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Abstract—The purpose of this paper is to generate crypto-
graphically strong elliptic curves over prime fields Fp, where p
is a Mersenne prime, one of the special primes or a random
prime. We search for elliptic curves which orders are also prime
numbers. The cryptographically strong elliptic curves are those
for which the discrete logarithm problem is computationally
hard. The required mathematical conditions are formulated in
terms of parameters characterizing the elliptic curves. We present
an algorithm to generate such curves. Examples of elliptic curves
of prime order are generated with Magma.
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I. INTRODUCTION

INformation security is of paramount importance to many
institutions of our society: governments, military, financial,

businesses, etc. Many confidential information about research,
products, financial status, customers, or employees, is nowa-
days processed and stored on computers, or transmitted to
other computers. The information security is a very impor-
tant area of radio communication. TRANSEC and COMSEC
mechanisms require symmetric cryptography and public key
cryptography.

The public key cryptography was introduced in the seminal
papers of Diffie and Hellman [6] and Rivest, Shamir and
Adleman [21]. The use of elliptic curves over finite fields was
proposed by Miller [18] and Koblitz [17]. The cryptosystems
with elliptic curves have advantage over RSA cryptosystem
since we obtain the comparable security with much shorter
keys, as is shown in Table 1.

The purpose of this paper is to generate cryptographically
strong elliptic curves over prime fields Fp, where p is a
Mersenne prime p = 2521 − 1 or p = 2607 − 1, one of the
special primes or a random prime. We search for elliptic curves
whose order is a prime number and the order of the twisted
curve has a big prime factor. The sizes of the keys in the
region from 384 bits up to 521 bits fit in the suites A and
B of the NATO standard [27]. Examples of elliptic curves
with orders in this region are given in the Standards [26]–
[29]. Our purpose is to generate independently elliptic curves
with good cryptographic properties. We use the mathematical
tool Magma [31] to generate the curves.

Cryptographically strong elliptic curves are those for which
the Elliptic Curve Discrete Logarithm Problem (ECDLP) is
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resistant to known attacks. In general, ECDLP is computa-
tionally hard problem. The corresponding requirements are
formulated in terms of parameters characterizing the curves.
The elliptic curves with prime order have advantage over non-
prime case since each non-neutral element of the curve is a
generator of the group of points on the curve. The arithmetic
on elliptic curves is presented in papers [5], [12] and over the
field F2521−1 in [13]. We check the class number criterion and
the twist security for our examples of curves. The results of
the numerical experiments are given in the Appendix.

Table 1. The sizes of cryptographic keys.

Symmetric alg. 80 112 128 160 256
ECC order q 160 224 256 320 512

RSA modulus n 1024 2048 3072 7680 15360

II. BASIC NOTIONS

Let p be a prime number. The prime field Fp consists of
integers {0, 1, . . . , p−1} with arithmetic operations of addition
and multiplication modulo p. For a prime p > 3 we define an
elliptic curve E over the field Fp by the equation

y2 = x3 + ax+ b, (1)

where a, b ∈ Fp and 4a3 + 27b2 6= 0. We define the set of
rational points of the elliptic curve E over the field Fp as the
set E(Fp) of solutions (x, y) ∈ Fp × Fp of the equation (1)
together with the neutral element O. The set E(Fp) has the
structure of an abelian group with operations of addition and
doubling of points defined according to the rules, see [4], [25].
Addition of points:

1) P +O = O + P = P for all P ∈ E(Fp).
2) If P = (x, y) ∈ E(Fp), then (x, y) + (x,−y) = O.

The point (x,−y) is denoted −P and it is called the
negation of P. Let us note that the point −P is on the
curve E.

3) Let P = (x1, y1) ∈ E(Fp) and Q = (x2, y2) ∈ E(Fp),
where P 6= ±Q. Then P +Q = (x3, y3), where

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2

and
y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1.

Doubling of a point:
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Let P = (x1, y1) ∈ E(Fp), where P 6= −P. Then 2P =
(x3, y3), where

x3 =

(
3x2

1 + a

2y1

)2

− 2x1

and

y3 =

(
3x2

1 + a

2y1

)
(x1 − x3)− y1.

The operations of adding and doubling points on an elliptic
curve E(Fp) require performing arithmetic operations of addi-
tion and multiplication in the basic field Fp. For elliptic curves
over the real field R the operations of addition and doubling
of points on the curve have an geometric interpretation which
is shown on Figures 1 and 2. An example of the elliptic curve
over the finite field F23 is depicted in Figure 3.

Let E be an elliptic curve over the field Fp. The order of the
curve denoted q = #E(Fp) is the order of the group E(Fp).
In this case the Hasse Theorem says that

#E(Fp) = p+ 1− u, where |u| < 2
√
p.

The integer u is called the trace of the curve. The group E(Fp)
has the structure of an abelian group of rank 1 or 2, i.e., it is
isomorphic to the group Zn1

or to the group Zn1
×Zn2

, where
n2|n1. Here Zn1

and Zn2
are cyclic groups. If n2 = 1, then

it is a point P ∈ E(Fp), named the generator of the group,
which satisfies

E(Fp) = {kP : 0 6 k 6 n1 − 1},

where kP = P + · · ·+ P, k times. In the special case, when
the order q is a prime number, the group E(Fp) is a simple one
and each non-neutral element is a generator of this group. It is
important in cryptographic applications. In our investigations
we consider only prime order elliptic curves over prime fields
Fp. In particular, we take primes of the form p = 2p

′ − 1,
where p′ is another prime which are called Mersenne primes
and it has been found together 51 of them up to now [30].

Fig. 1. Adding of points on the elliptic curve.

Fig. 2. Doubling of a point on the elliptic curve.

Fig. 3. Elliptic curve y2 = x3 + x over prime field F23.

Let E be an elliptic curve over the prime field Fp and P0

a point in E(Fp). We denote 〈P0〉 the subgroup of E(Fp)
generated by the point P0. Let Q ∈ 〈P0〉 be an arbitrary
point. Then it has the form Q = kP0 for some integer k.
We call k the discrete logarithm of Q to the base P0. In this
case the Elliptic Curve Discrete Logarithm Problem (ECDLP)
is to find the number k. The best known algorithm to solve
ECDLP, the Pollard rho method [20], finds discrete logarithms
in time O(

√
p). Hence for large values of the prime p it is

infeasible by today’s computers. The record of calculating
discrete logarithm on elliptic curves over prime fields is for
113-bit prime [10].

III. THE CRYPTOGRAPHIC REQUIREMENTS

To resist the known attacks on ECDLP the elliptic curves
have to satisfy special requirements. We follow partly the ECC
Brainpool Standard [26]. The NATO [27] and the BSI [26]
requirements for cryptographically strong elliptic curves are
in fact the Brainpool conditions. In our process of generation
we use the function CryptographicCurve from Magma [31].

1) The prime p is of the size at least 2256 to resist the
attack with Pollard rho method [20]. We generate elliptic
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curves over prime fields Fp, where p is a prime of the
special form or a random prime.

2) Immunity to attacks using the Weil-pairing or Tate-
pairing [2]. The attacks allow the embedding of the
cyclic subgroup of E(Fp) into the group of units of
a degree-l extension Fpl of Fp, where subexponential
attacks on the Discrete Logarithm Problem in finite
fields exist [14], [16], [19]. We have l = min{t :
q divides qt − 1}, i.e. l is the order of p mod q. The
requirement is that the quotient (q − 1)/l < 100.

3) The curves are not trace one curves. Trace one curves
(or anomalous curves) are those for which #E(Fp) = p.
According to the works [22]–[24] for anomalous curves
there are efficient algorithms to solve ECDLP.

4) The group order q = #E(Fp) must be a prime number
or has a sufficiently big prime factor in order to avoid
small group attack [19].

5) The class number of the maximal order of the endo-
morphism ring of the elliptic curve E is larger than
10000000 [26], [27].

We search for elliptic curves over prime fields whose orders
are prime numbers. This is the most consuming time of the
search algorithm. In [11] it was stated a conjecture about
the probability Q1 that randomly chosen elliptic curve over
a prime field Fp is a prime. The conjecture states that

Q1 ∼ cpP1 ∼
cp

log p
as p→∞, (2)

where cp is explicitly computed constant, P1 is the probability
that a randomly chosen integer from the Hasse interval [p +
1−2

√
p, p+1+2

√
p] is a prime and ∼ means asymptotically

equal. The numerical values of the constant satisfy 0.44 <
cp < 0.64 and usually it is closer to 0.44. The conjecture
was experimentally confirmed for values of p up to 109. The
authors of [11] put a similar conjecture for the probability Qk

that a randomly chosen elliptic curve has the order equal to
kq, where k is a small integer and q is a prime.

In fact, there are no attacks directly related to the class
number criterion. It was stated in view of the future de-
velopment of the theory of elliptic curves [8], [9]. Let us
describe this condition in more details. The ring of endomor-
phism End(E) is isomorphic to an order in an imaginary
quadratic field K = Q(

√
−d) with square-free d ∈ N. Let

#E(Fp) = p+ 1+ u, then d can be computed as the square-
free part of 4p− u2 and then the factorization of that number
is necessary to calculate the class number of the field K. If
v = max{a : a2 divides 4p − u2} then d = (4p − u2)/v2.
The complexity of the best known algorithm for explicitly
determining the class number of K is too high in practice,
hence one tries to find elements of the ideal class group of K
with a large order, as the class number is not smaller than the
order of an element.

We present the methods to compute class numbers and
finding elements in the ideal class group with a large order.
We follow the descriptions in [26] and [3]. There is a bijec-
tion between the class group of binary quadratic forms with
discriminant dK < 0 and the ideal class group of the order
with discriminant dK . For this purpose we represent binary

quadratic forms ax2 + bxy + cy2 as triples (a, b, c). Then a
triple (a, b, c) of integers is called a positive definite primitive
reduced binary quadratic form of discriminat dK if:

• gcd(a, b, c) = 1, the form is primitive,
• a > 0 and |b| 6 a 6 c and if a = c or |b| = a than also

b > 0, the form is reduced,
• b2 − 4ac = dK , the form is positive definite.

We have the relation:

dK =

{
−d if − d = 1 mod 4,

−4d if − d = 2 mod 4 or − d = 3 mod 4.

The elements of the ideal class group of the number field
K =

√
−d with discriminat dK correspond bijectively to the

primitive reduced quadratic forms of discriminant dK . The
group law in this set is defined as follows:

• For two primitive reduced quadratic forms (a1, b1, c1)
and (a2, b2, c2) their composition (a3, b3, c3) can be
calculated by Algorithm 5.4.7 in Cohen’s book [3];

• The form (a3, b3, c3) is primitive and has discriminant dK
but it is not necessarily reduced. The reduction Algorithm
5.4.2 of [3] applied to (a3, b3, c3) outputs a primitive
reduced quadratic form (a, b, c) with discriminant dK ;

• We denote the multiplication of quadratic forms by •, i.e.

(a, b, c) = (a1, b1, c1) • (a2, b2, c2).

The neutral element I is represented by the triple
(1, 0,−dK/4) if dK = 0 mod 4 and it is represented by
(1, 1, (1 − dK)/4) if dK = 1 mod 4. The Algorithm of [26]
determines whether an element of the ideal class group of the
number field K = Q(

√
−d) has an order of at least a value

MinClass.
Algorithm ( [26])

Input: A primitive reduced quadratic form (a, b, c) of discrim-
inant dK .
Output: "true" if the order of the corresponding element
of the ideal class group is at least MinClass; and "false"
otherwise.

1) Set t = I .
2) for i from 1 to MinClass - 1 do

Set t = t • (a, b, c).
If t = I then output "false" and stop.

3) Output "true".

Code 3 is an implementation of the Algorithm in Magma.

IV. TWIST SECURITY

Let E be an elliptic curve E : y2 = x3 + aX + b over the
base field Fp. The order of the curve is #E(Fp) = p+1+u.
The twisted curves are elements of the Fp-isomorphism class
of curves Etw : x3+ at2x+ bt3 with #Etw(Fp) = p+1−u,
where t ∈ Fp is square-free. The curve E is called twist-secure
( [1], [15]) if both E and Etw are cryptographically strong. As
a minimum both #E(Fp) and #Etw(Fp) have to be almost
prime, i.e., have only small prime factors and one big prime
factor.
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The conjecture formulated in formula (2) implies that the
probability Qtw

1 that a randomly chosen elliptic curve over a
prime field Fp is both secure and twist-secure seems to satisfy

0.5

log2 p
< Qtw

1 <
5

log2 p
.

In [7] it was analysed the twist security of elliptic curves.
It is believed that the use of twist-security helps to improve
security in the following situations:
• If only x-coordinates of points are used than an expanded

x-coordinate could lead to a point in Etw(Fp) instead
of E(Fp). If Etw is not cryptographically strong and
if Q has smooth order on Etw an attacker might take
advantage of this situation by providing x-coordinates of
points that lie on Etw. This method is called ’invalid x’.

• Let P0 be a point on E and d an integer. The attack
goes in the way that during the computation of dP0 a
fault is introduced that leads to computations on Etw

instead of E. Then the same ideas as for ’invalid x’ apply.
For simplicity one can assume that the fault is injected
immediately at the beginning of the computations.

Authors of [15] and [7] argued that even for twist secure
curves a point validation has to be performed. Assume that
a cryptographic mechanism computes dP0 for a secret scalar
d. In the applications the computation of dP0 is performed
by using a blinded value d+ riq with randomly chosen ri ∈
{1, . . . , 2R}, where R is a system parameter. Blinding is a
widely used counter method to thwart side-channel attacks
on implementations that can be accessed by an attacker. The
authors of [15] state that the value of R must be sufficiently
big and its length depends on the structure of the underlying
base field. For random p 64-bit R is sufficient and for special
primes p it has to be log2(

√
q) bits of length.

V. THE NUMERICAL EXPERIMENTS

In Appendix there are examples of cryptographically strong
elliptic curves of prime order over base fields Fp, where p is
a special prime or a random prime of the size from 256 bits
to 607 bits. The time of finding the curves increases as the
size of p grows. Only for the 256-bit prime it was possible
to explicitly calculate the class number of the corresponding
quadratic number field. In other cases we checked by running
Code 3 the class number criterion. For the 607-bit prime it
was not possible to check the class number criterion. The time
of checking the criterion is random. We have calculated the
order l = Modorder(p, q) of the embedding of the field Fp

into the extended field Fpl . The factorization of the orders of
the twisted curves and the factorization of q − 1 have been
done and the sizes of the biggest factors have been given. All
calculations have been done on macOS Catalina with 3.6 GHz
Intel Core i7 processor. The results of checking the security
criteria are shown in Tables 2 and 3.

VI. CONCLUSIONS

In classified applications we need elliptic curves with secret
parameters which are independent from the examples of the
curves given in the commercial standards. We have generated

cryptographically strong elliptic curves over the base field Fp,
where p is in a region corresponding to requirements of Suite
A and Suite B. The purpose was to show how to search for
such curves and it has been achieved.
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VII. APPENDIX

All numerical experiments have been done with Magma.
Code 1: searching for cryptographic curves

Input: a prime number or generation of a prime.
Output: a cryptographic elliptic curve and its prime order.
p := 2521 − 1;
p;
K := GF(p);
repeat
E := CryptographicCurve(K);
n := #E;
until IsPrime(n); E;
n;
IsPrime(n);

Code 2: The calculation of the class number
Input: the prime p, q - the order of the elliptic curve over
the base field GF(p).
Output: the exact value of the class number and the statement
that it is greater than 10000000.
function ClassNumberField(p, q)
u := q − p− 1;
expr := 4 ∗ p− u2;
d := SquarefreeFactorization(expr);
K := QuadraticField(-d);
cln := ClassNumber(K);
printf "ClassNumber(Field) = %o \n\n", cln;

if cln qt 10000000 then
wsklk := 1;

else
wsklk := 0;

end if;
return wsklk;
end function;
Code 3: The estimation of the class number

Input: The prime order p of the base field and the prime
order q of the elliptic curve.
Output: The assertion that the class number criterion is
satisfied.
function ClassNumberEstim(p, q)
u := q − p− 1;
expr := 4 ∗ p− u2;
d := SquarefreeFactorization(expr);
v := Sqrt(expr div d);
qfmod := -d mod 4;
if qfmod eq 1 then d := d;
else d := 4*d;
end if;
Q := BinaryQuadraticForms(-d);
I := Q!1;
t := 1;
MinClass := 10000000;
for iqfb in [1..127] do qfb := iqfb;

left := qfbˆ2 + d;

if ((left mod 4) eq 0) than
qfaqfc := left div 4;
if not IsPrime(qfaqfc) then

for iqfa in [2..2011] do qfa := iqfa;
if ((qfaqfc mod qfa eq 0) then

qfa := qfaqfc div qfa;
f := Q!(qfa, qfb, qfc);
fred := Reduction(f);
wsklk := 0;
for i in [2..MinClass-1] do

t := t*fred;
if f eq I then wsklk := 0;

break;
end if;

end for;
if wsklk eq 1 then break iqfb;
end if;

end if;
end for;

end if;
end if;
end for;
return wsklk;

end function;

Examples of curves

1. The prime p = 2256 − 2224 + 2192 + 296 − 1.
Elliptic curve given by the equation (1):
a = 476815057766280020269845380974217521667826826
27331789589079746371408628489937.
b = 113116639028952622569530171500992706867567571
686587077392448699545889040953620.

2. The pseudo Mersenne prime: p = 2384 − 317.
Elliptic curve given by the equation (1):
a = 2965982059611140164585089344874519177962181369
48199131513253083710953786629510217080287684529766
75303144969998910297.
b = 5465338922819396922164836973361159430870073578
96463877871160472079599021813199347604748107272441
5943710249970348068.

3. The prime p = 2384 − 2128 − 296 + 232 − 1.
Elliptic curve given by the equation (1):
a = 87350709751579512343956062492337664824611521266
162669621918133506763491913193188328196882037351700
39466627525116916.
b = 18313899860833616554999915566103006453905550710
404495874505470280119121498647990709789667026809496
834343760457812568.

4. The pseudo Mersenne prime p = 2512 − 569.
Elliptic curve E given by the equation (1):
a = 855885333649343802088937778416639930805141397985
450515790788186617067214962813129990627747855040261
903974354924997700349271208555243960726915523052874
7523.
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b = 246319840757402467076614380995543336588847330273
759079138950745929163824204096874855287404927937865
148144114844889297943213542966558346208573839220959
4141.

5. The 513-bit random prime:
p = 25594975191524057596686236219057348657910099331
523732916082126454085175140683787546459442936770729
331018863375179483052900478078771405745122853613344
030483.
Elliptic curve given by the equation (1):
a = 86170090287902258558784762993814650290752778847
275936909452193386960014424442946273924909219060581
332673755953096815411424787959679612842191092869548
76473.
b = 20060163867953952778780809742625076538413176025
444795239813351995784590897749493191531274349838167
690134908585839679079431541359098321038472216320805
180061.

6. The Mersenne prime p = 2521 − 1.
Elliptic curve given by the equation (1):
a = 26782334858715756244216640798274018517922031219
904580576503743268353733071850516395699759892781004
324741648715400718429412033586571500320535025320985
61719715.
b = 164042870619039923028112048768156898660876024051
33922926790815725246003981834404144401213802827777
697335821731796031360927800829783060619035796253240
42585509.

7. The 522-bit random prime:
p = 885133918797632208449043070130575470195978479
4333608478004403869076831393787384543670096162478
9657710065734824182114997169325869169728139759920
42725504473029.
The elliptic curve given by the equation (1):
a = 711455937158879379110035366735851394963172945830
1884556572076988126400569706930598187465726532297627
6356692655238797662449207803664699068242816139532948
22123.
b = 220503860265735919281499632511700497248867107733
7922421728301863132922057669721169246093744640222002
2988077712930507486377542061213793264470727322022200
44436.

8. The Mersenne prime 2607 − 1.
The elliptic curve given by the equation (1):
a = 140093901401852188662355934318721867059603390

9816737790122340259000639642912462334547133264099
1683310368924008072222420284331556646232476295017
778572299430054673992579332943679995534.
b = 127824824742378797876219108942067325920685468
3443376874005754276417501648349032927642597866748
2873954065514289092296284383259042365027505518819
8949842689968661248882473963740317042901.

Table 2. Properties of generated elliptic curves.

Property Curve 1 Curve 2 Curve 3 Curve 4
Search time 10 hours 5 hours 2 hours 27 hours

Order q prime prime prime prime
p 256 bits 384 bits 384 bits 512 bits
q 256 bits 384 bits 385 bits 512 bits

Class # yes yes yes yes
Twist factor 237 bits 272 bits 195 bits 506 bits
(q − 1)/l 1 2 3 1
Factor q-1 106 bits 272 bits 382 bits 213 bits

Table 3. Properties of generated elliptic curves.

Property Curve 5 Curve 6 Curve 7 Curve 8
Search time 13 hours 17 hours 19 hours 3 days

Order q prime prime prime prime
p 513 bits 521 bits 522 bits 607 bits
q 519 bits 521 bits 522 bits 607 bits

Class # yes yes yes ?
Twist factor 478 bits 236 bits 362 bits 249 bits
(q − 1)/l 6 8 1 2
Factor q-1 427 bits 249 bits 400 bits 534 bits

Abbreviations:

• Search time: the time to find the elliptic curve.
• Order q: the confirmation that the order of the curve is

a prime number.
• The length of the order of the base field.
• The length of the order of the elliptic curve.
• The confirmation that the class number criterion is satis-

fied, i.e., the class number is > 10000000.
• The length of the biggest factor in the factorization of the

order of the twisted elliptic curve.
• The value of (q− 1)/l, where l = Modorder(p, q). The

confirmation that the corresponding criterion is satisfied.
• The length of the biggest factor in the factorization of

q − 1.
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