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Abstract: The paper presents two alternative proposals for processing kinematic modular
networks. The first method employs the idea of multi-group transformation which may be
reduced to setting up a system of conditional equations with unknowns. The kinematic
parameters (point motion velocities) are in this case determined after the observations are
adjusted, together with point coordinates. The other proposal is based on the classic idea of
the parametric method. The theoretical relationships for functional models of the network
adjustment for each of the methods have been provided. The practical conditions have been
presented for the application of the proposed models (methods) in constructing detailed
computational algorithms. The modular network technology may be an appropriate method
of geodetic determination of displacements, especially in difficult terrain conditions (slopes,
trees, unfavourable exposition to satellite signals).
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1. Introduction

One of the main tasks of geodetic engineering is to handle objects which can be dislo­
cated or deformed, i.e. areas or structures included in a group of potentially moving
objects. This is in particular related to mining areas, landslide sites, engineering struc­
tures which are parts of communication routes (bridges, overpasses, embankments).
The basic assumption in the determination (monitoring) of displacements is a periodi­
cal character (repeatability) of the measurements of the geometric state of an object.
A set of observations dispersed in time and space can be treated as the observatio­
nal system (Kadaj, 1998). An important factor for the choice of the model (method)
of processing observations is the relationship between the duration of an individual
measurement cycle and the predicted velocity of dislocation of points which represent
the object (Prószyński and Kwaśniak, 2006). If one common epoch is assigned to all
observations, the classic static model can be applied for processing them. However,
if the changes taking place during the measurement are regarded as important, the
use of the kinematic model to the adjustment of observations should be considered.
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The essence of the model lies in the possibility of reducing all observations to one
epoch by introducing kinematic parameters to the functional model, e.g. point move­
ment velocity in the adopted reference system. The literature of the subject mentions
other, intermediate models of adjustment, e.g. a quasi-static and a quasi-kinematic
model (Kadaj, 1998; Preweda, 2002). Detailed discussion of the issues related to the
classification of models (methods) of the determination of displacements can be found
in such studies as ( Pelzer, 1987; Kadaj and Plewako, 1991; Kadaj, 1992; Heunecke et
al., 1998). An important element of the dislocation model is the reference system and
the issue related to its identification, which has been reflected in numerous publications
(e.g. Prószyński, 1986; Beluch and Piwowarski, 1996).

Publications devoted to the issue emphasise application of new methods of
measurement (GPS technique, hybrid systems) (Bałut and Gocał, 1997; Asteriadis
and Schwan, 1998). An alternative may be provided by the modular network techno­
logy (see e.g. GUGiK, 1986; Garguła, 2004), applied as a separate method of classic
measurements or in combination with the GPS technique (Garguła, 2009). Among the
advantages of modular networks is the flexibility of their structure, which facilitates
not only the stage of the measurement design, but also its execution. The following
properties of modular networks are important from this point of view: 1) free choice
of stations - without marking (no instrument centring and errors related to it); 2) tie
points are assumed to be target points - usually wall points, e.g. ones linked with
the object under study (advantages similar as for the stations). Geodetic networks of
a special structure, similar to that of modular networks, are discussed in the study of
Kadaj (1975).

The principles of application of modular networks are provided in the Technical
Guidelines G-4. l (GUGiK, 1986). The concept of the measurement technology has
been developed and partly modified by the author of this paper. For example, the
concept of so called modular traverses has been introduced for geodetic handling
of linear objects (Garguła, 1995), a proposition has been put forward to apply cer­
tain elements of modular networks as realization networks and control measurements
(Garguła, 2003a), and a method of rigorous adjustment for this type of structures
has been developed (Garguła, 2003b). Currently, studies of the issue of integration
of modular network with the GPS technique are being conducted (within the scope
of measurement and numerical processing) (Garguła, 2009) and of the possibility of
application of the method in geodetic handling of kinematic (moving) objects, i.e.
areas or engineering structures for which a model of displacements or deformations
has to be determined. These issues are a subject of the research project which is being
carried out by the author of this paper. The project includes periodical measurements
in the area of a vast landslide which poses a threat to people living nearby. It turns out
that due to difficult terrain conditions (great height differences, numerous slopes and
micro-landslides, slopes with trees, property fences, etc.), it is impossible to conduct
traditional horizontal and vertical surveys (at centred measurement stations). A GPS
measurement also proved insufficient due to unfavourable exposure to satellite signals.
In such case the measurement could only be performed with the use of the modular
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network technique. The results obtained in the survey were used for the determination
of horizontal displacements. The modular network method has also been tested in the
determination of displacements in mining areas (Garguła and Kwinta, 2005, 2008).

The aim of this study is to determine the functional model which will provide
grounds for algorithms of adjustment of kinematic modular networks. A possibili­
ty of applying two methods of numerical processing: 1) transformational method,
which essence lies in setting up the system of conditional equations with unknowns
(cf. Garguła, 2003b), 2) parametric method (the transformational method in this case
is used for the determination of approximate coordinates) will be discussed.

2. Basic functional relationships 

The position of points in any geodetic network is determined from angular and distance
measurements and the measurements of height differences. Computation algorithms
usually require two observation equation sets to be created: one for planar coordinates
and the other for the heights. The following considerations will be limited to the
horizontal network. The general functional model for a static network can be written
in the following form:

F(X) = W (1) 

where X is the vector of parameters to be determined (unknowns), and W is the vector
of constants.

Assuming that observations and coordinates of the network reference points are
uncorrelated, the stochastic model can be expressed as (cf. Preweda, 2002)

Cov(X W ) = [ Cov(XR) O l 
R, L O Cov(WL) (2) 

where Cov (XR), Cov (W L) are variance-covariance matrices for the vector of reference
point coordinates XR and observational vector W L, respectively.

Models (1) and (2) provide grounds for the least squares algorithm, based on the
condition

F = yT . p. V = (W - A. xf . Cov (XR, w L)-1 • (W - A. X) = min (3)

where V is the vector of corrections to both observations and reference coordinates,
A is the design matrix, and P is the weight matrix.

When kinematic models are considered, a function of time t is introduced to static
models (1), (2)

F [X (t)] = W (t) (4) 
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[ 
Cov (XR (t)) O l Cov (XR (t), W L(t)) =

0 Cov(WL(t)) 

The kinematic model (4), (5) is used for the approximation of the function of
displacements (as a function of time) of individual points of the object and the vector
field of displacements (see: Kadaj, 1998; Preweda, 2002).

A kinematic model for any individual point P (moving at a uniform motion) is
based on the assumption

(5)

{
xti = xioi + Ap . tui 
[i] [O]

Yp = YP +Bp· tui 

where [i] represents the number of the observation cycle, tr,i is time when the obser­
vation cycle was performed, measured from the initial observation cycle, and Ap, Bp 
are kinematic parameters of the moving point (velocity of movement, in the directions
of x and y axis, respectively).

Algorithms of modular network development employ the principle of multi-group
transformation. Transformation of planar Cartesian coordinates is based on the follo­
wing formulae:

(6) 

{
x; = Xo + Xp · C + YP · S
Yp =Yo+ YP · C - Xp · S

(7) 

with
C = f · cosa; S = f · sina (8) 

where (xp, yp ), (Xp, Yp) are Cartesian coordinates of point P in the primary and secon­
dary coordinate system, respectively; (Xo, Yo) is the displacement vector (coordinates
of the origin of the primary coordinate system in the secondary coordinate system);
C, S are transformation coefficients; f is a scale coefficient; a is the angle of rotation.

Introducing equations (7) to the model (6) provides kinematic transformation
equations for moving points

{ 

X[il - xlOJ + A · t · - X + x[il · C + y[il · S p - p p [1] - 0 p p 
yUI - y[O] + Bp . tr ·1 - r'.o + y[i] . C - x[ll . s p-p ,- p p 

(9) 

The equations (9) provide the basis for the functional model (system of condi­
tional equations with unknowns) in the transformational method of modular network
adjustment.

3. Numerical processing of a kinematic modular network by the transformation 
method (TRANS) 

The task may be divided into several conventional stages (cf. Garguła, 2009):
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• calculation of approximate transformation parameters X0, 90, C, Sfor each module; 
• transformational adjustment by the conditional method with unknowns (adjustment 

of observed polar coordinates d, /3, transformation parameters Xo, Yo, C, S and 
local Cartesian coordinates Xp, yp ); 

• determination of adjusted global Cartesian coordinates X», Yp (in the reference 
system) and kinematic parameters Ap, Bp. 

3.1. Calculation of approximate transformation parameters 

With the use of equations (7), a conditional equation, linking coordinates of the points 
expressed in various systems (modules), is set up for each tie point (in particular for 
the reference point). 

Conditions for the reference points r, i.e. the equations linking the local system 
for the given module j with the global reference system (Fig. 1) are 

{ 
X =XU)+ xU) · cU) + /ll · 5Ul 
; _ yfll + YCJ) . c<Jl _ )1) . sUl (l O) 
r - o r r 

while conditions for the tie points k (between adjacent modules j and j+ 1) 

{ 
X - X(j) + x(j) · C(j) + y(j) · S(j) - X(j+I) + x(j+I) · c<J+I) + y(j+I) · 5U+l) 
k- O k k - O k k (li) 
yk = y61) + Ykl). cU) - x:l). 5U) = y6J+I) + Yij+I). c<J+I) - x:j+I). 5U+I) . 

- 
- module .,i" 

____ I_ __ . 
, 
I 
I 
I 
I 

' I 
I 
I 

' ' I @: 

I 
I 
I 
I 

@ - re/emce points 
o - tie points 
• - station points (sites) 

\ reference system 

Fig. 1. The principle of linking the modules by means of tie points 

It is noteworthy that the equations do not contain any information on [i] in which 
the coordinates are determined. This is because the conditions relate to the coordinates 
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expressed in the systems of local modules, and these in turn depend on the choice of 
a measuring station during a periodical measurement. 

Approximate parameters X0, Yo, C, S of transformation are calculated for each 
module j by solving the system of equations consisting of equations ( 1 O) and ( 11 ): 

x = g<Ji + i1) . c~(j) + y-1..J) . s~(j) 
r O r r

Y = y<i) + y,.J,_j) - {;(i) - i1) - 5<J) 
r o r r

_x<i) + ii) . (;<i)+ y,.J,_j). 5<J) = _x<J+l) + ii+l). (;<J+l) + y,.J,_j+l). s<J+l) 
O k k O k k

y<il + YJ..JJ. (;<i)_ ii). 5(J) = y<i+!) + y-1..J+l). {;<J+l) _ ii+l). s<J+l) 
O k k O k k

(12) 

Approximate coordinates i, y are referred to the local polar coordinate system 
(Fig. 2) of the origin at the surveying site in a specific module} (for the reference 
points r and the tie points k, respectively) 

\ 

-<il_d /3Xr - jr · COS jr

-!il d . /3Yr = Jr· sm Jr 
(13) 

\

-<il_d /3Xk - jk · COS jk 
-!il d . /3yk = jk. sm jk 

(14) 

k

r
• 

Fig. 2. Observations and coordinates in the local polar coordinate system of the elementary module j

The total number le of independent equations (12) should be equal to the num­ 
ber of unknowns. Since there are four transformation parameters for each module, 
consequently 



A kinematic model of a modular network ... 125

(15)

where m is a number of elementary modules.
The condition (15) is, however, not sufficient, as each module has to have at least

2 points from the group of tie points k or reference points r (condition of module
determinability - see Garguła, 2004).

The system (12) can be expressed in the matrix form

(16)

or, when expanded

j/) '00 O O
-_i}) I o o O 0 

r I I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

l
o 

1 O -(j+I) c,{j+I) x, Yr 
I o c,{j+I) -U+!) I , Yr -X, 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

o o
o o 

o 
o 

o 
o 

I •

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X
I o .s» Yij) I o o o oXk 

o 1 Yij) -s» I o o o o-x k - - - - - ------ - - - - - - - - - - - - - --------
I O -(j+I) c,{j+I) 

-: v; 
, O l c,{j+I) -<J+I) , , Yk -xk , 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

o o 
o o 

o 
o 

o 
o 

gU+l) 
o 

yU+I) 
o 
c<J+I) 

5U+l) 

o 
o 
o 
o 

The solution of an unambiguous system (16) is obtained after a simple matrix
operation is performed

X= A-1• L (17) 

3.2. Transformational adjustment by the conditional method with unknowns 

After observations d, /3 have been inserted in the conditional equations ( 10), (l l)

{

Ul - (d (d)) (/3 (J3))X k - jk + V jk · COS jk + V k 
YkJJ = (d1k + Vj~l) · sin(/31k + v~l) 

and the same has been done with approximate parameters Xo, Yo, a (for simplicity let
us assume that the scale is invariable, i.e. f = l)

(18)
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{

x6
1l = xt + ox6Jl

yW = y<Jl + 0yCJl o o o

{ 

cW = cos (a Ul + oa<J)) 

s(Jl = sin (a(j) + óa(j)) 

one obtains the following non-linear equations (for an example coordinate X of point
k, linking two neighbouring modules j and j+ 1 ):

(19)

(20)

(X(j) + bX(Jl) + (d + /dl) · cos (/3 · + v(fJl) · cos (a<J) + oaUl) +O O jk jk Jk jk 

+ (d1k + vj1l) · sin (/3Jk + v~l) · sin (aUl + oaUl) = (21) 

=(X(j+ll+óX(j+ll)+(d +v(dl )·cos(/3· +v(/Jl )-cos(a(j+ll+óa(j+Il)+O O J+l,k J+l,k J+l,k J+l,k 

(d (dl ) · (/3 (/Jl ) · (~(j+l) ;: (j+ll)+ J+l,k + vJ+l,k · sm J+I,k + vJ+l,k · Sl Il a + ua 

where id), //3) are observational residuals, and (j) is the index of module linked with
the measuring station j.

After being expanded in the Taylor's series, equations (21) become (example):

ox(jl - ox(j+ll + a(jl. óa(jl - a(j+ll. óa(j+ll =
O O I I

= a(jl. /d) -a(jl. //Jl+ a(j+ll. v(dl -a(j+ll. //Jl + w(j,j+ll 
2 jk 3 jk 2 j+l,k 3 j+l,k x 

<5y<Jl - <5y<J+ll + h(jl · oaU) - h(J+Il · oaU+Il =
O O I I

= h(Jl. /dl_ b<1l. //Jl+ h(J+ll. /dl _ h(Jl. v(/Jl + w(j,J+l) 
2 Jk 3 Jk 2 J+l,k 3 J+l,k Y

(22) 

Coefficients a, b corresponding to partial derivatives are determined by linearization of
(21) based on approximate transformation parameters and observations (d, /3) (Garguła,
2003b). The terms Wx, wy (deviations) are calculated with the use of the approximate
parameters (13), (14), (17), which have been determined earlier

{ 

W(j,j+ll = -C(j). X(jl + 5()). jJ) + c;<J+ll. x.<J+ll _ 5<J+ll. jJ+ll _ j(<J) + g<J+ll
.., k k k k O O (23)

wV·j+ll = -S(j). i~) - c». f;,_Jl + s<J+ll. xtl) + c<J+I) .1;,_J+ll - y6Jl + y6J+ll

Similarly to (22), linear equations for the reference point r are as follows

{ 

óX(jl + a(j) · óa(jl = a(jl · /dl + a(jl · //3) + w(jl 
O I 2 Jr 3 Jr x 

<5y<J) + hUl · oaUl = bUl · /dl + bUl · v(fJl + w(}) 
O I 2 Jr 3 Jr Y

(24) 



A kinematic model of a modular network ... 127

A system of conditional equations in the matrix form with unknowns, containing
equations (22) and (24) is as follows

A-X=C-V+W (25)

that is

1
o 

o 
o 

o 
o 

o 
o 

~ - ~ - - .- - -I - -.- - ~ - - - ~ - - 7 :.- 

a(Jl a(J) 1 O O O O
2 3_bt _ ~~~ _ ~ __ J _ -~ __ o 1 o o 1 _

I •• I I •.

- : - - _. - - f- - ~ ~ - - ._ - _. - - -I - - - ._ - - - - ._ - - ..., - - • - Xo o I I a(j) -a(j) I a(j+l) -a(j+l) 
I I 2 3 I 2 3 I o o I ••• I b(j) -b(j) I sr» -b(j+l) I •.• 

_ _ _ _ _ _ _ L _ _ J _ _ 2._ _ _ _ J _ I_ _ 2 _ _ _ _ _ 3_ _ _ _I _ _ _ 

(d) 
vJ, 
v(J3) 

- _;r_ - 

(d) 
Vjk 
v(J3) 

- Jk: - 
(d) 

Vj+l,k 
v(J3) 
j+l,k 

Solving the system of equations (25) by the least squares method (Garguła, 2009)
yields increments of transformation parameters c5X0, oY 0, oo: (for each module) and
corrections v<d), v(J3) (for all the observations in the entire network). In the subsequent
step, adjusted parameters of transformation X0, Yo, a (19) and (20) are determined
together with coordinates of the tie points xi; Yk in local module polar coordinate
systems (18) (see Fig. 2).

3.3. Determination of global coordinates and kinematic parameters 

When a kinematic modular network is considered, parameters are determined (coordi­
nates, kinematic parameters) only with reference to the tie points k. The stations j are
not monumented and each time when periodical measurements are performed they are
chosen at different places. Kinematic equations for the tie points in the i-th observation
cycle are noted with the use of a simplified model (6)
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{ 

x[/1 = x[0J + A . t •. - x(jl + x(jJ • c(J) + y(j) • s(jJ 
k k k [i] - O k k
y[il = y[OJ + B · t · = y(jl + y(j) · C(j) - x(j) · 5(}l 

k k k [i] O k k

Parameters A and B can easily be obtained from (26) 

(26) 

{ 

x(j) + x(j) • c» + y(j) . s» - x[0J x[,J - x[01 

A_O k k k_k k 
k- - 

l[i] l[,J 
y<J) + /Jl . c» _ /Jl . 5<Jl _ y[OJ y[1] _ ylOJ 

Bk = O k k k = k k
l[tJ ![,] 

If a polynomial model of n-th degree is applied in equations (26), one obtains a 
system of equations of the following type 

(27) 

{ 
X[il - X[OJ A A 2 A nk - k + kl · l[i] + k2 · t[i] + · · · + kn · t[i] 

Y[il _ y[OJ B B 2 B n
k - k + k1·l[;J+ k2·t[;J+ ... + kn·t[i]

In order to determine kinematic parameters Ak, Bk, an appropriate number of 
measurement cycles (l, 2, ... , n) is required. The types of models applied in description 
of kinematic networks and methods of identification of kinematic parameters (direct, 
indirect) have been widely discussed in the literature (e.g. Kadaj, 1998; Preweda, 2002). 

(28) 

4. A kinematic model of a modular network adjustment by the parametric 
method (PARAM) 

Numerical processing of a modular network by the parametric method is possible only 
after approximate coordinates of network points are obtained, obviously expressed in 
the reference system (common for both the tie points and the observation stations). 
The task can be performed by multi-group transformation, like at the first stage of 
previously presented TRANS method - equations (10) to (18). Using approximate 
parameters of transformation ( 17) and approximate local coordinates (18), global ap­ 
proximate Cartesian coordinates can be calculated: 
- for tie points k

{ 
x - x(j) + c<i) . ii) + s(j) . YJ.j)

k - O k k
yk - y(j) + C(j) · y-,(i) - 5(j) · ii) 
- O k k

- for the points of the observation stations j

1 
~ - ~(j) xi - Xo 
~ ~(j) 
Yi= Yo

(with the assumption that x~l = y~l = 0). 

(29) 

(30) 
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Unknown global Cartesian coordinates X, Y and velocities A, B of displacements 
will be the parameters of observation equations for the distances and angles measured 
in the modular network. 

4.1. Kinematic equation for the horizontal distance 

The elementary distance measured at station j to the tie point k (Fig. 3), taking into 
account the kinematic parameters of the simplified model (3), can be expressed by the 
following equation 

d1k+v;~l = [(xf1 + Ak · t[i1)-(x~01 + A1 · t[i1)]2 + [(Yl01 +Bk· t1,1)-(YJ°1 + B1 · tu1)]2 
(31) 

When expanded into the Taylor's series against the coordinates X, Y and their 
kinematic parameters A, B, this yields 

(32) 

where C) denotes the value calculated from approximate parameters, and c5 1s the 
residual of the determined parameter. 

/ 
/ 
/ 
/ 

I k 
I 
I 
I 
I 
I 
I 
I 

module ,.j ·· 

k+l 

' ' ' ' ' \ 
\ 

I 
I 

I 
I 

k+2 1
1 

Fig. 3. Sample observations obtained at station j in the i-th observation cycle 

If a polynomial model (28) is adopted, the equation (32) will contain n "kinematic" 
elements of the following type 
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where q = I, 2, ... , n. 
In matrix notation (32) will thus be as follows 

[/dl)= jk

bX1: l[iJ · (bA1)1 
x bY1: l[iJ · (bB1)1 

óXk : l[il · (óAk)1 
óYk : l[iJ · (óBk)1 

tf1 · (bA1)2
lf,1 . (ó B1)2 
lf,1 · (óAkh 
lf,1 · (óBkh 

(34) 

4.2. Kinematic equation for the horizontal angle 

An equation of residual for the horizontal angle f3 (Fig. 3) expressed in a linear form, 
similarly to (34 ), is 

When the linear model (6) is replaced with the polynomial model (28), the equation 
(35) will have the general form (in the matrix notation) 
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[v</3) ] k,j,k+I 

-2 
djk 6Xk I 

l[iJ · (6Ak)1 
~[i] ~[i] 
yk+I - yj óYk I 

l[i] · (óBk) 1 
-2 óXk+l I 

l[iJ · (6Ak+1)1 dj,k+l = -u1 -u1 X I 
xk+i -xj óYk+I l[i]. (6Bk+1)1 

-2 6Xj I tw (óAj), dj,k+I 
[-u1 -u1 -u1 -u1 l óYj I 

l[iJ · (6Bj), yk+l - yj yk - yj 
-2 -2 
d k l d k J, + J 

[ _x'[i) _ _x'[i] _x'[i) _ _x'[i] l k+ I J k J 
-2 -2 
d k I d k h + J 

tl1 · (óAkh 
tl1 · (óBkh 
tt]. (óAk+lh 
tli. (óBk+lh 
tl1• (oAj)? 
tl1. (oBj): 

t[i] · (óAk)n 
t[}J · (óBk)n 
lu] . (óAk+, )Il 
t[}J · (óBk+1)11 

t[}). (óAj)n 
ti}1 · ( 6B j),, 

(36) 
A set of equations (34) and (36) for distances and angles will form a linear system 

V = A · X - L in which the vector of residuals V will be estimated by the classic least 
squares parametric method. Unlike in the TRANS method, adjustment of observations 
will be preceded by the stage of the determination of unknowns, including the kinematic 
parameters A, B. 

5. Practical notes 

The complexity of the computational algorithm may affect the choice of the method of 
processing of modular kinematic networks (transformation method TRANS or parame­ 
tric method PARAM). For obvious reasons, the parametric method has an advantage 
over the conditional one (to which the transformation method comes down). However, 
for a modular network there is a problem of obtaining approximate coordinates, which 
requires application of the transformation method, regardless of the approach applied 
in exact adjustment of observations. 

Characteristic features of the transformation method TRANS are as follows: 
- a unified computational algorithm, based on multi-group transformation (a single 

type of conditional equations), 
- it is easy to obtain approximate coordinates in local module polar coordinate sys­ 

tems (output data for transformations), 
- it is not necessary to introduce information on the observation cycle tui when 

conditional equations are set up (cf. Fig. 4), 
- a simple way of the determination of kinematic parameters based on adjusted 

observations, 



132 Tadeusz Garguła

- it is necessary to determine additional unknowns - parameters of transformations 
for local polar coordinate systems of all modules, 

- it is difficult to define unambiguous, universal criteria for the determination of the 
number of independent conditional equations for tie points and for reference points. 

Characteristic features of the parametric method PARAM are as follows: 
- the problem of the determination of approximate coordinates (it is necessary to 

apply the approximate processing of network by the transformation method), 
it is easy to create observation equations, 
it is necessary to introduce information on the observation cycle tc;J to observation 
equations, 
a large number of estimated parameters of the system ( coordinates and kinematic 
parameters). 

A common feature of both methods is that it is not necessary to attribute to obser­ 
vations the time when such observations are made. This stems from the uniqueness of 
the geometric system of observations in particular cycles of a periodical measurement, 
which is in turn related to the basic property of modular networks - a freedom of 
choice of measuring stations (not marked in the ground) - cf. Fig. 4. The property 
makes it impossible to apply so called intermediate models of processing kinematic 
networks (see: Kadaj, 1998), which are based on observation equations FJ, created 
independently for each observation with the point of time ascribed to it 

(37) 

where X(t) is the unknown vector of kinematic state of the network, and tY1 is the 
measure of a geometric element j at an observation cycle tui.
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Fig. 4. Position of the surveying station j1;i. in consecutive observation cycles (i= O, I, 2) 
of the periodical measurement 

Equations (37) are typical for kinematic models, which allow for non-synchronous 
observations (freely dispersed in time). It is well known that the condition cannot be 
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fulfilled in typical modular networks as particular modules are sets of synchronous
observations. In consequence, the computational algorithm of a modular network will
be based on quasi-static or quasi-kinematic models (Kadaj, 1998), which assume that
an individual measurement campaign is a complete measurement process. Owing to
it, it is possible to reduce the geometric state of an object to a certain time t. 

Classification of the methods of displacement determination also includes abso­ 
lute methods (positions of points) and differential methods (differences in observation
measures) (Kadaj, 1998; Prószyński and Kwaśniak, 2006). It is a drawback of the
differential methods that it is necessary to maintain a constant observation plan in
different measurement cycles, which means invariability of a functional model (4),
which defines the general geometric structure of the network. Due to that differential
methods cannot be used for the determination of displacements with modular networks.

6. Summary and conclusions 

The paper presents two proposals for numerical processing of kinematic modular net­
works. The theoretical relationships presented in the paper may provide grounds for
creating a functional model of adjusting observations according to the chosen method.
The first method (TRANS) employs the idea of multi-group transformation, which may
be reduced to setting up a system of conditional equations with unknowns. The other,
alternative method (PARAM) is a classic parametric procedure, in which kinematic
parameters are estimated together with the coordinates of the points to be determined.
This study also considers practical conditions to be fulfilled when the proposed methods
are applied in identifying displacements.

The general conclusions which can be drawn from the paper are as follows:
- the technology of modular networks can be applied to determine horizontal dis­

placements as an independent method of classic measurements or as a supplement
for GPS measurements; the technology may prove indispensable in difficult terrain
conditions;
the process of network adjustment by the TRANS method does not involve the
use of any kinematic parameters, as it consists in solving a system of conditional
equations with unknown parameters of transformation; kinematic parameters are
determined (together with coordinates of points) after adjusting observations;

- creating a functional model in the parametric method (PARAM) is a simpler task
than in the TRANS method, but there appears the problem of the determination of
approximate coordinates, which requires introducing an additional component in
the computational algorithm - for approximate processing of modular network by
the transformation method;

- due to the specificity of the modular network structure (measurement stations as
temporary points), displacements can be identified only by absolute determina­
tions; kinematic parameters can be referred only to a point (coordinates) because
individual observations are not repeatable in subsequent measurement cycles.
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The theoretical considerations contained in this study will be used in constructing
computational algorithms of adjustment of kinematic modular networks, integrated
with GPS measurements. These issues are the subject of the research project which is
being carried out by the author of this paper.
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Model kinematyczny sieci modularnej w zastosowaniu do wyznaczania przemieszczeń

Tadeusz Garguła

Katedra Geodezji
Uniwersytet Rolniczy w Krakowie
ul. Balicka 253A. 30-198 Kraków
e-mail: rmgargul@cyf-kr.edu.pl

Streszczenie

W niniejszej pracy przedstawiono dwie alternatywne propozycje opracowania kinematycznych sieci mo­
dularnych. Pierwszy sposób polega na zastosowaniu idei transformacji wielogrupowej, co sprowadza się
do zestawienia układu równań warunkowych z niewiadomymi. Parametry kinematyczne (prędkości ruchu
punktów) wyznaczane są w tym przypadku po wyrównaniu obserwacji, łącznie ze współrzędnymi punktów.
Druga pozycja opiera się na idei klasycznej metody parametrycznej. Podano zależności teoretyczne dla
modeli funkcjonalnych wyrównania sieci według każdej z metod. Przedstawiono uwarunkowania prak­
tyczne, dotyczące wykorzystania zaproponowanych modeli (metod) przy konstruowaniu szczegółowych
algorytmów obliczeniowych. Technologia sieci modularnych może stanowić odpowiednią metodę geode­
zyjnego wyznaczania przemieszczeń, zwłaszcza w trudnych warunkach terenowych (skarpy, zadrzewienia,
niekorzystna ekspozycja na sygnały satelitarne).


