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Abstract: Soil Erodibility Factor (K-factor) is a crucial component of a widely used equa-
tion for soil erosion assessment known as the USLE (Universal Soil Loss Equation) or its
revised version – RUSLE. It reflects the potential of the soil of being detached due to rain-
falls or runoffs. So far, an extensive number of researches provide different approaches and
techniques in the evaluation of K-factor. This study applies soil erodibility estimation in the
soils of the South Caucasian region using soil data prepared by the International Soil Ref-
erence and Information Centre (ISRIC) with 250 m resolution, whereas the recent K-factor
estimation implemented in the EU scale was with 500 m resolution. Soil erodibility was
assessed using an equation involving soil pH levels. The study utilises Trapesoidal equation
of soil data processing and preparation, as suggested by ISRIC, for various layers of surface
soil data with up to 0-30 cm depth. Both usage of SoilGrids data and its processing as well
as estimation of K-factor applying soil pH levels have demonstrated sufficient capacity and
accuracy in soil erodibility assessment. The final output result has revealed the K-factor
values varying from 0.037 and more than 0.060 t ha h/MJ mm within the study area.

Keywords: soil erodibility, RUSLE, SoilGrids, K factor, soil pH

1. Introduction

1.1. Soil erodibility factor

Soil erodibility factor – K, is a crucial component of Revised/Universal Soil Loss Equa-
tion (RUSLE) used for estimation of the potential of slope to be susceptible to erosion
due to the influence of different soil properties (Renard et al., 1997).
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K-factor calculation excludes soil conservation practices and calculates only mean
annual soil loss per unit of rainfall erosivity at normal soil condition (Morgan, 2005).
Hence, K-factor values are interpreted as high values showing areas more susceptible to
erosion and lower values representing less potential for erosion (Adornado et al., 2009).

The general philosophy behind the erodibility factor is that the soils containing high
clay content usually have lower K-factor values because they are more resistant to de-
tachment leading to lower erodibility potential. On the other hand, soils with high silt
content have more potential to erode due to poor ability to keep integrity, additionally,
performing high rates of run-offs are resulting in high K-factor as well (Kirchmeir and
Berger, 2019).

Significant number of conditions available which can affect soil’s resistance to sep-
aration and transportation, such as topography, climate, vegetation cover, soil and water
conservation, as well as comprehensive assessment of soil erodibility K-factor play an
essential role in estimation of soil loss via RUSLE equation. According to many re-
searches implemented in field of K-factor performance evaluation under different envi-
ronments, most of them emphasised that precise and accurate determination of erodibil-
ity factor significantly affect RUSLE outcomes (Lin et al., 2019).

Considering the fact that, the soil has extremely diverse properties, their accurate
estimation is important in order to identify and map locations with potential for erosion.

1.2. Calculations of soil erodibility factor

Soil erodibility factor has been initially defined by Wischmeier and Smith (1978) and
further developed by Renard et al. (1997). Most studies refer to the USLE equation by
Wischmeier, which consider variables for soil textural information, organic matter, soil
structure and profile permeability class. The latter two input information are soil struc-
ture codes, which are assumed in four different classes: 1 – very fine granular; 2 – fine
granular, 3 – medium or coarse granular; and 4 – blocky, platy.

Furthermore, soil permeability class also plays an important role in the equation
being also assumed with 5 or 6 classes as: 1 – rapid, 2 – moderate to rapid; 3 – moderate;
4 – slow to moderate; 5 – slow; 6 – very slow.

This is the most common way of applying K-factor calculation by researchers ap-
plying USLE technique in various parts of the world like Turkey (Ozsoy et al., 2012),
the European Union (Panagos et al., 2014).

However, despite the popularity of the USLE equation it has its limitations depend-
ing on the geography of the study area and the set objectives of the study or data avail-
ability. In addition to Renard et al. (1997) there are other researchers who modified this
equation either to suit their study, or to improve accuracy, or to simplify the large amount
of variable required for it. For example, Williams and Renard (1983) and later Chen et al.
(2011) managed to develop an equation without using soil structure and profile perme-
ability class.

In this study, David’s (1988) K-factor equation will be used considering its simpli-
fication of the version used by Wischmeier and Mannering (1969), taking into account
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only 5 variables: sand (%), silt (%), clay (%), organic matter (%) and pH applied in USA
scale. Additionally, Hernandez et al. (2012) have also successfully applied this equation
in their study on the Philippines. Considering that this research is focusing on applica-
tion of RUSLE – the revised versions of K-factor is also used, which usually exclude
soil structure and profile permeability inputs from its equation (Benavidez et al., 2018).

The other main objective of using David’s (1988) equation is that it is assumption
based on the data of local soil, unlike the USLE equation by Wischmeier and Smith
(1978) which is based on USA Midwestern soil with specific silt fraction (Renard et al.,
1997). According to the study made to test empirical models with actual erodibility
performance by Wawer et al. (2005), the main inaccuracy was revealed in the level of
silt in soil, i.e. if the silt content in the soil exceeds 70%, which is the main limitation of
K-factor equations being sensitive to geographical specificity of study areas (Benavidez
et al., 2018).

On the other hand, focusing on South Caucasian scale there has been studies done
by Kirchmeir and Michael (2016) in Georgia using local soil maps with 1:200 k scale
and Bayramov et al. (2018) in Azerbaijan with 1:100 k scale as a base for K-factor ex-
traction. However, the usage of soil maps that are not up to date, as well as being in
large scale provide rough spatial information and high variability due to omission of
micro-relief (Kirchmeir and Berger, 2019).

Therefore, this study has exceptionally focused on obtained data from SoilGrids with
250 m high resolution of soil texture raster data, which provides K-factor output with
high precision and accuracy. In addition, considering that the calculated silt level (see
below) is maximum 50% giving confidence in adopting a revised methods of erosion
calculation.

The main purpose of this research is to visualise the extent of the soil erodibility
(K-factor) by mapping the impacted area, which can be also used as part of further soil
erosion assessments.

2. Materials and methods

2.1. Study area

The study area is located in one of the districts of Azerbaijan – Shamakhi (40◦57′N –
40◦56′N and 48◦61′E – 48◦67′E) (Fig. 1). The territory with a total area of 2320 km2 has
a very diverse terrain comprising of highlands with up to 2618 m high mountains and
lowlands reaching –25 below sea level. In addition, the territory has a unique landscape
with Pirgulu State Nature Reserve on one hand and a very intensive agricultural activities
on the other hand.

Almost up to half of Shamakhi’s land is used for agricultural purposes 1100 km2

(48%), however in much higher elevations in the north, it is predominantly covered by
vegetation and forest, 388 km2 (20%). There is also a significant pasture capacity, com-
prising of 800 km2 (35%) (Buchhorn et al., 2019).
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Fig. 1. Location and elevation map of the study area

2.2. Data source

The data used for soil erodibility assessment in this study was obtained from SoildGrids
System. SoilGrids is a project developed by ISRIC (International Soil Reference and
Information Centre), on open source principle to serve researchers and other users to get
accurate soil information for detailed assessment and studies.

The database is build based on a large collection of georeferenced soil profile data
generated and managed by World Soil Information Services. There are up to 6 million
soil records with georeferenced point data gathered worldwide in order to provide accu-
rate data for SoilGrids. This also includes multiple reference points gathered for South
Caucasus as well (Fig. 2).

Fig. 2. Worldwide location of soil profiles
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The dataset was further processes using a machine learning method to map the spatial
distribution of soil properties around the world. SoilGrids system is available with 250 m
resolution and latest updated in June 2016. The dataset includes such profile properties
as: organic carbon, bulk density, pH, soil texture fractions, chemical compositions and
other valuable data sources. The datasets are available in seven depths (0, 5, 15, 30,
60, 100 and 200 cm). The remote sensing data, SoilGrids is based on, is obtained from
MODIS, SRTM DEM satellite derivatives, climatic images and other landform maps
(Hengl et al., 2014).

2.3. Data collection processing

In order to prepare the data for further K-factor calculation, initially several layers of soil
data are required. The type of soil layers to be obtained are identified according to the
variables in the soil erodibility equation to be applied.

Nevertheless, SoilGrids provide data for seven layers at certain depth, however for
this study an overall depth about 30 cm was considered. In order to generate depths for
different soil properties, vertical disintegration calculation was required (Arrouays et al.,
2014).

Four layers of data for various soil properties with depth in 0 mm, 5 mm, 15 mm,
30 mm were acquired for each below layer:

– clay layer (Clay Content 0–2 um mass fraction in % at 0, 5, 15, 30 mm);
– sand layer (Sand Content 50–2000 um mass fraction in % at 0, 5, 15, 30 mm);
– silt layer (Silt Content 2–50 um mass fraction in % at 0, 5, 15, 30 mm);
– soil Organic Matter layer (fine earth fraction in g/kg);
– soil pH level (at 0, 5, 15, 30 mm).
The Figure 3 shows the diagram with consequent steps of soil erodibility computa-

tion, including data collection, data processing and preparation and K-factor quantifica-
tions with final output map.

All the layers are available in percentage format, except for the soil organic matter
that was subsequently converted to the percentage format from g/km.

In order to obtain certain depth values, depth at 30 cm is generally used for further
processing, which also might depend on soil depth data availability. The processing is
based on ISRIC (International Soil Reference Information Centre) – World Soil predic-
tion methodology using Trapezoidal rule described by Hengl et al. (2017).

The averages of each layer of overall depth intervals for 0 to 30 cm are derived by
taking a weighted average of the predictions within the depth interval using numerical
integration through Trapezoidal equation:

1
b−a

b∫
a

f (x)dx ≈ 1
(b−a)

1
2

N−1

∑
k=1

(xk+1 − xk)( f (xk)+ f (xk+1))

where:
N – number of depth,
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xk – k-th depth,
f (xk) – value of target variable at k’th depth.
This equation aggregates different available layers over standard depth interval of

0–30 cm depth by taking a weighted average using trapezoidal rule.

Fig. 3. The methodological diagram for soil erodibility K-factor computation

The above equation has been translated and processed with GIS in the following way:

(5−0)× (0+5)+(15−5)× (5+15)+(30−15)× (15+30)÷30.2

This equation shows the application of Trapezoidal rule in an example of weighted
average of the Organic matter of soil content of the study area in 30m depth which was
calculated based on the 4 depth layers: 0, 5, 15, 30 cm (Fig. 4).

This way was adopted to the all other remaining layers: clay, sand and silt. The
following table summarises calculated values for each soil property layers (Table 1), and
Figure 5, show five raster output maps of evaluated layers.

After obtaining values for all the layers improved K-factor equation has been used
based on the most recent research on Tibet by Yuanyuan et al. (2018).
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Fig. 4. Standard soil depth based on Global Soil Map specifica-
tions and the result of the numerical integration according to the

trapezoidal rule (Hengl et al., 2017)

2.4. K-factor computation

In the introductory section provides details on the applied K-factor equation was pro-
vided. The equation has been proposed by David (1988) for K-factor calculation can be
expressed as follows:

K =
[
(0.043×pH)+(0.62÷OM)+(0.0082×S)− (0.0062×C)

]
×Si

where:
pH – pH of the soil,
OM – organic matter (%),
S – sand content (%),
C – clay ratio = % clay / (% sand + % silt),
Si – silt content = % silt /100.

K-factor equation has been formulated based on imperial units providing output as
in ton acre per hundreds of acres per foot per tons per inch. In order to convert to SI units
from imperial units the final result was multiplied by 0.1317, providing the outputs as
metric tons hectare hour per hectare per mega-joule per millimetre (Renard et al., 1997).

3. Results and discussion

3.1. Soil properties

The processed soil property layers which were further used to quantify the soil erodibility
factor are presented in the Figure 5, as well as highest and lowest values for each soil
property layer is presented in the Table 1.

Created each layer of the soil property map clearly shows diverse distribution of
soil content within the area depending on elevation and vegetation cover. Hence, silt
percentage (Fig. 5b) is significantly higher in relatively low elevated zones with low
vegetation, whereas in the northern parts of the study area silt content is significantly low.
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Table 1. Values of soil property layers generated applying Trapezoidal equation

Soil Property High Value Low Value Avg. Value

Sand % 11.41 59.41 35.44

Silt % 29.66 50.08 39.90

Clay % 8.75 46.25 27.49

Organic Matter % 0.71 24.67 12.69

pH 5.52 8.29 6.90

(a) (b)

(c) (d)

Fig. 5. Raster output maps for five soil property layers: (a) sand, (b) silt, (c) clay and (d) organic matter
generated as a result of Trapezoidal rule
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However, the percentage of organic matter (Fig. 5d) in the northern parts is higher,
correlating with high density of vegetation in this area.

The percentage of sand (Fig. 5a) did not show high content overall with insignifi-
cantly high levels in some areas only.

On the other hand, the clay content (Fig. 5c) similarly to the silt, in overall area,
is significantly higher reaching up to 46% and 50% respectively, intensifying in more
central parts especially.

Despite the fact that, sand shows highest percentage (60%) overall, its dissipation
around the study area averages reaching only approximately 35%.

The pH level (Fig. 6) is particularly higher in the lowlands with low and poor vege-
tation cover reaching up to 8 pH and in dense forest areas as low as 5.5 pH.

Fig. 6. Raster output maps for pH level of soil in study area generated as a result of Trapesoidal rule

3.2. Soil erodibility factor

The Soil erodibility factor was calculated using generated soil property percentages and
soil pH levels. As seen from the final map shown in Figure 7, some areas produced
high erodibility levels, reaching 0.060 t ha h/MJ mm and the lowest amount with less
than 0.037 t ha h/MJ mm averaging in 0.039. The distribution of erosion prone regions
is observed not to be even, but rather concentrated in lower elevated zones, primarily in
south-west and mid-western parts of the study area.

The current study demonstrated the quantification of soil erodibility areas showing
most vulnerable ground surfaces for potential erosion in Shamakhi region, in particular
with significant levels in mid-eastern and southern parts.

Even though there are multiple ways of soil erodibility quantification, this study
focuses on the application of the equation additionally focusing on soil pH levels. Con-
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Fig. 7. Soil Erodibility Factor of study area

sidering limitations of the USLE equation and availability of pH data provides a more
efficient way of obtaining soil erodibility results with high resolution outputs.

In addition, the high-resolution end results due to open source SoilGrids data with
250 m sized soil data used for this study provides confidence in accuracy of the results.
Most of the studies mentioned previously, undertaken on the regional level, rely on the
scaled maps produced with very low resolution, due to unavailability of satellite data on
soil properties for certain regions. This can compromise the accuracy of further erosion
assessment results by giving a very wide range of erosion prone areas with potential
miscalculation of soil loss quantification, which is eventually leading to high costs for
erosion control and management measures.

4. Conclusions

The achievement of accuracy in soil erodibility factor estimation plays crucial role to
reach precision in overall soil water erosion assessment. The presented research aims to
show a possible way of developing a high-resolution map for soil erodibility factor.

Therefore, the soil dataset that has been processed using machine learning technique
by SoilGrids has been used. Despite the fact that digitally achieved soil data, based on
physically sampled soil profiles, is a relatively recently developing technique, its high-
resolution helps to achieve accurate mapping of erodibility areas.

Hence, the study at hand provides practical insights into how to achieve accuracy
in calculation of RUSLE factors for further soil loss quantification. Moreover, it also
provides usage of soil property layers in combination with the pH level to obtain the soil
erodibility factor particularly for soils in the Southern Caucasus region.
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