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An effective method for the analysis of soil-structure interaction including the behaviour of cylindrical storage 

tank with varying wall thickness under the action of constant thermal loading is presented. Elastic half-space and 

the Winkler model have been used for the description of subsoil. The soil-structure interaction is described by 

using the power series. A computational example of reinforced concrete tank loaded with constant temperature is 

given. The analysis of a hydrostatically loaded cylindrical tank performed for the model incorporating elastic 

half-space shows decrease of radial displacements as well as substantial changes in the distribution of bending 

moments when compared to the Winkler foundation. Additionally, local increase of subsoil reaction around the 

slab circumference is observed for the case of elastic half-space, in contrast to the Winkler model. However, in 

the case of a tank loaded with constant temperature, the solutions for both subsoil models do not differ 

significantly.
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1. INTRODUCTION

The thermal (or shrinkage) deformations of reinforced concrete (RC) walls above their contact zone 

with massive RC foundations, usually concreted at large time intervals, can induce thermal or 
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shrinkage cracks. In the paper, a way of calculating unfavourable thermal (or shrinkage) stresses in 

cylindrical reservoirs with walls of varying thickness, fixed at their base in a ground slab and 

subjected to axisymmetric constant thermal loading, is considered. The analytical set for the soil-

structure interaction, which allows to describe the behaviour of circular tank structures of variable 

wall thickness based on the two subsoil models, such as the perfectly elastic half-space and Winkler 

springs models is presented here. The method of Borowicka [1] and Gorbunov-Posadov [2]

employed herein for the analysis of the ground slab of the circular tank structure, enables the 

description of subsoil as a perfectly elastic half-space. In order to account for this interaction model, 

the analysis was carried out using the power series expansion method [3]. This approach has the 

advantage of being relatively simple and accurte when compared to methods based on different 

representations of soil-structure interaction. In the available literature, however, this method has not 

been widely used. Kukreti and Siddiqi [4] used quadrature methods involving polynomial functions 

with weights at selected points. Girija Vallabhan and Das [5] carried out an analysis of the tank 

circular ground slab by the finite difference method. Kukreti, Zaman and Issa [6] utilised the 

principle of minimum potential energy for the determination of the coefficients of the function 

describing the ground slab deflection. Alternative approaches require using Hankel transforms and 

Bessel function series (Hemsley [7, 8]) or numerical methods (Melerski [9], Horvath & Colasanti 

[10], el Mezaini [11], Mistríková and Jendželovský [12]) which lead to complicated algorithms or 

approximated results. In the analytical examples of tanks with varying wall thickness, the eventual 

effects of the action of constant thermal loading were examined.

2. INTERACTION OF CYLINDRICAL SHELLS OF LINEARLY VARIABLE 

THICKNESS WITH GROUND SLAB

In the analysis of the soil-structure interaction of the structure of cylindrical reservoirs with walls of 

variable thickness, axisymmetrically loaded and jointed monolithically with the ground slab, the

theory of boundary perturbations was used (described e.g. in the textbook [13]). The conditions of 

applicability of the theory of boundary perturbations (see [13]) in the considered case are fulfilled. 

In the description of bending of the cylindrical shells of linearly variable thickness, the formulation 

introduced in monograph [14] was applied. As the thickness of the shell changes linearly, in 

proportion to variable x, such formulated question cannot be reduced to the problem of the 
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behaviour of a shell of constant thickness. The linear function of the change of thickness of the shell 

is given by the equation:

(2.1) xμxhh ��� )(

The scheme of interaction of tank elements with elastic half-space together with hyperstatic values 

is shown in Fig. 1 (from the top: scheme of the cylindrical shell of linearly variable wall thickness, 

scheme of the circular ground slab and scheme of the subsoil).

Fig. 1. The scheme of interaction of tank elements with elastic half-space together with hiperstatic values. 

The problem of the temperature loading of even distribution through the wall thickness leads to the 

heterogeneous displacement equation of the shell. Let us use the physical relationships of 

Novozhilov (see [13]) which include the components that can describe the deformation caused by 

the even distribution of temperature across the shell thickness of value T0 (given below):  
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Let us limit the considerations to temperature load (px = qs = 0). If the edge of the shell is free of 

any acting forces, we get Nx = 0. Taking this boundary condition into account, and then utilising 

equations (2.2) and (2.3), the horizontal displacement � can be eliminated and the equation (2.2) 

can be simplified to the form: 

(2.4) �
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Substituting above equation and the constitutive equation for meridional bending moment into the 

proper equilibrium equation, the inhomogeneous differential equation for the radial displacement w

can be obtained:
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At first, it is necessary to obtain the solution of the homogeneous equation. The solution of this

equation can be reduced to the solution of the Bessel-type equation, as it is widely known from the 

available literature (see e.g. the monograph [14]). The general integral of the homogeneous 

equation can be expressed through the derivatives of the Kelvin functions in the form:
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where:

� � coefficient calculated as: � = (12(1 � 2)/(�R)2)1 /4

The solution w0(x) is a function of radial displacement of the shell, where R – the shell and slab

radius. Subsequently, the constants A1 � A4 of the solution (2.4) are determined according to the

boundary conditions and the specific solutions of the inhomogeneous equation are sought. The 

influence of the uniform temperature increase of the cylindrical shell in relation to the ground slab 
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of the tank can be determined, specifying the particular integral of the displacement equation of the 

shell, using the prediction method, in the form:

(2.5) ws = � �T T0 R.

In order to entirely define the boundary value problem for the shell the boundary conditions have 

yet to be formulated. In addition, it should be taken into account that in the case of a thin shell, the 

uniform heating (or shrinkage) state does not cause internal forces in a statically determinate 

scheme; the stress state of the shell results therefore only from the stress resultants on its lower rim

resulting from unknown support reactions: the transverse force X1 and the bending moment X2 (see 

Fig. 1). In the boundary conditions, the upper edge of the shell is assumed to be free. According to 

the theory of boundary perturbations, the boundary conditions for particular unknown hyperstatic 

values and for the external loading of simply supported cylindrical shell were formulated: for X1 = 1 

the shear force Qx(x0 + H) = 1 and for X2 = 1 the bending moment Mx(x0 + H) = �1, while the other 

forces on both edges of the shell are zero. In the case of a loading state the boundary conditions are 

homogeneous and the edge displacements (horizontal deflections and rotation angles) are defined in

a statically determinate scheme for different loading cases, such as e.g. the uniform temperature 

increase of the cylindrical shell.

3. ANALYSIS PROCEDURE OF SOIL-STRUCTURE INTERACTION

The displacement of the elastic and isotropic half-space loaded with a circular slab is described by 

means of the Green function method. The Boussinesq solution to the problem [1, 2] of the isotropic 

half-space loaded with a concentrated load is utilised to construct the Green function. The pressure 

exerted by the circular slab on the elastic half-space is represented by the axisymmetric loading 

p(r), as shown in Fig. 1 and 2. Vertical displacements of the ground surface (i.e. elastic half-space 

boundary), v(�), are expressed in terms of the following non-dimensional coordinates. 

� – non-dimensional distance from the centre of the slab to the point of the surface of the subsoil, 

in which the displacement is evaluated (� = r/R, where r – a real distance, R - the slab radius), 

� – non-dimensional distance from the slab centre to the point of the application of the load,

� – non-dimensional radius of the loading q, � =  a / R,  where: a – the loading radius (Fig. 2),
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� – arbitrary parameter of integration.

The Green function is integrated over the surface of the circular slab. The elastic subsidence of half-

space, v(�), from the load p(�) transmitted by the circular slab (see [2]), can be given in the form: 

(3.1)
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When the subsoil reaction to the slab acts on its whole bottom surface, the parameter � = 1 (a = R).

Fig. 2. The scheme of the circular slab on the elastic half-space.

The function p(�), describing the interaction between the tank foundation and the elastic half-space, 

as well as the slab deflection, are assumed in the form of infinite power series expansion. The 

differential equation of the circular slab resting on the elastic half-space and subjected to loading q,

uniformly distributed on the surface of the circle of the radius a (Fig. 2), after introducing the non-

dimensional polar coordinates, takes the form (see [4]):
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in which D is a bending stiffness of the slab. In order to evaluate the slab displacements, w(�), the 

relation between the displacements of the plate and the subsoil should be established. 
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Therefore the displacements of the surface of the elastic half-space and the displacements of the 

slab must be identically equal: )(ρw)ρv( % . Function p(�), defined as the function describing the 

interaction between the ground slab and the elastic half-space, can be assumed in the form of the 

polynomial containing only the components of even powers, assuming an appropriately selected 

number of them, aiming to attain the requested accuracy of solution. For the purpose of evaluating 

the integral of equation (3.2), at first, the homogeneous equation can be considered and the solution 

of biharmonic equation using the condition of axial symmetry may be obtained. Then the particular 

integral of equation (3.2) can also be sought in the form of the polynomial involving only the 

components of even powers. The coefficients of this polynomial may be expressed by the 

components of a series describing the function p(�), by substituting both series in equation (3.2) and 

comparing the components of identical powers. The full solution can be obtained by adding the 

particular integral to the general one. Eventually, the deflection of the plate in the area of the action 

of loading q (which is denoted by index I) is expressed by the equation:
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The equation (3.3) holds also in the unloaded area (of index II) � by the substitution q = 0. The 

constants C1,...,C4 can be determined from the conditions in the centre and at the boundaries of the 

plate. Moreover, substituting the expression for the function describing the interaction of the subsoil 

and the ground slab, p(�), into the equation of the vertical displacement of the subsoil surface (3.1),

expressing both elliptic integrals by the hypergeometric series, and then performing the 

multiplication and integration of the series, the equation for the vertical displacements of the elastic 

subsoil can be received also in the form of a power series.

(3.4)
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By identifying )(ρw)ρv( % , the coefficients of the series at the equal powers of � can be compared, 

beginning from the second, which leads to a set of algebraic equations of N unknowns, allowing for 
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the evaluation of coefficients a2n. To this set of algebraic equations, the equilibrium equation of the 

loads acting on the slab should be added as first. This equation we can receive twofold: by the 

integration of the polynomial function of p(�) or from the boundary condition describing the 

imposition of zero value of the shear force on the edge of the plate: Qr(1) = 0. The first method is 

used herein (the assumption of the axi-symmetrical loading of the slab only on the area of the circle 

of the radius a is used):
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2 is the polynomial, therefore the integration “term by 

term” is admissible. After the bilateral integration of the equation (3.5) the first equilibrium 

equation can be received:
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In practical calculations during the determination of the expressions a2n the convergence of the 

solution shoud be examined and in this way the number N can be evaluated. In reference to the 

function describing the values of reciprocal actions between the ground slab and the elastic half-

space, p(�), it can be noticed that in the surrounding of the circle of the radius r = R, stress 

concentration can be encountered (as it is a contact problem), and therefore this function can pursue 

infinity there. Thus, if this function were expressed by the infinite power series, this would have 

been divergent at this point. Next, there should be included the instance of the equilibrium of the 

stress resultants on the slab circumference: the radial bending moments as well as radial and shear 

forces through the formulation of proper boundary conditions. 

In order to describe the boundary value problem for the slab the boundary conditions are defined

from the loads on its surface and at its edge together with unknown edge reactions: the horizontal

force X1 and the bending moment X2 (see Fig. 1). According to the theory of boundary 

perturbations, the boundary conditions for particular unknown hyperstatic values were formulated:
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for X1 = 1 - the radial unit forces acting on the horizontal disc of the circular slab and for X2 = 1 the 

bending moment Mr (� = 1) = 1, while the shear force on the edge of the plate: Qr(1) = 0. In the 

case of a loading state the bending moment Mr (� = 1) = 0, while the shear force on the edge of the 

plate: Qr(1) = )c � H � (h1 + h2)/2. This is the self weight of the shell per unit length of the slab 

circuit, where )c is the specific weight of the RC structure, H is the shell height, h1 is the top 

thickness and h2 is the bottom thickness. To perform the comparative calculations of the ground 

slab of the tank, the model of the circular slab resting on the two-parameter Winkler foundation 

model was used herein (taking into account the vertical subgrade reaction modulus k1 = Kz and the 

horizontal one k2 = Kt - see [15]). The biharmonic differential equation applicable in this case can 

first be solved as homogeneous, which can be transformed into the product of two modified Bessel 

equations, and the general solution of the non-homogenous equation takes the following form:
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4. INTERACTION ANALYSIS AND THERMAL SHRINKAGE 

Computational analysis was performed and the plots were drawn taking into account N = 100 first 

terms of the expansion series of the function describing the interaction of the ground slab with soil. 

This assumption ensures sufficient accuracy (Lewiński and Rak [3]). It was assumed that the tank is 

a structure made of cast concrete. For the calculation, the following data were assumed: elasticity 

modulus of concrete: Ec = 31000 MPa, Poisson's ratio of concrete: c = 0.2, elasticity modulus of 

the subsoil – an elastic half-space: E0 = 240 MPa, Poisson's ratio of the subsoil: 0 = 0.3, the 

coefficient of linear thermal expansion for concrete �T = 10�10-6, the coefficient of vertical Winkler 

springs Kz = 22000 kN/m3, the coefficient of horizontal springs Kt = 15000 kN/m3, concrete gravity 

)c = 25 kN/m3. The geometric parameters of the shell were assumed: the radius R = 7.0 m and

height H = 5.0 m. Cylindrical wall thickness varied from 20 cm at the top to 30 cm at the bottom, 

the thickness of the circular ground slab: hd = 30 cm. The loading parameters; specific gravity: )w =
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10 kN/m3, the imposed constant temperature across the shell thickness was assumed: T0 = �15 *C. 

At first the case of hydrostatic loading was considered; the plots of displacements, the distributions 

of subsoil reaction and stress resultants are presented below. The results obtained for the ground 

slab are shown in a coordinate system with the beginning at the slab centre, while the abscissa for 

the shell begins at the upper edge of the cylinder. The analytical results for the cylindrical tank with 

a ground slab resting on the elastic half-space are compared with the solution for the slab resting on 

the subsoil modelled by the two-parameter Winkler springs. Diversified results for the vertical 

deflections of the circular ground slab under hydrostatic loading for two subsoil models: the elastic 

half-space and two-parameter Winkler model are shown in Fig. 3a). They are the result of the

different distributions of the subsoil reaction under the tank for both subsoil models (see Fig. 3b)). 

In both cases the shell is bent from the hydrostatic pressure of the liquid, however, the ground slab 

is bent from the water pressure only in case of the elastic half-space model. The self-weight of the 

slab is not taken into account because the bending of the cast in situ slab, due to its self-weight, 

occurs before the concrete is set. In the case of the model of elastic half-space a local unlimited 

growth of subsoil reaction around the slab perimeter is observed, in contrast to the Winkler model 

(Fig. 3b)). In fact, local plasticisation of the soil may occur in this area [16]. The convergence rate 

was estimated based on the meridional moment around the slab edge due to the hydrostatic pressure

as a reliable value (see Fig. 4), because the convergence of a displacement solution in the case of 

displacement method is very fast and in this case, it is not conclusive. The solution of the problem 

in the case of the constant increase in the temperature of the shell stabilises the fastest, already for 

forty terms. In other cases, comparable results are obtained more than twice as slow. The obtained 

results confirm the greatest sensitivity to changes in the accuracy of the solution in the vicinity of 

the connection of the shell with a slab. Sensitivity decreases together with distance from this point. 

The values of meridional moment around the edge of the tank shell clamped in the ground slab from 

the water pressure for the subsoil model of elastic half-space for the first N = 100 terms of the 

expansion (Mx0 (100) + 12.060 kNm/m) is slightly bigger than the meridional moment around the 

edge for the first N = 99 terms of expansion (Mx0(99) + 12.053 kNm/m), so the difference between 

the two subsequent solutions amounted to 0.58 ‰ < 1 ‰.

278 P.M. LEWI�SKI, M. RAK



0,0

1,0

2,0

3,0

4,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

su
bs

id
en

ce
 o

f g
ro

un
d 

sl
ab

 [m
m

]

radius [m]

two-parameter Winkler model
elastic half-space 

a)
-50,0

50,0

150,0

250,0

350,0

450,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

so
il

re
ac

tio
n 

[k
Pa

]

radius [m]

two-parameter Winkler model

elastic half-space

b)

Fig. 3. Deflections of the ground slab (a)) and subsoil reactions under the tank (b)) due to hydrostatic 

pressure (and self -weight) for two subsoil models: elastic half-space and two-parameter Winkler model.
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Fig. 4. Circumferential forces N, (a)) and meridional moments Mz (b)) in the tank shell due to the hydrostatic 

pressure (and self-weight) for subsoil models of elastic half-space and two-parameter Winkler springs.

The different edge rotations of the circular ground slab affected the different distributions of the 

radial moments in the tank slab and, in consequence, the different distributions of the stress 

resultants in the tank wall (see Fig. 4). Then, let us consider the case of the imposed constant 

temperature across the shell thickness T0 = �15 *C, making analogous comparisons (see figures 

5�7). Positive radial displacement of the shell is assumed inward. In this case the slab is loaded 

only by the self-weight of the wall (together with hiperstatic values). Vertical deflections of the 

circular ground slab from the thermal contraction of the shell T0 = �15 *C (and self-weight) for two 

subsoil models: elastic half-space and two-parameter Winkler model have the same character (Fig. 

5a)). The distributions of the bending moments (radial and circumferential) in the tank slab due to

the thermal contraction of the shell T0 = �15 *C for both subsoil models are quite similar (figures 

5b) and 6a)).
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Fig. 5. Vertical deflections of the circular ground slab (a)) and distributions of the radial moments in the tank 

slab (b)) due to the thermal contraction of the shell T0 = �15 *C (and self-weight) for two subsoil models: 

elastic half-space and two-parameter Winkler model.

Moreover, the distribution of internal forces in the tank wall and the horizontal displacements of the 

tank wall for the thermal contraction under consideration for the two above ground models are 

practically overlapping (figures 6b) and 7).
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Fig. 6. Circumferential moments in the tank slab (a)) and circumferential forces in the tank shell (b)) due to

the thermal contraction of the shell T0 = �15 *C for the elastic half-space and two-parameter Winkler model.
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Fig. 7. Radial displacements (a)) and meridional moments Mz (b)) in the tank shell due to the thermal 

contraction of the shell T0 = �15 *C for the elastic half-space and two-parameter Winkler model for subsoil.
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Similar values of bending moments at the joint of the slab with the cylindrical shell result in the 

nearly identical behaviour of the shell in both cases of subsoil models.

5. ANALYSIS OF COMPUTATIONAL RESULTS AND CONCLUSIONS

The analytical concept described in this article seems to be relatively simple and accurate when 

compared to analysis methods based on different representations of soil-structure interaction and in 

comparison with the existing analyses of fluid reservoirs including subsoil-structure interaction. In

addition, the presented solution with controlled accuracy, based on the theory of elasticity, can be 

used to control the accuracy of numerical solutions. A significant difference between results 

obtained for both subsoil models can be observed in the case of the tank under hydrostatic pressure. 

The slab supported on the elastic half-space can be bent due to the uniformly distributed load, in 

contrast to the Winkler soil model, which results in opposite values of the moments at the joint of 

the slab with the cylindrical shell (Fig. 4b)). Therefore, if different soil models lead to extremely 

different structural response results, then these different approaches should be taken into account in

design. To the contrary, in the case of the imposed constant temperature across the shell thickness, 

the distribution of stress resultants in the tank and the horizontal displacements of the tank wall for 

the two above ground models are quite similar (figures 5�7). The analytical results indicate that the 

thermal stress originating only from the circumferential force in the tank shell (Fig. 6b)) in the 

given example can significantly exceed the tensile strength of concrete for concrete class assumed 

in the presented example, so that a severe cracking can be caused by a moderate thermal contraction 

of the shell. Other authors also point out the dangerous effects of imposed actions on tanks. Based 

on static analysis, the Halicka et. al. [17] found that in the case of a cylindrical tank in which 

leakage was observed through cracks in the walls at the junction of the wall and the bottom, the 

cracking was not caused by liquid pressure, but it could have appeared due to imposed 

deformations. Maj [18] drew attention to the reasons of tank failures caused by too low degree of 

reinforcement against shrinkage in the tank shell and the influence of the thermal field in the wall 

caused by the temperature of the stored medium. Flaga [19] described in detail the effects of 

shrinkage stresses on reinforced concrete structures and methods of protecting RC structures against 

these effects. The present work supplements the conclusions of these publications.
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WSPÓŁPRACA Z PODŁOŻEM ŻELBETOWEGO ZBIORNIKA CYLINDRYCZNEGO O ZMIENNEJ GRUBOŚCI 

ŚCIANKI PODDANEGO JEDNOSTAJNEMU OBCIĄŻENIU TERMICZNEMU

Słowa kluczowe: zbiorniki, obciążenie termiczne, współpraca grunt-konstrukcja, półprzestrzeń sprężysta, model Winklera

STRESZCZENIE:

W pracy rozważana jest metoda obliczania naprężeń termicznych w zbiornikach cylindrycznych o zmiennej grubości 

ścianki, zamocowanych u podstawy w płycie dennej i poddanych osiowo-symetrycznemu równomiernemu obciążeniu 

termicznemu (rys. 1). Schemat wzajemnego oddziaływania konstrukcji z podłożem pozwala opisać zachowanie 

konstrukcji zbiorników kołowych o zmiennej grubości ścianki, stosując takie modele podłoża, jak półprzestrzeń 

idealnie sprężysta i model Winklera. Przyjęta tu metoda (por. Borowicka [1], Gorbunow-Posadow [4]) umożliwia 

analizę wzajemnego oddziaływania płyty dennej zbiornika z izotropową półprzestrzenią sprężystą obciążoną

prostopadle na pewnym obszarze płaszczyzny granicznej, z uwzględnieniem równania różniczkowego opartej na niej 

płyty kołowej. Analizę współpracy konstrukcji z podłożem przeprowadzono metodą szeregów potegowych [11]. Zaletą 

tego podejścia jest jest stosunkowo prosty i dokładny opis wzajemnego oddziaływania konstrukcji z podłożem w

porównaniu z innymi metodami. Zróżnicowane wartości ugięcia płyty i reakcji podłoża od ciśnienia hydrostatycznego 

w zbiorniku kołowym o zmiennej grubości ścian pokazano na rys. 2.

Rys. 1. Schemat oddziaływania elementów zbiornika z półprzestrzenią sprężystą wraz z oznaczeniami sił. 

Następnie przeanalizowano przykład obliczeniowy zbiornika o zmiennej grubości ścianki obciążonego temperaturą o

równomiernym rozkładzie. Pionowe przemieszczenia płyty dennej od skurczu termicznego powłoki T0 = �15 *C (oraz

ciężaru własnego) dla dwóch modeli podłoża: półprzestrzeni sprężystej i dwuparametrowego model Winklera mają ten 

sam charakter. Rozkłady momentów zginających w płycie zbiornika spowodowane skurczem termicznym powłoki T0 =

�15 *C dla obu modeli podłoża są dość podobne (patrz rys. 3).
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Rys. 2. Ugięcia płyty dennej (a)) i reakcje podłoża w wyniku działania ciśnienia hydrostatycznego w zbiorniku (b)).
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Rys. 3. Rozkłady momentów radialnych (a)) i obwodowych (b)) w płycie zbiornika spowodowanych skurczem 

termicznym powłoki T0 = �15 *C dla obu modeli podłoża: półprzestrzeni sprężystej i modelu Winklera.

Ponadto rozkłady sił wewnętrznych w powłoce zbiornika i jego przemieszczenia poziome wynikające z rozważanego 

skurczu termicznego dla obu modeli podłoża właściwie pokrywają się (rysunki 4a) i 4b)).
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Rys. 4. Rozkłady sił obwodowych (a)) i momentów południkowych (b)) w powłoce zbiornika spowodowanych 

skurczem termicznym powłoki T0 = �15 *C dla obu modeli podłoża: półprzestrzeni sprężystej i modelu Winklera.

Znaczącą różnicę między wynikami uzyskanymi dla obu modeli podłoża można zaobserwować w przypadku zbiornika 

pod ciśnieniem hydrostatycznym. Z kolei w przypadku narzuconej stałej temperatury na grubości powłoki rozkład sił 

wewnętrznych w zbiorniku i poziome przemieszczenia ściany zbiornika dla dwóch opisanych powyżej modeli podłoża

są dość podobne (rys. 3 i 4). Podobne wartości momentów zginających w styku płyty z powłoką cylindryczną powodują 

prawie identyczne zachowanie się powłoki w obu przypadkach (rys. 4). Naprężenia cieplne pochodzące tylko od sił 

obwodowych w powłoce zbiornika (rys. 4a)) mogą znacznie przekroczyć średnią wartość wytrzymałości rozważanego 

betonu na rozciąganie, a zatem skurcz termiczny powłoki może spowodować jej poważne zarysowania. 
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