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Abstract
Wire electrical discharge machining (WEDM) is a non-conventional material-removal process
where a continuously travelling electrically conductive wire is used as an electrode to erode
material from a workpiece. To explore its fullest machining potential, there is always a re-
quirement to examine the effects of its varied input parameters on the responses and resolve
the best parametric setting. This paper proposes parametric analysis of a WEDM process by
applying non-parametric decision tree algorithm, based on a past experimental dataset. Two
decision tree-based classification methods, i.e. classification and regression tree (CART) and
Chi-squared automatic interaction detection (CHAID) are considered here as the data min-
ing tools to examine the influences of six WEDM process parameters on four responses, and
identify the most preferred parametric mix to help in achieving the desired response values.
The developed decision trees recognize pulse-on time as the most indicative WEDM process
parameter impacting almost all the responses. Furthermore, a comparative analysis on the
classification performance of CART and CHAID algorithms demonstrates the superiority of
CART with higher overall classification accuracy and lower prediction risk.

Keywords
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Introduction

In present day manufacturing industries, wire elec-
trical discharge machining (WEDM) process has be-
come quite popular due to its competence to ma-
chine various tough and hard-to-machine materials
with complex shape geometries and close tolerances.
The WEDM is a variant of electrical discharge ma-
chining (EDM) process where a continuously travel-
ling electrically conductive wire (e.g. tungsten, brass
or copper with diameter between 0.05 and 0.3 mm)
is used as the electrode. This wire is kept in tension
using a mechanical device and its movement is nu-
merically controlled so as to attain the desired ac-
curacy and tolerance while machining a given work-
piece. In WEDM process, removal of material usually
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occurs due to complex erosion effect of expeditious,
continual and distinct spark discharges between the
wire tool and the workpiece submerged in kerosene
or deionized water (dielectric medium). These elec-
trical discharges cause melting and vaporization of
tiny amounts of material from the workpiece, which
are rinsed away by the dielectric, causing small pits
on the workpiece. In WEDM process, as the mate-
rial is abraded before the wire and as there is no
direct contact between the workpiece and the wire,
chances of generation of stress, chatter and vibration
during the machining operation are less (Ho et al.,
2004; Mandal and Dixit, 2014). As WEDM is dis-
tinguished to be a highly accurate process, it has
now found wide-ranging applications in aerospace,
nuclear, automotive, bio-medical, and tool and die-
making industries. It can machine various unusual
high-strength-temperature-resistive materials, like al-
loys, titanium, cemented carbides, ceramics and sili-
con (Patel and Vaghmare, 2013). In a manufacturing
industry, the main goal of WEDM application is to
realize higher machining rate (MR) along with better
dimensional accurateness and surface characteristic.
However, the performance of a WEDM process re-
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garding material removal rate (MRR), surface rough-
ness (SR), wire wear ratio (WWR), kerf width, di-
mensional deviation (DD) etc. is often observed to
be influenced by several controllable (input) param-
eters, like peak current (Ip) (in A), pulse-on time
(Ton) (in µs), pulse-off time Toff) (in µs), wire ten-
sion (WT) (in g), wire feed rate (WF) (in m/min),
spark gap voltage (SV) (in V) etc. The presence of
an extensive set of process parameters, stochastic na-
ture of the process, possible interactions between the
process parameters and conflicting behaviour of the
responses make it imperative to explore the effects
of various WEDM process parameters on the out-
puts. Thus, to accomplish the desired response val-
ues, identification of the optimal machining param-
eters and their settings plays a significant role. It
has been observed that inaccurately selected WEDM
process parameters may often lead to short-circuiting
of wire, breakage of wire and damage of the work-
piece surface. With the rapidly growing use of WEDM
process for machining newer and advanced engineer-
ing materials, an ardent need is thus acknowledged
for development and deployment of an innovative ap-
proach for studying the impacts of varied process pa-
rameters on the responses and identifying the para-
metric mix leading to optimization of WEDM pro-
cess. From the review of the contemporary litera-
ture (Kumar et al., 2013; Lal et al., 2015; Dabade
and Karidkar et al., 2016; Lusi et al., 2016; Man-
jaiah et al., 2016; Arikatla et al., 2017; Ramanan
and Elangovan, 2018; Devarajaiah and Muthumari,
2018; Vignesh and Ramanujam, 2018; Srinivasarao
and Suneel, 2018; Nayak et al., 2018), it has been
revealed that determination of the optimal paramet-
ric mixes for WEDM processes has already caught
the attention of the past researchers, and numer-
ous multi-objective optimization techniques, like grey-
Taguchi method, desirability function approach, tech-
nique for order of preference by similarity to ideal so-
lution (TOPSIS), evolutionary algorithms etc. have
been applied. But, the applications of various data
mining tools for studying the influences of varying
WEDM process parameters on the responses and
identifying the optimal combinations of those pro-
cess parameters are really limited. Thus, this pa-
per focuses on the application of data mining tech-
niques, primarily through decision trees, to fulfil
the above-mentioned objectives. Two decision tree-
based classification algorithms, i.e. classification and
regression tree (CART) and Chi-squared automatic
interaction detection (CHAID) are thus employed
here, and their performance is contrasted with re-
spect to overall classification accuracy and predic-
tion risk.

Data mining

Data mining, occasionally known as ‘knowledge
discovery in databases’, is the procedure of drilling
through data to unveil hidden patterns or connections
and anticipate future trends (Tan et al., 2006; Han et
al., 2012). It mainly depends on effective collection of
data and warehousing as well as computer process-
ing. The application of data mining has strong re-
lations with statistics (to study data relationships),
artificial intelligence (to provide human-like intelli-
gence) and machine learning (to learn from data to
make predictions). Data mining thus allows to (a) fil-
ter all the chaotic and repetitive noise in the dataset,
(b) predict automatic pattern based on trend and
behaviour analysis, (c) envisage the likely outcomes,
(d) create decision-oriented information, (e) acceler-
ate the pace of making informed decisions, (f) fo-
cus on large dataset and database for analysis, and
(g) form clusters based on visually documented groups
of facts. In predictive modelling, the primary objec-
tive is to approximate the value of a specific target
attribute from a set of training data where the at-
tribute values are established beforehand. Classifica-
tion is a unique example of predictive modelling where
a data set is already segmented into pre-specified
groups and patterns are identified in the data to dis-
tinguish those groups. The explored patterns can then
be adopted to categorize another dataset where the
appropriate group description for the target attribute
is unknown. Regression analysis is also an example of
predictive modelling with numerical target attribute
and the objective is to envision that value for new
data. The application of data mining techniques fol-
lows some procedural steps, such as (a) data cleaning
(elimination of noisy and outlier data), (b) data as-
similation (amalgamation of multiple data sources),
(c) data selection (recovery of pertinent data from
the database), (d) data conversion (conversion of data
for mining purposes), (e) data mining (identification
of data patterns), (f) pattern assessment (extrac-
tion of attractive patterns) and (g) knowledge dis-
play (picturing of the mined information) (Ramani et
al., 2020).

Decision tree analysis

The decision tree analysis can be defined as a set
of practices to estimate and show the extant relations
between a dependent variable and a class of indepen-
dent variables. It is based on consecutive partitioning
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algorithm to continuously split the data to constitute
homogeneous subsets, producing a hierarchical tree
consisting of decision rules convenient for data antici-
pation or classification. The main classification meth-
ods for decision tree induction are CART and CHAID
algorithms, and their characteristics are outlined as
below:
1. The resultant hierarchy is known as a tree and

a particular section is referred to as a node.
2. The root node consists of the entire database.
3. It is branched conclusively forming child nodes.
4. The final subgroups are known as terminal nodes

or leaves when no further data classification is pos-
sible.

5. There are three primary elements to be defined
to implement them, i.e. a set of questions delimi-
tating data apportionment, a criterion to institute
the best division to develop child nodes and a com-
pletion rule for the classifications (stop-splitting
rule).

Both of them build decision trees, where each (non-
terminal) node establishes a split condition to produce
an optimal prediction for continuous dependent vari-
ables or classification for categorical dependent vari-
ables.

CART-based algorithm

Breiman et al. (1993) proposed this classification
algorithm for origination of decision trees. It divides
a particular population into binary splits, while con-
secutively breaking up the data into smallest compo-
nents with maximal homogeneity with regard to the
dependent variable. It follows a sequential procedure,
as enlisted below:
1. Tree growing process – This algorithm evaluates

all the possible splits of the explanatory variables
and designates the ‘best’ split, beginning with the
root node. Thereafter, this process is imitated for
consequent nodes. The ‘best’ split is explained by
the minimal overall impurity. Usually, in this algo-
rithm, univariate splits are only designed. Hence,
beginning with the root node, a tree is developed
in the downward direction by repeatedly perform-
ing the splitting operation.

2. Splitting criterion and impurity measure – At
a particular node, the ‘best’ split is considered for
maximization of a specific splitting criterion. For
a specific impurity measure for a node, the split-
ting criterion conforms to decrement in impurity.
The ‘Gini’ index is adopted as the impurity func-
tion in this algorithm. The chosen independent
variable is that one which assures a segmentation
having the maximum level of improvement.

3. Stopping rule – The tree growing process would
stop while satisfying any of the following stopping
rules:
i) When all cases in a particular node have same

values of the dependent variable.
ii) When the present tree depth arrives the max-

imum limit as stated by the user.
iii) When the node size is smaller than the mini-

mum size as stated by the user.
iv) When the node splitting forms a child node

having size smaller than the user-identified
minimum size.

4. Variable importance – The importance measure
of an explanatory variable X in the developed tree
is stated as the sum across all the splits in the
tree showing the gains that X achieves when it is
adopted as a dominant or surrogate splitter. The
importance of variable X is denoted with respect
to a normalized quantity as compared to the vari-
able having the maximum measure of importance.
Its value spans between 0 and 100, having the
variable with the largest measure of importance
score as 100. Thus, an explanatory variable’s im-
portance is a preferred indicator to account the
significance of disaggregated variable as well as ag-
gregated variable (which has already appeared in
the decision tree).

CHAID-based algorithm

This algorithm, proposed by Kass (1980), gener-
ates non-binary decision trees (with more than two
branches connected to a single node) based on the
Bonferroni’s test. It proceeds through the following
three stages:

1. Merging – For each dependent variable X, combine
the non-significant categories. Each final category
of X results in one child node if X is utilized to
divide the node. This merging step also estimates
the revised p-value to be subsequently used for
splitting purpose.

2. Splitting – The explanatory variable having the
lowest significant p-value is identified as the best
and the group is divided based on this predictor.
The group is not divided when no predictor has
a significant p-value.

3. Stopping – These stages are imitated till all the
subgroups have either been inspected or have
encompassed too few observations. The adopted
stopping rules are mostly the same as those al-
ready mentioned for CART algorithm.
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Development of decision trees
for WEDM process

In a four-axis CNC WEDM set-up, Kumar et al.
(2013) performed 54 experiments to investigate the
effects of six process parameters, e.g. Ton, Toff, IP,
SV, WF and WT on four responses. The responses
were MR (in mm/min), SR (in µm), DD (in µm) and
WWR. Other factors, like type of the workpiece ma-
terial (pure titanium-grade 2), wire electrode (brass
wire having diameter 0.25 mm), workpiece thickness
and pressure of the dielectric were kept constant
during the experimental runs. Table 1 exhibits the
detailed experimental plan and measured values of
the responses. Among these responses, MR is the
sole beneficial quality characteristic desired with its
higher value. On the contrary, minimum values are
required for SR, DD and WWR (non-beneficial at-
tributes (Sarker and Chakraborty, 2021).

Table 1
Experimental observations for the WEDM process

(Kumar et al., 2013)

Run
No.

Ip Ton SV Toff WF WT SR WWR MR DD

1 200 120 50 50 7 500 3.22 0.095 1.14 160

2 160 116 50 56 4 500 2.48 0.063 0.576 150

3 160 112 60 50 4 950 2.23 0.079 0.42 145

4 120 116 50 44 10 950 2.75 0.086 0.954 159

5 120 116 60 50 7 500 2.47 0.061 0.544 152

6 160 120 40 50 4 950 2.93 0.088 1.075 162

7 160 116 50 56 10 1400 2.48 0.063 0.586 150

8 160 116 50 50 7 950 2.65 0.080 0.695 152

9 160 116 50 44 4 500 2.81 0.089 1.014 160

10 160 120 40 50 10 950 2.94 0.088 1.075 160

11 160 120 40 56 7 950 2.91 0.087 0.995 160

12 160 120 60 50 4 950 2.83 0.079 0.809 159

13 160 116 50 44 10 500 2.79 0.076 1.012 160

14 160 116 50 50 7 950 2.61 0.064 0.573 150

15 120 112 50 50 7 500 2.49 0.048 0.406 145

16 160 116 50 50 7 950 2.68 0.082 0.697 152

17 120 116 60 50 7 1400 2.49 0.059 0.538 150

18 160 112 40 56 7 950 2.32 0.060 0.48 145

19 120 116 50 56 10 950 2.31 0.056 0.535 151

20 200 116 40 50 7 1400 2.89 0.079 0.825 152

21 200 116 60 50 7 500 2.69 0.072 0.773 152

22 200 116 50 56 10 950 2.57 0.074 0.792 153

Table 1 [cont.]

Run
No.

Ip Ton SV Toff WF WT SR WWR MR DD

23 120 116 40 50 7 1400 2.71 0.068 0.625 152

24 120 112 50 50 7 1400 2.51 0.054 0.425 145

25 200 116 50 56 4 950 2.56 0.078 0.799 155

26 160 120 60 50 10 950 2.82 0.081 0.81 153

27 120 120 50 50 7 500 2.77 0.074 0.83 158

28 160 112 40 50 10 950 2.35 0.085 0.521 150

29 200 112 50 50 7 500 2.48 0.083 0.535 150

30 160 112 40 44 7 950 2.70 0.089 0.858 153

31 200 112 50 50 7 1400 2.51 0.082 0.54 150

32 160 116 50 50 7 950 2.65 0.081 0.658 150

33 200 116 50 44 4 950 2.88 0.092 1.02 159

34 160 116 50 50 7 950 2.65 0.081 0.656 152

35 160 120 40 44 7 950 3.28 0.107 1.28 165

36 200 116 50 44 10 950 2.98 0.095 1.03 160

37 200 116 40 50 7 500 2.84 0.079 0.829 155

38 160 112 40 50 4 950 2.33 0.081 0.529 150

39 160 116 50 56 10 500 2.50 0.064 0.589 150

40 160 116 50 50 7 950 2.69 0.081 0.659 152

41 160 120 60 56 7 950 2.66 0.070 0.792 153

42 160 112 60 44 7 950 2.60 0.081 0.495 150

43 200 116 60 50 7 1400 2.68 0.072 0.778 155

44 120 116 50 44 4 950 2.75 0.086 0.959 155

45 160 112 60 50 10 950 2.28 0.079 0.429 145

46 120 120 50 50 7 1400 2.75 0.074 0.823 158

47 160 112 60 56 7 950 2.15 0.064 0.395 140

48 160 116 50 44 4 1400 2.85 0.088 0.981 159

49 120 116 40 50 7 500 2.78 0.068 0.635 158

50 160 120 60 44 7 950 3.00 0.085 1.00 159

51 120 116 50 56 4 950 2.29 0.060 0.541 150

52 200 120 50 50 7 1400 3.12 0.091 1.052 159

53 160 116 50 44 10 1400 2.82 0.088 0.962 155

54 160 116 50 56 4 1400 2.49 0.060 0.592 150

Median 0.74 2.68 152 0.079

In this paper, CART and CHAID algorithms are
applied to explore the experimental dataset of Ku-
mar et al. (2013) while generating the corresponding
decision trees and induction rules to study the influ-
ences of the considered WEDM process parameters
on the four responses. An endeavour is also put for-
ward to compare their relative classification perfor-
mance with respect to prediction accuracy and prog-
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nosis risk. In a decision tree, an internal node denotes
a test on an attribute, a branch characterizes the re-
sult of the test and a leaf node depicts a class la-
bel. A specific decision or induction rule can thus be
obtained while following the direction from the root
to leaf node. For development of the related decision
trees using CART and CHAID algorithms (available
in SPSS 16.0), the following specifications are pre-
defined.
For CART algorithm:

Growing method: CART, Categorical dependent
variables: MR, SR, DD and WWR, Continuous in-
dependent variables: Ton, Toff, IP, SV, WF and WT,
Number of sample folds: 3, Validation: Cross valida-
tion, Growth limit: Maximum depth of tree = 5, Min-
imum number of cases: Parent node = 3, Child node
= 2, Impurity measure: ‘Gini’, Minimum shift in im-
provement = 0.0001.
For CHAID algorithm:

Growing method: CHAID, Categorical dependent
variables: MR, SR, DD and WWR, Categorical inde-
pendent variables: Ton, Toff, IP, SV, WF and WT ,

Validation: Cross validation, Growth limit: Maxi-
mum depth of tree = 5, Number of sample folds: 3,
Minimum number of cases: Parent node = 3, Child
node = 2, Significance level for: a) Splitting node =
0.03, b) Merging categories = 0.05 and c) Chi-square
statistic = Pearson, Model estimation: a) Maximum
number of iterations = 100, b) minimum variation in
expected cell frequencies = 0.001 and c) Modify sig-
nificance values based on the Bonferroni method.

Figure 1 exhibits the CART algorithm-based de-
cision tree, showing the impacts and contributions of
the six WEDM process parameters on MR. In this fig-
ure, the term ‘low’ belongs to observations withMR ≤
0.74 mm/min and ‘high’ refers to those observations
having MR > 0.74 mm/min (where 0.74 mm/min is
the median value of MR). This classification tree con-
tains 5 splits and 6 terminal nodes. The classification
process begins with the top or root node with level 0.
All the 54 observations are first assigned to this node
where 27 observations are equally classified as ‘low’
and ‘high’, as represented in this node. The root node
is again divided into two new nodes and the related
split condition is shown below the root node. It can
be noticed from this decision tree that during the first
classification, 42 experimental observations with Ton
less than or equal to 118 µs are routed to node num-
ber 1, categorized as ‘low’ items. The remaining 12 ob-
servations with Ton greater than 118 µs are directed
to node number 2 with ‘high’ classification. All the
12 observations belonging to only ‘high’ value iden-
tify node 2 as a pure node with no misclassification
error. In node 1, unequal number of observations rec-

Fig. 1. Decision tree depicting the impacts of WEDM
process parameters on MR

ognizes it as an impure node providing more child
nodes. Thus, node 1 is now split giving rise to two im-
pure nodes. In this split, 10 observations with Toff less
than or equal to 47 µs are dispatched to node num-
ber 3, and the rest 32 observations with Toff greater
than 47 µs are directed to node number 4. Now, based
on the values of SV, node 3 is consequently divided
into two pure nodes. In this split, nine observations
with SV less than or equal to 55 V are attached to
node number 5 with ‘high’ values of classification,
and only one observation with SV greater than 55 V
is routed to node number 6 with ‘low’ classification
value. Similarly, another splitting is carried out from
node 4 based on IP. In this split, 24 observations with
IP less than or equal to 180 A are dispatched to node
number 7 with ‘low’ categorization, and the remain-
ing eight observations with IP greater than 180 A are
sent to node number 8. From node number 8, two
pure nodes again emerge out based on the values of
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Ton. In this splitting operation, two observations hav-
ing Ton less than or equal to 114 µs are routed to
node number 9 and the rest six observations with Ton
greater than 114 µs are sent to node number 10. In
this decision tree, it is noticed that all the terminal
nodes are pure representing no misclassification er-
ror. The percentage of correct classification at each
of the terminal nodes is presented in Table 2. Now,
from this tree, the following decision/induction rules
can be structured to envisage the impacts of various
WEDM process parameters on MR.

Table 2
Percentage of correct classification of MR based on CART

algorithm

Classifi-
cation

Terminal
node

MR

Low
(≤ 0.74 mm/min)

High
(> 0.74 mm/min)

Number of
observations

% Number of
observations

%

1 Node 2 0 0 12 100

2 Node 5 0 0 9 100

3 Node 6 1 100 0 0

4 Node 7 24 100 0 0

5 Node 9 2 100 0 0

6 Node 10 0 0 6 100

Decision rules for MR based on CART:
Rule 1: If Ton > 118 µs Then MR is (0.74–1.28]
[P = 100%, Q = 44.44%, C = 22.22%, QTY = 12]
[T = 166.67%]
Rule 2: If Ton ≤ 118 µs and Toff ≤ 47 µs and
SV ≤ 55 V Then MR is [0.74–1.28]
[P = 100%, Q = 33.33%, C = 16.67%, QTY = 9]
[T = 150%]
Rule 3: If Ton ≤ 118 µs and Toff ≤ 47 µs and
SV > 55 V Then MR is [0.40–0.74]
[P = 100%, Q = 3.70%, C = 1.85%, QTY = 1]
[T = 105.55%]
Rule 4: If Ton ≤ 118 µs and Toff > 47 µs and
IP ≤ 180 A Then MR is [0.40–0.74]
[P = 100%, Q = 88.88%, C = 44.44%, QTY = 24]
[T = 233.32%]
Rule 5: If Ton ≤ 118 µs and Toff > 47 µs and
IP > 180 A and Ton ≤ 114 µs Then MR is [0.40–0.74]
[P = 100%, Q = 7.41%, C = 3.70%, QTY = 2]
[T = 111.11%]
Rule 6: If Ton ≤ 118 µs and Toff > 47 µs and
IP > 180 A and Ton > 114 µs Then MR is [0.74–1.28]
[P = 100%, Q = 22.22%, C = 11.11%, QTY = 6]
[T = 133.33%],

where P is the rule confidence, Q is the percentage
of items in current equivalence class conforming to
a rule, C is the rule support, QTY is the number
of observations corresponding to a rule and T (total
strength) = (P +Q+ C) (Agarwal et al., 2019).

Among the developed decision rules, rule 4 with the
maximum total strength of 233.32 states that in the
considered WEDM process, when Ton is less than or
equal to 118 µs, Toff is greater than 47 µs and IP is
less than or equal to 180 A, the corresponding MR
would be low. On the other hand, rule 1 with a total
strength 166.67 reveals that high Ton leads to high
MR. As MR is a beneficial response, it is thus advised
to operate the WEDM process at high setting of Ton
(above 118 µs).

In CART-based decision tree, where univariate
splits are considered, the predictor variables are usu-
ally rated on a 0–100 scale depending on their prefer-
ence in accounting for the responses on the dependent
variable (MR). It can be noticed from Fig. 2 that Ton
has the maximum influence on MR response, followed
by Toff, IP and SV. In this WEDM process, MR is
observed to be totally unaffected by WF and WT.

Fig. 2. Importance of various WEDM process parameters
on MR

Similarly, the developed decision tree for MR using
CHAID algorithm is exhibited in Fig. 3. As compared
to CART algorithm, same number of classifications
is also obtained in CHAID algorithm. In this multi-
split decision tree, node 7 contains non-homogenous
observations, identifying it as an impure node with
1.85% misclassification error. The corresponding de-
cision rules identify Ton, Toff and IP as the most in-
dicative WEDM process parameters influencing MR,
whereas, SV, WF and WT appear to be insignificant
parameters.
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Fig. 3. CHAID algorithm-based decision tree for MR

Decision rules for MR based on CHAID:
Rule 1: If Ton = High Then MR is (0.74-1.28]
[P = 100%, Q = 44.44%, C = 22.22%, QTY = 12]
[T = 166.66%]
Rule 2: If Ton = Medium and Toff = Low Then MR
is [0.74–1.28]
[P = 100%, Q = 29.62%, C = 14.81%, QTY = 8]
[T = 144.43%]
Rule 3: If Ton = Low and Toff = Low Then MR is
[0.74–1.28]
[P = 100%, Q = 37.04%, C = 18.52%, QTY = 10]
[T = 155.56%]
Rule 4: If Ton = Low and Toff = Medium or High
Then MR is [0.40–0.74]
[P = 50%, Q = 3.70%, C = 1.85%, QTY = 1]
[T = 55.55%]
Rule 5: If Ton = Medium and Toff = Medium or High
and IP = High Then MR is [0.74–1.28]
[P = 100%, Q = 22.22%, C = 11.11%, QTY = 6]
[T = 133.33%]
Rule 6: If Ton = Medium and Toff = Medium or High
and IP = Medium or Low Then MR is [0.40–0.74]
[P = 100%, Q = 59.26%, C = 29.63%, QTY = 16]
[T = 188.89%]

The CART algorithm-based decision tree represent-
ing the influences of varied WEDM process parame-
ters on SR is depicted in Figure 4. In this case, the
measured SR values are also assorted into two classes,
i.e. ‘low’ containing SR values ≤ 2.68 µm and ‘high’
has SR values > 2.68 µm (where 2.68 µm is the me-
dian SR value). The induction rules formulated from
the developed decision tree state that when Ton is
greater than 118 µs, the resulting SR would be high.
It can also be highlighted from the developed rules
that when Ton is less than or equal to 118 µs, Toff
is greater than 47 µs and SV is greater than 45 V,
the SR would be low. The rules extracted from the
decision tree developed using CHAID algorithm, as
exhibited in Fig. 5, also prove that high Ton results
in high SR. Medium or low Toff is also responsible for

Fig. 4. Decision tree for SR using CART algorithm
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Fig. 5. CHAID algorithm-based decision tree for SR

increased SR. Similarly, low SV is responsible for high
value of SR. In both the sets of rules developed using
CART and CHAID algorithms, WF and WT appear
to be irrelevant WEDM process parameters having no
influences on SR.

Figure 6 depicts the relative importance of various
WEDM process parameters on SR. It can be revealed
from this figure that Ton plays the dominant role in
controlling SR of the machined components, followed
by Toff and SV. The other three process parameters,
i.e. WF, IP and WT have less importance on SR.

To visualize the effects of various WEDM process
parameters on DD response, the decision tree is now
generated using CART algorithm. When the values of
DD are less than or equal to 152 µm, they are denoted
as ‘low’ and when its values are greater than 152 µm,
they are designated as ‘high’ (where 152 µm is the
median of DD). The ‘If-Then’ rules extracted from
this decision tree highlight that Ton less than or equal
to 118 µs, Toff greater than 47 µs and IP less than or

equal to 180 A always lead to lower DD. Higher Ton
is liable for higher DD. Low Ton, high Toff and low
SV would cause lower DD.

Fig. 6. Importance of various WEDM process parameters
on SR
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The induction rules generated based on CHAID al-
gorithm also confirm these observations. Combining
both the sets of decision rules from CART and CHAID
algorithms, the optimal parametric mix of low Ton,
medium or high Toff, low IP and high SV would al-
ways lead to lower DD. Kumar et al. (2013) also ob-
served that almost the same combination of the input
parameters would be responsible for attaining lower
DD in the said WEDM process. The importance plot
of Fig. 7 identifies Ton as the most critical WEDM
process parameter affecting DD, followed by Toff, IP
and SV. Interestingly, WF andWT have no significant
roles in controlling the DD of the machined compo-
nents.

Fig. 7. Importance of varied WEDM process parameters
on DD

Decision rules for DD using CART:
Rule 1: If Ton > 118 µs Then DD is [152–165]
[P = 100%, Q = 46.15%, C = 22.22%, QTY = 12]
[T = 168.37%]
Rule 2: If Ton ≤ 118 µs and Toff ≤ 47 µs and
SV ≤ 55 V Then DD is [152–165]
[P = 100%, Q = 34.61%, C = 16.67%, QTY = 9]
[T = 151.28%]
Rule 3: If Ton ≤ 118 µs and Toff ≤ 47 µs and
SV > 55 V Then DD is [140–152]
[P = 100%, Q = 3.57%, C = 1.85%, QTY = 1]
[T = 105.42%]
Rule 4: If Ton ≤ 118 µs and Toff > 47 µs and
IP ≤ 180 A Then DD is [140–152]
[P = 95.80%, Q = 82.14%, C = 52.60%, QTY = 23]
[T = 230.54%]
Rule 5: If Ton ≤ 118 µs and Toff > 47 µs
and IP > 180 A and Ton > 114 µs
Then DD is [152–165]
[P = 66.67%, Q = 15.38%, C = 7.41%, QTY = 4]
[T = 89.46%]

Rule 6: If Ton ≤ 118 µs and Toff > 47 µs
and IP > 180 A and Ton ≤ 114 µs
Then DD is [140–152]
[P = 100%, Q = 7.14%, C = 3.70%, QTY = 2]
[T = 110.84%]

The decision tree for WWR originated using CART
algorithm is shown in Fig. 8. The corresponding

Fig. 8. Decision tree for WWR using CART algorithm
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‘If-Then’ rules are subsequently generated from it.
When the values of WWR are less than or equal to
0.079, they are denoted as ‘low’ and when its values
are greater than 0.079, they are designated as ‘high’
(where 0.079 is the median of WWR. An analysis of
these rules reveals that when Toff time is greater than
47 µs and IP is less than or equal to 140 A, the achiev-
able WWR is low. Similarly, lower Toff leads to higher
WWR. The rules extracted from the decision tree
based on CHAID algorithm, as shown in Fig. 9, state
that Toff would considerably affect WWR. On the
contrary, WT is least responsible for attaining lower
WWR. From Fig. 10, Toff is identified as the most in-
dicative parameter influencing WWR, followed by SV,
IP and Ton. WF and WT appear to be insignificant
WEDM process parameters for WWR.

Fig. 9. CHAID algorithm-based decision tree for WWR

An optimal parametric mix of low or moderate Toff,
high IP, low or moderate Ton and moderate SV was
identified by Kumar et al. (2013) for attaining lower
WWR, which almost corroborates the decision tree-
based observations.

Fig. 10. Importance of WEDM process parameters on
WWR

In Table 3, a comparison of the classification ac-
curacies of CART and CHAID algorithms for all the
four WEDM responses is provided. From this table,
it can be noted that for MR response, CART algo-
rithm can perfectly predict both of its low and high
values. For this algorithm, the classification accura-
cies for high and low SR values are 92.3% and 96.4%
respectively. Similarly, using CART algorithm, high
and low DD values can be predicted with accuracies
of 96.2% and 92.9% respectively. For WWR response,
CART algorithm can respectively predict the corre-
sponding high and low values with 92.30% and 89.28%
accuracies. Thus, CART algorithm can almost per-
fectly predict both the high and low values of all the
WEDM responses, although it has a slightly greater
likelihood to accurately envisage high values of the
responses.

In case of CHAID algorithm, high values of MR and
SR are respectively predicted with 100% and 92.3%
accuracies. It has prediction accuracies of 96.2% and
89.3% respectively for high and low DD values. For
this algorithm, the classification accuracy for low
WWR is the least (85.7%). Based on the overall classi-
fication accuracies of both these algorithms, it can be
concluded that CART algorithm outperforms CHAID
algorithm for all the four responses.
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Conclusions

In this paper, two data mining-based classification
techniques, i.e. CART and CHAID algorithms, are
employed to generate the corresponding decision trees
for analyzing a past WEDM experimental dataset. It
is observed that in the WEDM process, Ton is the
most important input parameter affecting almost all
the responses, followed by Toff and IP. On the other
hand, WF and WT contribute least towards attain-
ment of the target response values.

During Ton, actual machining in the WEDM pro-
cess usually takes place. An increment in Ton causes
the machining process to be faster with higher MRR
and poor quality of the machined surface.

On the other hand, during Toff, the dielectric fluid
in the WEDM process is re-ionized. An insufficient
Toff time may lead to erratic cycling, thereby slow-
ing down the machining process. With increased Toff,
MRR is gradually decreased, primarily due to reduced
spark discharge energy. Higher IP causes availability
of larger discharge energy resulting in more mate-
rial being removed from the workpiece surface. Thus,
a mix of higher Ton with lower Toff results in more
sparking time, thus leading to increased MRR which
is of primary importance in any of the machining pro-
cesses.

The induction rules extracted from the decision
trees lead to the following conclusions:
1. For achieving higher MR, high values of Ton and

IP, and low values of Toff and SV need to be set.
2. To attain lower SR of the machined components,

low or medium Ton, high Toff, low or medium IP
and high SV are recommended. WF and WT play
no significant roles on SR.

3. A mix of low or medium Ton, long Toff, small IP
and high SV is responsible for attainment of lower
DD.

4. Low Toff, high or medium Ton, high IP and low or
medium SV are accountable for lower WWR.

5. The CART algorithm supersedes CHAID algo-
rithm with respect to both overall classification
accuracy and prediction risk. But, both these al-
gorithms can almost perfectly envisage high and
low values of all the considered responses for the
WEDM process.

Thus, these data mining tools can be effectively ap-
plied to all the traditional and non-traditional ma-
chining processes to investigate the contributions of
varied input parameters on the responses and identify
the most suitable parametric combinations for explor-
ing their fullest machining potential. But, the devel-

oped decision trees are highly unstable compared to
other decision predictors as a small variation in data
may result in a major change in the structure of the
decision trees, conveying different pictures from the
expected ones.
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