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Kadirgama [9]. The authors focused on the development of 
a roughness model on the machined surface of the 6061-T6 alu-
minum alloy. ANOVA and Taguchi are similar to this method. 
These were addressed in Quasim’s research aimed at optimiz-
ing the cutting process on AISI 1045 [10]. Response surface 
methodology is dedicated to observing and analyzing the cause 
and effect of the correlation of the real mean response and the 
control variables consisting of input variables that inf luence 
the response as a two- or three-dimensional area. Kahraman 
Funda, in his research [11], presents these aspects. Routara 
analyzes the problem of obtaining a roughness model in this 
context, during the end-milling process considering the effect 
of the workpiece material variation [12]. The RSM methodol-
ogy is an eff icient technique, suitable to perform the analy-
sis of experiments with low experimental efforts and subse-
quently to develop appropriate mathematical models related 
to the responses sought. Sahoo [13], Myers [14], and Box [15] 
address these issues in their research. Myers and Montgomery 
in their research [16] provide several hypotheses and conditions 
necessary for the successful application of the response surface 
methodology in current applications worldwide. Through their 
guidance, the authors cover classical and modern approaches 
to response surfaces to present a clear link between projects 
and analyses in the response surface methodology. RSM is 
useful to analyze a response under the inf luence of several 
variables, with optimization as the main objective. There are 

1.	 INTRODUCTION
Metal cutting is among the most important manufacturing pro-
cesses. Milling is a key process in the manufacturing sector, 
where the demand for high productivity and high quality is 
continuously increasing. This cutting process was studied by 
Reddy and Prajina in their research. These authors aimed to 
optimize the surface quality – and more exactly the rough-
ness with the help of response surface methodology [1, 2]. 
In the literature, a variety of research has been focused on 
the study of the general effects of cutting factors during the 
milling process. Among them is the study carried out by Raju 
and the one carried out by Patel which aimed at optimizing 
the cutting parameters during the end-milling process [3, 4]. 
Several cutting process factors exert their inf luence on the 
surface roughness and this aspect was investigated by pro-
cessing aluminum alloys in the authors’ works – Țîțu [5, 6], 
Pop [7] who studied the behavior of Al7136 end-milled and 
Abdallah [8], who investigated 6061 aluminum alloy in turning 
operation. Response surface methodology (RSM) is a design of 
an experimental method. This type of methodology has been 
addressed in various studies such as those of Reddy [1] and 

SPECIAL SECTION

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abstract. This research presents an experimental study carried out for the modeling and optimization of some technological parameters for the 
machining of metallic materials. Certain controllable factors were analyzed such as cutting speed, depth of cut, and feed per tooth. A dedicated 
research methodology was used to obtain a model which subsequently led to a process optimization by performing a required number of exper-
iments utilizing the Minitab software application. The methodology was followed, and the optimal value of the surface roughness was obtained 
by the milling process for an aluminum alloy type 7136-T76511. A SECO cutting tool was used, which is standard in aluminum machining by 
milling. Experiments led to defining a cutting regime that was optimal and which shows that the cutting speed has a significant influence on the 
quality of the machined surface and the depth of cut and feed per tooth has a relatively small impact on the chosen ranges of process parameters.

Key words: mathematical modeling; experimental research; process parameters; machined surface quality; quality assurance.

Experimental modeling of the milling process 
of aluminum alloys used in the aerospace industry

Aurel Mihail TITU 1, 2*, Alina Bianca POP3, Marcin NABIAŁEK4, Camelia Cristina DRAGOMIR2, 5, 
and Andrei Victor SANDU6, 7

1 Lucian Blaga University of Sibiu, 10 Victoriei Street, 550024, Sibiu, Romania
2 The Academy of Romanian Scientists, 54 Splaiul Independenței, Sector 5, 050085, Bucharest, Romania

3 Technical University of Cluj-Napoca, 62A Victor Babeș Street, Baia Mare, Romania
4 Department of Physics, Częstochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland

5 Transilvania University of Brasov, 500036 Brasov, Romania
6 Gheorghe Asachi Technical University, Blvd. D. Mangeron 71, 700050 lasi, Romania

7 Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania

*e-mail: mihail.titu@ulbsibiu.ro

Manuscript submitted 2021-03-08, revised 2021-06-15, initially accepted  
for publication 2021-07-05, published in October 2021

http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0054-6535
mailto:mihail.titu@ulbsibiu.ro


2

A.M. Titu, A.B. Pop, M. Nabiałek, C.C. Dragomir, and A.V. Sandu

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138565

two essential types of experiment design based on response 
surface analysis that requires a quadratic relationship between 
the experimental factor and the objectives pursued:
●	 Central composite design (CCD) Box-Wilson
●	 Box-Behnken design (BBD).

Any statistical study primarily aims to investigate causality 
to correlate the effect of changes in parametric values with the 
responses. It is especially helpful to build a model that provides 
a mathematical model of a given situation for most of the sta-
tistical investigation. The model should provide an adequate 
description of the analyzed data to allow predictions and other 
interference to be made. Prvan and Street [17] in their study 
provide an analysis of a vast bibliographic material consisting 
of about 140 selected papers from various scientific publica-
tions in a variety of fields where fractional factorial design was 
used. To each bibliographical reference, the authors presented 
designing experiments. In this context, the data provided in their 
study are adequate sources of examples usable in any design 
course and experiment analysis.

Central composite design (CCD) is a technique often used 
in mathematical modeling experimental design to optimize the 
cutting process. This research points to the central composite 
design to improve the quality of the machined surface of an 
aluminum alloy, where the performance of the process depends 
on many factors. Therefore, the optimization of machining pro-
cesses and high productivity of manufacturing operations are 
ensured for more sustainable production processes in the man-
ufacturing aerospace industries. The effective research design 
was followed by choosing a minimum possible number of pro-
cedures, which are widely applied in manufacturing aerospace 
industries.

2.	 EXPERIMENTAL SETUP AND PROCEDURE
In general, the cutting process performance depends on the fol-
lowing three parameters: the cutting speed, which is selected 
considering the cutting tool and the workpiece material, aim-
ing to obtain the material removal rates with minimum cutting 
force, obtaining the best quality and the lowest wear of the tool; 
feed per tooth, which is selected considering the manufacturer 
recommendations and the technology of the CNC machine; the 
cutting depth, which directly affects the processing rates. Cut-
ting parameters should be optimized to have the best results. 
In this scientific research, the response surface methodology 
(RSM) is adopted to obtain a mathematical model to study the 
effect of the selected parameters on the responses – in this case, 
the surface quality. From the response surface methodology 
itself, the composite central design (CCD) method will be used 
to develop the modeling matrix. The central composite design 
is a key design technique in the response surface methodology. 
This technique is used to build a second-order model – a quad-
rate model and is commonly used in process optimization. It is 
worth mentioning that before running the actual experiment, we 
first identified the maximum and minimum parameters selected 
to be used for this experimental study. These values depend on 
the material used. The set of the minimum and maximum values 
of the selected factors considering the capacity of the machine 

and the cutting tool is shown in Table 1. The values of these 
parameters chosen as factors facilitate further classification 
of a quadratic model. For this experimental study, MINITAB 
software was used to perform response surface methodology.

The response surface methodology method gives a clear idea 
of the most influential cutting parameters on the response fol-
lowed – in this case, the surface roughness.

3.	 THE RESPONSE SURFACE METHODOLOGY DESIGN
Response surface method (RSM) is a method based on a statis-
tical data package, which has been developed and described by 
Box and Wilson in 1951. This method was primarily applied in 
the chemical industry. Response surface methodology is used to 
formulate a new product, improving an existing product design, 
optimize processes, develop, and improve the process. Studies 
that reveal these aspects belong to Țîțu [18] and Kuntoglu [19]. 
The latter studied the problem in the context of AISI 5140 steel 
processing. The author identified the limitation of existing 
research on machining vibrations and surface roughness in the 
turning process of this material. The author aimed through his 
research to carry out a systematic study, aimed at optimizing 
the cutting conditions, as well as the analysis of vibrations and 
surface quality using various cutting speeds, as well as different 
feed rates and cutting angles, all in terms of analyzing using 
the response surface methodology. In this research, different 
prediction models were developed, also the optimal rotation 
parameters were determined for the average surface roughness, 
as well as three vibration components using the previously men-
tioned methodology. The results of the study showed that the 
feed rate is most largely influenced by an increase in the surface 
roughness and axial vibration; during the cutting speed and 
cutting-edge angle they were dominant in terms of radial and 
tangential vibrations. Correlating the predicted results with the 
experimental ones, he determined a roughness prediction model 
in an error range of 10%. The response surface methodology 
involves pursuing an experimental configuration designed to 
reach the maximum number of variables considered dependent 
on the response area that the number of observable values is the 
least possible. The objective of the response area methodology 
is to estimate the region and the optimal point of the region that 
can provide the characteristics pursued in a design built based 
on several factors that are efficient, and this – because of the 
combination of the experimental space belonging to the process 
variables as well as the optimization techniques based on the 
experimental modeling. The use of these techniques aims to 
determine the relationship between the response of the system 

Table 1
Parameters setting and levels

Parameters
Levels

Min (–1) Avg (0) Max (1)

Cutting speed (m/min) 610 660 710

Cutting depth (mm) 2.5 3 3.5

Feed per tooth (mm/tooth) 0.04 0.06 0.8
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Fig. 1. Proposed research methodology

and the independent variables that act on it. In their study, Li, 
Liu, and Liang analyzed the austenitic stainless steel AISI 304. 
They aimed to investigate tool wear, surface morphology, and 
cutting factors optimization during processing. The experimen-
tal results indicate how the cutting speed or high feed increases 
tool wear and thus affects the roughness of the machined sur-
face. The RSM method was adopted to analyze the effect of 
cutting process parameters on the surface quality, material 
removal rate (MRR), and specific cutting energy (SCE). The 
quadratic response of each variable was proposed by analyzing 
experimental data [20]. Su in his study [21] states that the tra-
ditional cutting parameters optimization is mainly focused on 
the cutting force, surface quality, and processing cost. It also 
mentions that the impact of cutting parameters on the energy 
consumption in the multi-objective cutting operation of cutting 
parameters using the RSM method is also ignored. The author 
studied AISI 304 austenitic stainless steel to get a better cut-
ting quality and a better production rate while reducing power 
consumption. In multi-response surface problem modeling pro-
cesses, to define the relationship between response variables 
and input variables, it is necessary to determine an appropriate 
function. Indeed, the main objective of the response surface 
methodology is to determine the level of factors that will simul-
taneously satisfy a package of required specifications, as well 
as to determine and select the optimal combination of factors 
from those that generate the desired response. The objective is 
also to describe a response close to the optimal level to deter-
mine how a specific response is affected by the changes in the 
level of factors above the specified levels of interest and to 
obtain a quantitative understanding of system behavior in the 
tested region [22, 23]. Response surface methodology (RSM) 
consists of a collection of statistical and mathematical tech-
niques that are useful for the development, improvement, and 
optimization of processes. The main objective of the application 
of the surface response methodology in design optimization is 
the reduction of the costs of expensive analysis methods as well 
as the numerical noise associated with them [24, 25]. In the 
first phase, the response surface methodology was developed 
to model experimental responses and later migrated to modeling 
numerical experiments [26, 27]. The main difference in this 
regard is the type of error that is generated by the response. 
In physical experiments, the generation of inaccuracy may be, 
for example, caused by measurement errors, while in computer 
experiments, numerical noise is the result of incomplete conver-
gence of iterative processes, and errors that are rounded or rep-
resent discrete physical phenomena of a continuous nature [28, 
29]. The methodology of designing response surfaces is often 
used to refine the models, further determining the essential 
factors using factorial design. The experiment design involves 
a concomitant analysis of two or more factors due to their abil-
ity to affect the resulting average or to change the performance 
of a particular product or process. For the efficient and statis-
tically adequate realization of this approach, the levels of the 
factors are changed tactically. The results obtained from the test 
combinations are monitored and evaluated and the complete set 
of results is analyzed to determine the main influencing fac-
tors as well as their preferred levels. The design of experiment 

(DOE) comprises three main parts: the design stage; the stage 
of the experiments and the analysis stages.

In the design stage, the factors and their related levels are 
selected. The optimal selection of factors and their levels is 
probably non-statistical in nature and depends to a greater 
extent on the knowledge held about the product and the process. 
In the second stage, experiments are performed, and results are 
collected from the experimental works.

In the analysis stage, the positive or negative data regarding 
the selected factors and levels are generated based on the two 
previous stages. In this study, a central three-level composite 
design combined with the response surface methodology was 
used. The aim is to optimize the cutting parameters. These 
parameters include the feed rate, cutting speed, and cutting 
depth. These parameters influence the quality of the processed 
surface of 7136 aluminum alloy – an alloy used in the aerospace 
industry. Figure 1 shows the stages of the experimental study 
dedicated to optimizing the cutting parameters that affect the 
surface roughness.

4.	 EXPERIMENTAL RESEARCH
One of the obsessions of aircraft designers is related to the 
permanent reduction of aircraft weight. Weight reduction 
leads to lower fuel consumption and, consequently, operating 
costs. Researchers at the European Space Agency (ESA) have 
developed a technology that can reduce the weight of avia-
tion engines. The production of aluminum alloys is relatively 
recent, most materials being introduced in the 1900s. The first 
of its kind was the high-strength dural type (Al-Cu-Mg). Since 
1950 these alloys have continued to be the basic material for 
all types of aircraft that could not withstand aerodynamic 
heating above 100°C, although their scope was reduced due 
to the advent of special zicral type aluminum alloys (Al-Zn-
Mg-Cu). The use of Al-Zn-Mg-Cu alloy semi-finished products 
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meant a signif icant gain in the weight of aircraft construc-
tion. Due to the high-f low limit values of the 7075 alloy with 
Al-Zn-Mg-Cu, the semi-finished products in this alloy can be 
used for most construction elements loaded with compression 
loads, such as the upper wing panels, the compression zone 
fuselage, pillars, etc. The weight gain of the construction can 
in this case be 5 to 8% compared to the constructions from 
2014 or 2024 alloys in the category of dural type aluminum 
alloys (Al-Cu-Mg). For this experiment, the material used in 
the end milling process is the Al7136 aluminum alloy. Mate-
rial dimensions were 110£40£35 mm. The entire milling pro-
cess with cutting f luid is performed by using the HAAS VF2 
numerically controlled machining center. The standard cutting 
tool in aluminum machining is SECO R217.69-1616.0-09-2AN. 
27 experiments were performed. The sample was divided into 
three parts, each with the length, width, and thickness of the 
sample mentioned above. The experimental data concerning 
the surface roughness were obtained by using the portable 
TESA roughness gauge RUGOSURF 20.

5.	 RESULTS AND DISCUSSION
Data collection focuses on the surface roughness as an output 
response. Table 2 shows the control factors of the experiments. 
The experimental data are collected to be used for the analysis 
of response surface methodology.

Table 2
Experiment control factors analysis

Control factors Values

Cutting speed (m/min) 610 660 710

Cutting depth (mm) 2.5 3 3.5

Feed per tooth (mm/tooth) 0.04 0.06 0.8

In Table 3, surface roughness values for all experiments are 
indicated. The best value of surface roughness is (0.400 μm) as 
indicated by experiment 1. The parameters were set to obtain 
the best surface roughness, found to be the average value of 
the cutting speed (610 m/min), the minimum level of the cut-
ting depth (2.5 mm), and the minimum level of feed per tooth 
(0.04 mm/tooth) (Table 3). Once surface roughness values are 
introduced, a comprehensive analysis can be carried out using 
the response surface methodology.

6.	 THE RESPONSE SURFACE METHODOLOGY ANALYSIS
The response surface methodology analysis includes the con-
tour graphs related to the surface roughness for the three ana-
lyzed factors. These graphs show the influence of two factors 
on the surface roughness profile when the value of the third 
factor will be kept to a minimum. Contour plots show the reac-
tion by two factors to get a better surface quality. The response 
surface methodology analysis also includes surface graphs for 
three cases. Surface graphs aim to analyze the effect of the 
parameters to obtain the optimal value of surface roughness. 

The optimization process is performed to find the optimal value 
of the machined surface roughness of the 7136-aluminum alloy 
by end milling. Table 4 shows the surface roughness (Ra) anal-
ysis using the response surface regression. Note the value of 
p here, which denotes the importance of each parameter. Any 
parameter with a value less than 0.05 is considered important. 
The analysis of the three parameters shows that feed per tooth 
has the lowest value equivalent of p of 0.003. This indicates 
that this parameter has a great influence on the roughness of the 
processed surface, because the value of p is less than 0.05. The 
corresponding percentage R – Sq is 70.74%, while the lack – is 
– 0.243. This shows that the model is suitable and the defect in 
this model is not very significant. This means that the empirical 
model will be a linear model (Table 4).

Table 3
Experimental measurement of Ra

Exp. No. v (m/min) ap (mm) fz (mm/tooth) Ra (µm)

01 610 2.5 0.04 0.400

02 610 2.5 0.06 0.511

03 610 2.5 0.08 0.514

04 610 3 0.04 0.500

05 610 3 0.06 0.526

06 610 3 0.08 0.598

07 610 3.5 0.04 0.634

08 610 3.5 0.06 0.683

09 610 3.5 0.08 0.640

10 660 2.5 0.04 0.554

11 660 2.5 0.06 0.633

12 660 2.5 0.08 0.649

13 660 3 0.04 0.471

14 660 3 0.06 0.619

15 660 3 0.08 0.619

16 660 3.5 0.04 0.473

17 660 3.5 0.06 0.561

18 660 3.5 0.08 0.622

19 710 2.5 0.04 0.493

20 710 2.5 0.06 0.503

21 710 2.5 0.08 0.586

22 710 3 0.04 0.455

23 710 3 0.06 0.453

24 710 3 0.08 0.640

25 710 3.5 0.04 0.587

26 710 3.5 0.06 0.578

27 710 3.5 0.08 0.622
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6.1. �Surface roughness versus cutting speed & depth 
of cut. fz = 0.04 (mm/tooth)

For the first analysis, the selected parameters are the cutting depth 
and the cutting speed. Constant feed per tooth 0.04 mm/ tooth.  
Table 5 shows the experiments involved in making the contour 
plot and surface plot.

Table 5
Surface roughness versus cutting speed & depth of cut

Exp. No. v (m/min) ap (mm) Ra (µm)

01 610 2.5 0.400

04 610 3.5 0.500

07 610 3.5 0.634

10 660 2.5 0.554

13 660 3.5 0.471

16 660 3.5 0.473

19 710 2.5 0.493

22 710 3.5 0.455

25 710 3.5 0.587

Contour plot and surface plot represent the surface response 
of the two factors to obtain the optimal surface roughness 
value, as indicated in Figs. 2 and 3. A contour plot is essential 
in the study of surface plots. Based on the generation of con-
tour graphs using the software for the analysis of the response 
surface, the optimal value is located with reasonable accuracy 
by characterizing the shape of the surface. The answer can be 
represented graphically, either in a three-dimensional space or 
as a contour graph which facilitates the visualization of the 
shape of the response surface.

These graphs are particularly useful tools as they facilitate 
the interpretation of the surface of a response. Response surface 

Table 4
Response surface regression Ra versus v, ap, fz

Response surface regression Ra versus v, ap, fz

Analysis of variance

Source DF Adj SS Adj MS F-Value p-Value

Model 19 0.048388 0.005376 1.34 0.390

Linear 13 0.040437 0.013479 3.37 0.112

V 11 0.001653 0.001653 0.41 0.549

ap 11 0.002738 0.002738 0.68 0.446

fz 11 0.036046 0.036046 9.00 0.030

Square 13 0.003288 0.001096 0.27 0.842

v ¢ v 11 0.001982 0.001982 0.49 0.513

ap ¢ ap 11 0.000001 0.000001 0.00 0.987

fz ¢ fz 11 0.001502 0.001502 0.38 0.567

2-Way 
interaction 13 0.004664 0.001555 0.39 0.767

v ¢ ap 11 0.023520 0.02352 0.59 0.478

v ¢ fz 11 0.001849 0.001849 0.46 0.527

ap ¢ fz 11 0.000462 0.000462 0.12 0.748

Error 15 0.020017 0.004003 – –

Lack of fit 13 0.016625 0.005542 3.27 0.243

Pure error 12 0.003393 0.001696 – –

Total 14 0.068406 – –

Model summary

S R-sq R-sq (adj) R-sq 
(pred)

0.0632731 70.74% 18.06% 0.00%

Coded coefficients

Term Effect Coef SE Coef T-Value p-Value

constant – –0.5913 0.0365 –16.19 0.000

v –0.0288 –0.0144 0.0224 –0.64 0.549

ap –0.0370 –0.0185 0.0224 –0.83 0.446

fz –0.1343 –0.0671 0.0224 –3.00 0.030

v ¢ v –0.0463 –0.0232 0.0329 –0.70 0.513

ap ¢ ap –0.0012 –0.0006 0.0329 –0.02 0.987

fz ¢ fz –0.0403 –0,0202 0.0329 –0.61 0.567

v ¢ ap –0.0485 –0.0243 0.0316 –0.77 0.478

v ¢ fz –0.0430 –0.0215 0.0316 –0.68 0.527

ap ¢ fz –0.0215 –0.0107 0.0316 –0.34 0.748

Regression equation in unicoded units

Ra = –4.60 + 0.0136 ¢ v + 0.60 ¢ ap ¡ 8.0 ¢ fz ¡ 0.000009 ¢ v ¢ v 
Ra + 0.002 ¢ ap ¢ ap ¡ 50.4 ¢ fz ¢ fz – 0.00097 ¢ v ¢ ap + 0.0215 ¢ v ¢ fz  
Ra + 1.07 ¢ ap ¢ fz Fig. 2. Contour plot of Ra (µm) versus ap (mm), v (m/min)
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models are very important for analyzing the unknown func-
tion f. When there is a pattern of a circular shape, it tends to 
suggest the independence factors effect, while elliptical con-
tours may indicate interactions of factors. Contours are constant 
response curves drawn in the plane x1, x2 keeping all other 
variables fixed. Each contour corresponds to a particular height 
of the response surface, as shown in Figs. 2 and 3. From these 
graphs, we can see that the best value related to the surface 
roughness of 0.400 µm can be obtained at an average value of 
both the cutting speed and the cutting depth. Apparently, the 
lowest surface roughness is at a cutting speed of 610 m/ min 
and a cutting depth of 2.5 mm. Therefore, we can predict that 
the best surface roughness can be obtained using these val-
ues related to the two parameters. It should be noted that the 
roughness values oscillate with increasing levels of the two 
parameters, and a certain upward or downward trend cannot 
be identified.

6.2. �Surface roughness versus cutting speed & feed 
per tooth. ap = 2.5 mm

For the second situation, in Figs. 4 and 5 the contour plot and 
surface plot were generated, related to the interaction of cutting 
parameters – feed per tooth and cutting speed when the cutting 
depth keeps a constant value of 2.5 mm.

All the involved experiments are presented in Table 6.

Table 6
Surface roughness versus cutting speed & feed per tooth

Exp. No. v (m/min) fz (mm/tooth) Ra (µm)

1 610 0.04 0.400

2 610 0.06 0.511

3 610 0.08 0.514

10 660 0.04 0.554

11 660 0.06 0.633

12 660 0.08 0.649

19 710 0.04 0.493

20 710 0.06 0.503

21 710 0.08 0.586

Figures 4 and 5 show that when the cutting depth is kept 
constant at the set minimum value, the surface roughness is 
influenced by the interaction of the other two parameters in 
the sense that it increases with the advance of the tooth at all 
set cutting speeds.

6.3. �Surface roughness versus depth of cut & feed  
per tooth. v = 610 m/min

In the third case, as previously mentioned, the constant value of 
the cutting speed is the one set at the minimum level of 610 m/ min,  
while the effect of the other two parameters on the surface 
quality will be analyzed. The contour plot and surface plot were 
made based on the experimental data mentioned in Table 7.

Fig. 3. Surface plot of Ra (µm) versus ap (mm), v (m/min)

Fig. 4. Contour plot of Ra (µm) versus fz (mm/tooth), v (m/min)

Fig. 5. Surface plot of Ra (µm) versus fz (mm/tooth), v (m/min)
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Table 7
Surface roughness versus depth of & feed per tooth

Exp. No. ap (mm) fz (mm/tooth) Ra (µm)

1 2.5 0.04 0.400

2 2.5 0.06 0.511

3 2.5 0.08 0.514

4 3 0.04 0.500

5 3 0.06 0.526

6 3 0.08 0.598

7 3.5 0.04 0.634

8 3.5 0.06 0.683

9 3.5 0.08 0.640

The graphs shown in Figs. 6 and 7 clearly indicate that at 
a cutting speed of 610 m/min the best surface quality is obtained 
when the cutting depth is 2.5 mm and the feed per tooth is 
0.4 mm/tooth. The influence of the combination of these two 
parameters is felt in the sense that the measured values of the 
roughness increase with the advance on the tooth simultane-
ously with the increase of the cutting depth.

6.4. �The findings of the response surface methodology 
analysis

By using the analysis of the response surface methodology uti-
lizing the software application Minitab, contour plot and surface 
plot indicate which are the best cutting regimes to obtain the best 
quality ranges of 7136 aluminum alloy surface processing by 
cylindrical-end milling. The results obtained are in line with the 
initial hypotheses suggested following the regression analysis.

7.	 END MILLING PROCESS OPTIMIZATION
The verification of the results was performed seven times 
based on the testing of the analyzed parameters at the ini-
tially set values mentioned in the optimization chart. Accord-
ing to Fig. 8, the values of these parameters are: cutting 
speed – 660 m/ min; cutting depth – 3 mm; feed per tooth 
– 0.04 mm/ tooth. The optimal roughness, measured after 7-time 
replication of the experiments in the above-mentioned condi-
tions were: Ra1 = 0.579 µm; Ra2 = 0.471 μm; Ra3 = 0.544 μm;  
Ra4 = 0.588 μm; Ra5 = 0.494 μm; Ra6 = 0.587 μm; Ra7 = 
0.495 μm. The average value considered was Ramed = 0.537 µm.

Fig. 6. Contour plot of Ra (µm) versus fz (mm/tooth), ap (mm)

Fig. 8. Optimization plotFig. 7. Surface plot of Ra (µm) versus fz (mm/tooth), ap (mm)

Prediction for Ra

Multiple response prediction

Variable Setting

v 660

ap 2.62121

fz 0.04

Response Fit SE Fit 95% CI 95% PI

Ra 0.4921 0.0308 (0.4271, 0.5572) (0.3503, 0.6340)
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Figure 8 shows the suggested values for the parameters of 
the cutting process to obtain an optimal surface roughness. 
The values in red are the optimal parametric settings sug-
gested by the Minitab software to get good answers. The graph 
individually indicates each factor that affects the response if 
the other factors are kept constant. Therefore, the suggested 
optimal parametric settings are 660 m/min for cutting speed, 
2.6212 mm for cutting depth, and 0.04 mm/tooth for tooth feed. 
The response for this value is 0.537 µm for surface roughness. 
Multiple response optimization charts can be generated. The 
most important things to consider when selecting the optimal 
setting are the values D and d. In the upper left corner, D (with 
a value of 0.6744) represents composite desirability while d 
(with a value of 0.6740) is individual desirability. The highest 
possible values for D and d equal 1.000. The curves shown in 
this figure represent the effect of the analyzed factors on the 
surface roughness, while the red line indicates the optimal value 
of the parameters.

8.	 CONCLUSIONS
The RSM is a very efficient procedure. It uses partial facto-
rial models, such as central composite models or star design, 
and therefore the number of experimental points required is 
minimal. The response surface methodology requires a small 
number of experiments which clearly leads to a great saving of 
time, effort, and expenses.

The effect of cutting speed, cutting depth, and feed rate 
on the surface roughness was studied and analyzed using the 
response surface methodology technique.

The conduct of experimental research using different cutting 
regimes was established based on the DOE.

In this study, a three-level central composite design, com-
bined with the response surface method, aims to optimize the 
cutting parameters that affect the surface roughness. For the 
experiments, 3 samples measuring 110£40£35 mm were pre-
pared.

Experimental data on surface roughness were obtained using 
TESA RUGOSURF 20 a portable roughness gauge.

According to the response surface methodology analysis, 
under the established machining conditions, the feed per tooth 
most affects the surface roughness.

The optimization graph was made using the response surface 
methodology for predicting the surface roughness in the cylin-
der-front milling process.

Using the dedicated DOE software application, the levels of 
the cutting process parameters were analyzed and tested and 
according to the optimization chart they were brought to the 
optimal value.

The roughness of the processed surface according to the 
optimized cutting regime was measured seven times and the 
determined optimal value was 0.5 μm.

The following conclusions can be drawn according to the 
results obtained from this study.
●	 Consistent with the results of the response surface method-

ology, central composite design, it was found that accurate 

estimates for the problem studied through this research can 
be made.

●	 According to the analyzed cutting parameters and the related 
levels used in the experimental research, it is found that feed 
per tooth is the most important parameter that affects the 
surface roughness.

●	 In subsequent research dedicated to optimizing cutting 
parameters, the use of the method adopted in this study 
(RSM) will facilitate achieving more accurate results.

●	 By this research, a linear empirical model could be devel-
oped from the statistical study by performing regression 
analysis to correlate with response parameters of the cutting 
process – the surface roughness.

●	 The model can predict the possible values of the answer 
based on the values of the given parameters with an accuracy 
of 70.74%.
Statistical analysis shows that the best roughness of the sur-

face processed by cylindrical-front milling of aluminum alloy 
7136 is obtained by setting the parametric values of cutting at 
minimum levels.
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