with the
topography and topographical density of Canadian Rockies. Moreover, the DIE on geoid,
shown in Table 2. is most prominent one compared to DTDE and IDE. It can affect the
accuracy of Helmert geoid as much as 2.56 m. This value exhibits the significance of using
actual density information in precise Helmert geoid determination, especially in the process
of interpolation. It is interesting to note that DIE (shown in Table 2) on geoid is as big as the
total terrain effect on geoid in the range and mean values (Bajracharya et al.. 2002).

005
4 004
| 003
L o,

0.01

Latitude [']

-0.01
-0.02

-0.03

236 238 240 242 244 246
Longitude [7]

Fig. 6. IDE on geoid [mGal]

The statistics of the differences between Helmert gravimetric geoid solutions using
constant and variable density with the GPS/levelling geoid is shown in Table 3.

Table 3. The statistics of difference between Helmert gravimetric geoid solutions using constant and variable
density with GPS/levelling geoid (before and after fit) [m]

- Density ' Max Min . Mean Std
Constant (before fit) -0.28 -3.04 -1.61 0.56
Variable (before fit) 0.55 -1.70 -0.15 0.34
Constant (after fit) 0.54 - 1.27 0.00 0.25
Variable (after fit) 0.69 -0.77 -0.00 0.25

The Helmert gravimetric geoid solution incorporating actual density information
exhibits better results (by 40% in terms of standard deviation and 20% in range) than the one
using constant density. However, the density effect is eliminated and the standard deviation
becomes same for both, when a four-parameter trend surface is applied to fit Helmert
gravimetric geoid solutions to the GPS/levelling. The range using DDM, though., is still
smaller.
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3.2. Interpolation effects

The procedure for computing the Helmert geoid in this study is the same one applied in
previous investigation. The results presented here come from the difference of using
different gravimetric reduction methods for gridding free-air anomalies instead of using just
a simple Bouguer scheme. The constant density is applied in this part of investigation.
The most important properties of gravity anomalies for their interpolation are (i) they
should be smooth and (ii) they should not depend on elevation. PH and AH anomalies are
the best anomalies for gravity interpolation in the test area as we can see from the statistics
of gravity anomalies and their correlation coefficients with topography, given in Table 4.

Table 4. The statistics of gravity anomalies [mGal] and their correlation coefficients with topography

Reduction scheme - Max i M Mean b, S Corr. coef{.'
Free-air 166.38 —183.58 -22.39 50.71 0.80
Refined Bouguer -5.52 -212.87 —-110.08 43.62 -0.75
Helmert 248.67 —-156.21 - 14.86 58.76 0.85
AH 54.09 -133.97 -24.95 19.16 0.14
PH 49.68 - 118.87 -29.62 18.28 0.07
RTM 116.67 -91.57 -0.58 24.00 0.65
Rudzki 124.71 -121.56 -17.39 35.97 0.84

The correlation trends of gravity anomalies with topography, givenin Fig. 7, also shows
that PH and AH anomalies are least dependent on topography. The RTM anomalies suit
better than commonly used Bouguer anomalies for gravity interpolation in the test area
since they are smoother in terms of standard deviation and less dependent on topography.

300 -

200 1

Gravity anomaly [mGal]

-300 T >
0 1000 2000 3000 4000
Height [m]
—— Free-air — — Bouguer - --- Helmert = PH |
—e=AH = esses RTM e Rudzki ;

Fig. 7. Correlation trends between gravity anomalies and topography
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The different sets of free-air anomalies are obtained using different mass reduction
schemes for gridding. Their statistics, given in Table 5. show that free-air anomalies using
any gravimetric reduction for interpolating become smoother in terms of standard deviation
and range than those using directly computed free-air anomalies.

Table 5. The statistics of free-air anomalies using different mass reduction schemes for interpolating
free-air anomalies [mGal]

Reduction scheme used for gridding Max Min Mean Sud
Direct (free-air) 166.38 —183.58 -22.39 50.71
Bouguer 160.24 —-176.69 =931 45.67
Airy Heiskanen 158.37 -169.71 3.45 47.85
Pratt-Hayford 158.83 -162.65 357 47.66
RTM 159.50 -163.41 461 47.82
Rudzki 154.12 -151.36 3.03 4491

i 150
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Latitude [']

-100

-150

49 3 2. i i % “# 22
236 238 240 242 244 246
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Fig. 8. Free-air anomalies (directly interpolated) [mGal]
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Latitude (]
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Fig. 9. Free-air anomalies (interpolated using Bouguer scheme) [mGal]
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Figures 8 and 9 show the directly interpolated free-air anomalies and those obtained
from using Bouguer reduction for interpolation. respectively.

The difference (presented in Table 6) can reach between 157 mGal and 229 mGal in
maximum value and 31 mGal and 43 mGal in standard deviation depending on the
reduction scheme chosen. This difference (shown in Fig. 10 for Bouguer scheme) looks
similar for all sets of free air anomalies and is correlated with the topography of Canadian
Rockies.

Table 6. Difference between FA anomalies directly interpolated and after applying different
mass reduction schemes for interpolation [mGal]

. - Reduction scheme . Max Min |  Mean . S
Direct-refined Bouguer 228.57 -216.42 13.37 43.12
Direct-Airy 214.32 —-204.65 7.61 38.23
Direct-Pratt 208.41 —-200.01 7.49 37.71
Direct-RTM 217.37 -203.20 6.45 37.93
Direct-Rudzki 157.62 —-139.44 8.03 31.29

200
- 4 150
100

50

Latitude [’]

-50
-100
-150

-200

236 238 240 242 244 246
Longitude []

Fig. 10. Difference between free-air anomalies directly interpolated and interpolated using
Bouguer scheme [mGal]

Table 7. The statistics of difference of Helmert geoid models using different mass reduction schemes
for interpolation [m]

Reduction scheme Max Min Mean Std
Direct-refined Bouguer 9.00 2.18 4.62 1.29
Direct-Airy 5.83 091 2.55 0.81
Direct-Pratt 5.72 091 2.51 0.80
Direct-RTM 5.56 0.52 223 0.83
Direct-Rudzki 5.51 1.24 2.79 0.84
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The Helmert geoid models using different gravimetric reduction techniques for
gridding free-air anomalies are computed. The differences between the direct-Helmert
geoid and the other Helmert geoid models (given in Table 7) can reach between 5 m and
9 m in maximum value depending on the reduction method used.

The difference is correlated with the topography as shown in Fig. 11 for Bouguer
reduction. These results suggest that one should not use directly interpolated free-air
anomalies for Helmert geoid determination.

Latitude [7]

236 238 240 242 244 246
Longitude []

Fig. 11. Difference between directly interpolated Helmert geoid and Bouguer-Helmert geoid [m]

Table 8. The statistics of difference between different Helmert geoid models and GPS/levelling
geoid solution [m]

Helmert geold - Max . Min .~ Mean Std

. 5.20 1.52 2.62 0.55
Direct-

irgrel-Helmerl (2.33) -1.12) (0.00) (0.51)

T -0.24 -3.11 -1.62 0.55

& e (0.60) (-1.34) (0.00) (0.25)

0.86 -0.34 0.34 0.21

AH-Helmert (0.56) (-0.56) (0.00) (0.18)

0.88 =0:32 0.38 0.21

PH-Helmert (0.55) (-0.55) (0.00) (0.18)

1.23 -0.07 0.66 0.23

RTM-Helmert (0.56) (—0.56) (0.00) (0.19)

Rudski-Hel 0.78 ~0.86 0.06 031

udzki-Helmert (0.61) (-0.56) (0.00) (0.18)

The statistics of the differences between different Helmert geoid models and the
GPS/levelling geoid solution are given in Table 8. The results show that the AH-Helmert,
PH-Helmert, and RTM-Helmert geoid models demonstrate better fit with GPS/levelling
geoid of the test area before (by 58% in terms of standard deviation) and after (by 28% in
terms of standard deviation) fit than the Bouguer-Helmert. Also, the range of these geoid
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models is smaller compared to that of Bouguer-Helmert both before and after fit. It is
interesting to note comparing between Rudzki-Helmert and Bouguer-Helmert that Rudzki
anomalies, which are highly correlated with topography but smoother than Bouguer
anomalies in terms of standard deviation, work better for interpolation than Bouguer
anomalies.

4. Conclusions

This paper investigated two important aspects of precise Helmert geoid determination.
The first study of this paper has illustrated the importance of using actual crust density
information in all steps of Helmert geoid determination. The DIE on geoid is much larger
than the sum of DDE and IDE on geoid. The total density effect on Helmert geoid can be as
big as total terrain effect on geoid. The variable density information (if available) should
be incorporated in the computation of Bouguer anomalies if it is chosen for gravity
interpolation. The total density effect will become bigger if the higher resolution of DDM
(which is currently not available) and DTM are used. Helmert geoid determination
incorporating actual Earth crust density information in all steps of its computational
process shows better results compared to the GPS/levelling geoid of the test area in terms of
range and standard deviation (34 cm) than using constant density (56 cm) before fit. The
actual density information should be used (if available) in precise geoid determination in
high mountains, especially where large contrast in topographical density exists. As stated
earlier, the GPS levelling geoid solution based on variable density information (if available)
should be used for the rigorous validation of gravimetric geoid solution using variable
density.

A very important conclusion can be drawn from the second study of this paper, namely,
that the use of a proper gravimetric terrain reduction scheme for the interpolation of free-air
gravity anomalies plays a key role in precise Helmert geoid computation, especially in areas
of rugged topography. The AH-Helmert, PH-Helmert, and RTM-Helmert, which use
smoother and less correlated gravity anomalies than Bouguer anomalies, possess better
statistics (42% in range and 28% in standard deviation) than Bouguer-Helmert geoid. The
commonly used Bouguer reduction scheme should be thus replaced by the topographic-
isostatic gravimetric reduction schemes like the AH or PH model, or by the RTM
topographic reduction method for gravity interpolation in the context of precise Helmert
geoid determination, especially in rough terrain.
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Efekty interpolacji gestosci i przyspieszenia sily ciezkoSci
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Streszczenie

Tematem pracy jest badanie dwdch istotnych aspektow wyznaczania geoidy przy zastosowaniu drugiej metody
kondensacji Helmerta. Przy uzyciu badan numerycznych zilustrowane zostalo w pracy znaczenie wykorzystania
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aktualnej informacji o gestosci topografii terenu oraz efektéw réznych rodzajéow redukcji grawimetrycznych na
interpolacje przyspieszenia sily cigzko$ci w procesie obliczania geoidy Helmerta, uzupelniajacych powszechnie
stosowang procedurg oparta na anomaliach Bouguera. Do przeprowadzenia testow numerycznych wybrano silnie
pofaldowany obszar w kanadyjskiej cze$ci Gér Skalistych pomigdzy réwnoleznikami 49°N i 54°N i pomiedzy
poludnikami 236°E i 246°E. We wszystkich krokach procesu obliczania geoidy Helmerta uzywano informacji
o rozkladzie gestosci warstwy topografii nad poziomem morza. Do interpolacji przyspieszehia sily cigzkosci
wykorzystano anomalie Bouguera, redukcje topograficzne w oparciu o residualny model terenu (RTM), redukeje
Rudzkiego, redukcje topograficzno-izostatyczne Pratta-Hayforda (PH) i Airy-Heiskanena (AH). Uzyskane
wyniki wskazuja na to, ze informacja o gestosci topografii powinna by¢ uzywana we wszystkich krokach procesu
obliczania geoidy Helmerta oraz, Ze topograficzno-izostatyczna redukcja grawimetryczna, taka jak PH, AH lub
RTM, wygladzajaca interpolacje przyspieszenia sily ciezkosci powinna by¢ stosowana do precyzyjnego
wyznaczania geoidy Helmerta zamiast powszechnie stosowanej metody opartej na anomaliach Bouguera.



