
835Bull. Pol. Ac.: Tech. 68(4) 2020

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 68, No. 4, 2020
DOI: 10.24425/bpasts.2020.134182

Abstract. Digital system algorithms such as FFT algorithms, convolution, image processing algorithm, etc. deploy Multiply and Accumulate
(MAC) unit as an evaluative component. The efficiency of a MAC typically relies on the speed of operation, power dissipation, and chip area
along with the complexity level of the circuit. In this research paper, a power-delay-efficient signed-floating-point MAC (SFMAC) is proposed
using Universal Compressor based Multiplier (UCM). Instead of having a complex design architecture, a simple multiplexer-based circuit is
used to achieve a signed-floating output. The 8£8 SFMAC can take 8-bit mantissa and 3-bit exponent and therefore, the input to the SFMAC
can be in the range of – (7.96875)10 to + (7.96875)10. The design and implementation of the proposed architecture is executed on the Cadence
Spectre tool in GPDK 90 nm and TSMC 130 nm CMOS, which proves as power and delay efficient.

Key words: floating-point MAC, UCM, cadence, TSMC 130 nm, GPDK 90 nm.

A MUX based signed-floating-point MAC architecture
using UCM algorithm

R. SARMA 1 , C. BHARGAVA 1*, and S. JAIN2

1 VLSI Design, SEEE, Lovely Professional University, GT Road, Phagwara, Punjab, India
2 Department of Electronics and Communication Engineering, Waknaghat, Solan, HP, India

Xi and Yi and add the result with the previously stored result
from the last multiplication, as shown in (1)

	 F = 
i = 0

n ¡ 1

∑ Xi.Yi� (1)

where ‘i՚ denote the range of the values. The generalized block
diagram of 8£8 bit MAC is shown in Fig. 1.

In recent years, several works have been done by different
researchers ([3, 4] etc.). A high-speed MAC architecture that
promises with the optimized area is proposed in 2007 by Abdel-
gawad et al. [1]. In 2012, Deepak et al. [5] proposed a novel
architecture for the multiplier. In 2013, Jagadees et al. proposed
a novel architecture using a modified Wallace tree multiplier

1.	 Introduction

Today's portable devices can do image filtering to facial recog-
nition, an audio signal enhancement to biometric authentication
and voice recognition to gesture-based control. All of those
functionalities are digital signal processing (DSP) applications.
The DSP algorithms perform a large number of mathematical
operations repeatedly and quickly on a set of data samples.
Most operating systems and microprocessors of general use can
execute DSP algorithms successfully. Still, they are not suitable
for use in portable devices such as PDAs and mobile phones
because of power efficiency constraints. Nevertheless, the rapid
growth of portable electronics has presented VLSI design engi-
neers with the significant challenges of low power and high
throughput. Multiply and Accumulate (MAC) unit plays a vital
role in assessing the output of a DSP module, among the other
digital circuits. It is always preferred to use an efficient MAC
module when performing convolution, image filtering, or any
other DSP operations. The efficiency of a MAC unit is mea-
sured in terms of two factors:
1.	speed of operation;
2.	overall power consumption [1, 2].

The basic MAC architecture contains the main functional
blocks as a multiplier, adder and register/accumulator. The mul-
tiplier performs the multiplication operation over the two input
operands; the adder performs the addition of the result of the
multiplier with the result of the previous cycle, and the register
or accumulator stores the sum for next cycle addition. The basic
operation of MAC is to generate the product of two operands

Fig. 1. Generalized block diagram of 8£8 bit MAC

*e-mail: cherry.bhargava@lpu.co.in

Manuscript submitted 2020-01-30, revised 2020-04-18, initially accepted
for publication 2020-04-27, published in August 2020

ELECTRONICS, TELECOMMUNICATION
AND OPTOELECTRONICS

8 bit Multiplier

16 bit Register

17 bit Adder

17 bit Register

8 bit Input

16 bit Input

16 bit Input

17 bit Input

17 bit Output

8 bit Input

http://orcid.org/0000-0002-5551-1006
http://orcid.org/0000-0003-0847-4780

836

R. Sarma, C. Bhargava, and S. Jain

Bull. Pol. Ac.: Tech. 68(4) 2020

[6]. The implementation is done for 64 bits. In 2013 Francis
et al. used a modified Braun Multiplier to implement a basic
MAC unit [7]. The implementation is done on NCSim and RTL
Compiler. Warrier et al. proposed a low power Baugh-Wooley
multiplier-based unit in 2014 [8]. A pipelined based architec-
ture has been proposed in this work. Split MAC architecture is
explained by Xia et al. in 2009 [9]. There are several architec-
tures explained in the past by various designers. However, most
of the architectures explained in the literature, are designed with
the help of hardware descriptive languages such as Verilog or
VHDL. Further, a MIFGMOS based circuit design is presented
by Topor-Kaminski et al. [10], where add/differential voltage
amplifier is proposed using MIFGMOS. In 2019, an FPGA
based implementation is done of time to digital converter. The
testing is done on the Kintex 7 FPGA board [11]. In 2014, Mar-
ciniak et al. proposed a speech signal processing in a system
with a TMS320C5515 processor [12]. Whereas a pipelined A to
D converter and self-calibrated D to A is proposed in [13] that
targets the application of DSP systems. In a different approach,
a floating-point accumulator architecture is proposed in 2018
by Jamro et al. [14] that uses a unique floating-point standard
other than IEEE-754.

The main disadvantage of using HDL is that the basic blocks
that are to be used while designing any architecture using pre-
defined building blocks (standard PMOS-NMOS implemen-
tation). The reason is even after using smart and efficient
structural designs, the architecture lags in certain aspects. The
main reason for such a shortcoming is the non-optimization of
basic building blocks. In this research work, a full custom IC
approach is adopted for designing the internal blocks of the
MAC architecture, yielding an efficient MAC in terms of power
as well as delay. Moreover, the proposed SFMAC architecture
also uses the Universal Compressor based Multiplier (UCM).

The remaining part of this paper is divided into the follow-
ing sections: Section 2 describes the UCM architecture and its
advantages over Wallace tree multiplier. Section 3 describes
the proposed SFMAC architecture in detail with the initial
considerations and various essential building blocks. Section 4
describes the results and discussion along with the compari-
son with the existing architectures. Finally, the conclusion and
future work is explained in Section 5.

2.	 The UCM Architecture

Although the Wallace tree multiplier is much faster than the
array multiplier [15], it requires a large number of adders.
Moreover, the Wallace tree multiplier is highly irregular and
complicated. So, in order to overcome the irregular structure,
several modified Wallace tree multipliers are proposed in the
literature [4, 15‒23]. All these multiplier architectures are based
upon the Wallace tree algorithm. Hence, replacing the Wallace
tree algorithm may further improve the result of the multiplier.
Another important point here is, instead of using traditional
Wallace tree adder, compressor circuits such as 3:2 compressors
or 4:2 compressors, etc. can be used for partial product addi-
tion. But as there is a possibility of using the same compressor

again for doing addition (same as Wallace tree addition), the
same would not be much effective. Therefore, the Universal
Compressor based Multiplier (UCM) architecture is used [24]
for the design of the proposed SFMAC architecture, where an
N:1 bit size universal compressor algorithm is used for the mul-
tiplication operation. It is claimed that the UCM produces the
result with better efficiency than any other multiplier proposed
in the literature [24].

3.	 Proposed Signed Floating-point MAC
(SFMAC) architecture

The proposed MAC architecture focuses mainly on the signed
architecture based on the synchronized block, which allows
effective pipeline technique. The block enabling is a power
saver technique that momentarily activates a circuit for a small
period. Most of the energy/power can be saved because of
this simple phenomenon. Additionally, the main reason to
implement synchronization is to avoid unnecessary data loss.
Because proper synchronization is not available, the data being
processed in the preceding block may get lost while transfer-
ring the same to the next block. On the other hand, pipeline
processing is the digital system՚s ultimate necessity since it
dramatically increases the system՚s performance. As multiplier
and the adder are the two core blocks, during the selection of the
appropriate circuits, a detailed analysis is made. The delay, as
well as the power-efficient design, are given critical importance
during the selection of the adder. The adder circuit proposed by
Bhattacharyya et al. [3] in 2014 is used in the proposed SFMAC
design to tackle the issue of power dissipation. Additionally, as
discussed earlier, it is found that although the array multiplier
is found to be the most straightforward algorithm for multi-
pliers, it produces a very high delay compared to the Wallace
tree multiplier. The rectangular Wallace tree multiplier, on the
other hand, is a better option since it divides the partial products
into two groups and is, therefore, faster than the conventional
Wallace tree multiplier [20]. But the irregular structure is the
biggest disadvantage of rectangular styled Wallace tree multi-
plier. Therefore, the novel UCM architecture, which has a better
performance in terms of delay in comparison to the Wallace
tree multiplier, is chosen as the multiplier for the proposed
design. A multiplexer-based MAC architecture is proposed in
this paper, which is capable of performing MAC operation on
signed floating-point inputs. For this, a novel input-data format
is proposed, which takes 9-bit binary data with the MSB as
the sign bit and 4-bit exponential input with the MSB as the
exponential sign bit. Therefore, the size of the novel input-data
format is 13-bits. Moreover, the SFMAC architecture, with its
various basic blocks, uses multiplexer circuits rigorously for
selecting between a positive or a negative number.

3.1. Initial Considerations. The architecture uses sign-magn-
nitude as well as 2՚s complement representations to represent
positive as well as negative numbers (including exponent terms).
The overall inputs and output of SFMAC are represented in
sign-magnitude form, whereas for internal calculations, the

837

A MUX based signed-floating-point MAC architecture using UCM algorithm

Bull. Pol. Ac.: Tech. 68(4) 2020

same inputs are converted to 2՚s complement form. The final
output of the proposed MAC architecture (MAC output) is of
16-bits along with one sign bit and 5-bits of exponent. The
inputs to the SFMAC are two 8-bit binary numbers arranged
in a format, as shown in Fig. 2. The real value given by the
proposed sign-magnitude form is shown in (2).

	 §(0.B–1B–2 B–3…‥B–8)2 £ 2§(0E1E0)2� (2)

The overall size of each input of the SFMAC representation
is of 13 bits, in which two bits are reserved for the sign bits of
the number and its exponent. The sign bit can be 0 or 1 based
on positive or negative number representation, respectively. The
remaining eleven bits are used for an 8-bit binary representation Fig. 2. Input format representation of SFMAC

Fig. 3. The novel SFMAC architecture

Exponent 1 (3-bit)Sign
Bit

Exponent 1 (3-bit)Sign
Bit

4-Bit Exponential Adder

Exponent Comparator Circuit

RES Output (5-Bit)
Input 1 (8-bit)Sign

Bit
Input 2 (8-bit)Sign

Bit

8-Bit Multiplier

16-Bit Register
Exponent Shifter Circuit

XOR Gate

2’s Complement 2’s Complement

2:1 MUX 2:1 MUX
0 1 0 1

16-Bit Adder

2:1 MUX
0 1

4:1 MUX
00 01 10 11

16-Bit Register

2:1
MUX 4:1

MUX

1

0

2:1
MUX

0

1

2:1
MUX

0

1

2:1 MUX
1 0

2’s Complement

Carry
(C1)

Product of the exponents of the inputs
(A in 5 bits; MSB is the sign bit)

A (Product of the exponents
of the inputs)

B (Exponents of
the previous

output)

NUM

Previous Output

Shifted NUM or Previous
Output

Actual NUM or Previous
Output

-ve/+ve representation of
Shifted NUM or Previous Output

-ve/+ve representation of Actual
NUM or Previous Output

S1 S2

S1 S2

C2
(Previous)

Product of the sign bits
(PDT_SIGN)

PDT_SIGN

PDT_SIGN

C2
(Previous)

RES [5] RES [5]RES [5]

B A

B (Updated)

PDT_SIGN0

0

1

1

Carry (C1)

PDT_SIGN

C2 (Previous)

C2
(Previous)

MAC
Output

Carry (C1)

00

01

10

11

C2
(Next)

838

R. Sarma, C. Bhargava, and S. Jain

Bull. Pol. Ac.: Tech. 68(4) 2020

3-bit exponent representation in binary. One critical point here
to note is that the 3rd bit of the exponent in binary representa-
tion is by default made as 0 because to represent a 2-bit number
in 2՚s complement form, it requires 3 bits. The range of 2՚s
complement representation is shown in (3):

	 –(2n ¡ 1) ! +(2n ¡ 1 ¡ 1)� (3)

where ʻn՚ is the number of bits.
Therefore, in this architecture, the exponent term can range

from ʻ–3՚ to ʻ+3՚. The input numbers can have a range from
– (0.11111111)2£2+3 to +(0.11111111)2£2+3 and hence, the
range of the inputs of the current SFMAC architecture in deci-
imal number system is from – (7.96875)10 to +(7.96875)10.
Moreover, the inputs to the SFMAC architecture should
be entered in decimal point only. For example, instead of
providing the inputs to the SFMAC as (001)2 and (010)2,
the numbers should be entered as (0.00100000)2£2+3 and
(0.0100000)2£2+3. Similarly, (101)2 and (10)2 should be repr-
resented as (0.10100000)2£2+3 and (0.10000000)2£2+2 respect-
tively to process it through the SFMAC. The major content of
the SFMAC architecture are 2՚s complement block, PED-latch
block, 8-bit multiplier, Exponential Adder (EA), 16-bit register,
2:1/4:1 multiplexer of different sizes, Exponent Comparator
Circuit (ECC), Exponent Shifter Circuit (ESC) and 16-bit adder.
The overall architecture of SFMAC is shown in Fig. 3.

3.2. 2՚s Complement Block. A 2՚s complement block is respons-
sible for representing a negative binary number in 2՚s complem-
ment form or vice versa. The architecture of 2՚s complement
block consists of an n-bit inverter unit along with a series of half
adders. The 2՚s complement block is shown in Fig. 4.

3.3. PED-Latch Block. A PED-latch block that uses block
enabling technique facilitates the saving of electrical power

in digital architecture by reducing the switching activity. The
power-saving is ensured in this technique by activating the
design block as and when required. For this, initially, the delay
for each building block of the architecture needs to be calcu-
lated. Every building block of the architecture gets enabled
only after the desired delay required by that block to produce
the output correctly. The successive blocks are disabled until
the inputs are available to the respective block and thus sav-
ing power. Additionally, the PED-latch block uses a “buffered
and synchronous pipelined architecture”. In the “buffered and
synchronous pipelined architectures”, “pipeline registers” are
introduced between the functional blocks, and are synchronized
(using a clock pulse). Each clock signal is delayed in a way that
the moment the registers are clocked, the data stored is passed
to the next stage. The representation of pipelined architecture
with block enabling technique is shown in Fig. 5.

Fig. 4. 2՚s complement block

Binary input

HA HA HA HA

'1'

2՚s complement block

Fig. 5. PED-latch block

3.4. 8-bit Multiplier. The multiplier block used in this case is
the UCM architecture, explained in [24]. The additional cir-
cuitry that is added to the multiplier is the synchronization.

3.5. Exponential Adder (EA). The EA block performs the
addition of the exponents of the inputs (as 2n£2m = 2(n + m)).
Though the inputs to the EA block is of 4 bit each (including
one sign bit), it produces the result in 5 bits as the addition of
two 2-bit number can produce a maximum of 3-bit result and
for representing a 3-bit binary number in 2՚s complement form,
it requires 4-bits. On the other hand, the MSB bit (i.e., 5th bit)
is the sign bit of the result. To make the EA block synchronized,
a PED-latch block pair is used at the output of each and every
output bits. The MUX-based architecture of the EA block is
shown in Fig. 6.

3.6. 16-bit Register. Generally, due to fluctuation in the inputs,
the output changes and it is almost impossible to track the out-
put. The main use of the register is to hold the data until the
next cycle is processed. Here, 16-bit registers are used at the
final output and immediately after the multiplier. The main con-
tent of the register is a D flip-flop and a data selection circuit
consisting of basic gates.

839

A MUX based signed-floating-point MAC architecture using UCM algorithm

Bull. Pol. Ac.: Tech. 68(4) 2020

3.7. 2:1/4:1 Multiplexer of Different Sizes. As the algorithm
doesn՚t use any programming approach, for solving the cond-
ditions, multiplexers of different sizes with multiple or single
bits is considered.

3.8. Exponent Comparator Circuit (ECC). The inputs to the
ECC are the product of the exponents (EA output, i.e., 5-bit)
and the output exponent of the previous cycle (5-bit in size).
The major point to consider here is that if both the input terms
to the ECC block carry the same sign, then the actual differ-
ence between the two is the arithmetic difference between the
numbers. Whereas, if both the inputs carry different signs,
then the actual difference between the two is the arithmetic
sum of the two numbers. For example, the actual difference
between ʻ+a՚ and ʻ+b՚ is ʻa ¡ b՚ or ʻb ¡ a՚. Whereas, for ʻ–a՚
and ʻ–b՚ the actual difference is ʻ(–a) ¡ (–b)՚ which is ʻb ¡ a՚
or ʻ(–b) ¡ (–a)՚ which is ʻa ¡ b՚. But if the inputs are ʻ+a՚ and
ʻ–b՚ or ʻ–a՚ and ʻ+b՚ then the actual difference is going to be
ʻa ¡ (–b)՚ which is ʻa + b՚ or ʻb ¡ (–a)՚ which is ʻb + a՚. The
flowchart in Fig. 7 explains the operation of the ECC block.
The architecture uses multiplexers to compare the inputs. The
ECC operation produces a 5-bit output, which is to be used for
performing the binary shifts.

3.9. Exponent Shifter Circuit (ESC). The ESC block is
responsible for shifting the smaller number (either the product
of the 8-bit inputs or the previous cycle MAC output) by the
amount of difference between the exponents of these two. The
inputs to the ESC block are the 5-bit output of the ECC block,

a 16-bit product of the inputs and 16-bit value of the previous
cycle output. The step by step procedure is as follows:
1.	The identification of the smaller number is made based on

the ECC output (5-bits). If the MSB of the ECC block out-
put is 1, then the product of the inputs is shifted towards
the right by the equivalent decimal value of the remaining
4-bit binary of the ECC block output. On the other hand, if
the MSB of the ECC block output is 0, then the previous
output is shifted towards the right by the equivalent decimal
value of the remaining 4-bit binary of the ECC block output.

2.	The input to the ESC block, which needs no shift, is also
identified by the MSB of the ECC block output. If the MSB
of the ECC block output is 1, then the previous output is
passed as it is (not shifted). On the other hand, if the MSB
of the ECC block output is 0, then the product of the inputs
is passed as it is (not shifted).

3.10. 16-bit Adder. The adder block is again a synchronized
block (i.e., it is clocked and the PED-latch pair is used). The
outputs of the ESC block are processed through a 2՚s comple-
ment block and a 2:1 Multiplexer for representing a positive or
negative value. For example, if the shifted output of the ESC
block is negative, then its 2՚s complement value is considered.
Similarly, the non-shifted output of the ESC block is negative,
then its 2՚s complement value is considered. The shifted or non-
shifted number can be the product of the inputs or the previous
output. Therefore, to distinguish the same, the 5th bit of the
ECC block output is considered. The shifted or non-shifted
value of the product of the current inputs and previous output
in positive or negative number representation are the inputs to
the adder block.

Fig. 6. Operation of EA block

Exponent 1Sign Bit

2’s Complement 2’s Complement

2:1 MUX 2:1 MUX
0 1 0 1

Adder of the Exponents

4:1 MUX
00 01 10 11

2’s Complement

Carry
Bit

XOR

XOR

2:1 MUX
0 1

0 1

Product of the Exponents (3-bits)‘0’

Sign bit of
Exponent 2

Sign bit of
Exponent 1

Sign bit of
Exponent 1

Sign bit of
Exponent 2

Sign bit of the product (5th Bit)

Exponent 2Sign Bit

Carry Bit

Fig. 7. Operation of ECC block

840

R. Sarma, C. Bhargava, and S. Jain

Bull. Pol. Ac.: Tech. 68(4) 2020

4.	 Results and Discussion

The design and implementation of the overall SFMAC archi-
tecture is done on Cadence Virtuoso CMOS technologies. The
architecture uses a clock gating scheme along with pipelining
to reduce power dissipation. The pipeline mechanism using
clock pulse is ensured by activating the consecutive blocks after
a fixed time period. But the clock for the consecutive blocks are
differed by a delay of 1.4 ns. The reason for the delay is to latch
the output of the previous block effectively, which acts as the
input for the next block. The postponement of clock signals is
calculated by the maximum propagation delay of the individual
blocks of the SFMAC architecture, as expressed by (4).

	τClock_delay = max(τdelay_EA, τdelay_UCM, …, τdelay_reg2)� (4)

where τdelay_EA is the propagation delay of the EA block;
τdelay_UCM is the propagation delay of the Universal Compres-
sor based Multiplier (UCM); τdelay_reg1 and τdelay_reg2 are the
propagation delay of the register 1 and register 2 respectively.
For f inding the delay of the internal blocks, the designs are
implemented in 90 nm CMOS technology. The evaluated delay
values of the internal blocks of SFMAC is tabulated in Table 1.

As there are nine clocked blocks in this architecture, the
amount of total delay required is eight times 1.4 ns
(1.4 ns£8 = 11.2 ns), which means a set of inputs latched at

time 0 ns is evaluated and produces the output only after
11.2 ns. Therefore, the clock period is fixed at 12 ns (or
83.333 MHz operational frequency), so that execution of the
last clock and latching on the first clock doesn՚t get overlapped.
Figure 8 shows the output waveform of the proposed SFMAC

Fig. 8. The simulation waveform of the SFMAC architecture

Table 1
Propagation delay of the internal blocks of SFMAC architecture

Block Delay Inference

UCM 1433.7 ps The maximum delay from A0 to P15,
considering all inputs as high

Register 1123.6 ps Delay from the positive edge of the
clock to any of the output

Full Adder 1122.4 ps Delay from A0 to OUT15, considering all
inputs as high

EA Block 1268.9 ps Delay from Exp20 to ExpOUT2,
considering Exp1 as positive and Exp2
as negative

ESC Block
(along with
ECC block)

1367.5 ps With same sign bits of both the
exponents (as negative or positive) in
the ECC block and maximum bit shift in
the ESC block

2:1 MUX 1112.6 ps With the critical path from s to y

4:1 MUX 1118.9 ps Maximum delay occurred either in s0 to
y, s1 to y or s2 to y

Transient Response

time (ns)
0

0000

0000

11

0

M0(4b)

M2(11)

4b

9

0

17bb

00

0bdd

a2d_/W_Rbar

a2d_/clk0

a2d_/clk1

a2d_/clk2

a2d_/clk3

a2d_/clk4

a2d_/clk5

a2d_/clk6

a2d_/clk7

a2d_/clk8

a2d_/rst_bar

RES

IN2

IN2_exp

a2d_/sign2

a2d_/sign1

NUM_exp

OUT_exp

OUT

a2d_/C2

NUM

IN1

IN1_exp

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

17ba

b

2

11

51

10

9

M1 (HiZSt0)

841

A MUX based signed-floating-point MAC architecture using UCM algorithm

Bull. Pol. Ac.: Tech. 68(4) 2020

architecture. The clock in the SFMAC architecture is applied
in a pipelined manner, as shown in Fig. 8. The latching of a new
set of exponential input is done in clock 0, by activating the EA
block which provides the NUM (exponential) output. The
Write/Read signal is used for selecting the write or read oper-
ation, which is an active high signal. Whereas the Reset signal
is used for force resetting the SFMAC system and it is an active
low signal. In clock 1, the UCM gets enabled, which provides
the 16-bit NUM output based on two 8-bit inputs IN1 and IN2.
Clock 2 signal is used as a clock signal for the 16-bit regis-
ter for the multiplier and there is no clock applied to the ECC
block, which produces 5-bit RES output. Clock 3 and RES are
applied to the ESC block, which yields the shifted/non-shifted
NUM or previous output. Parallelly the same clock is applied
to the 2:1 MUXs for updating the select line of the 16-bit 2:1
MUXs to update the true or complemented NUM or previous
output.

Clock 4 is applied to the 16-bit 2:1 MUXs to update the true
or complemented NUM/previous output. On the other hand, for
adding the true or 2՚s complement form of shifted/non-shifted
16-bit inputs, clock 5 is applied. The 16-bit 2:1 MUX block is
activated on the edges of clock 6, which choose between the
true value of the full adder output or the 2՚s complement value
of the full adder output. The carry bit of the output of the full
adder is applied as the select line. The overall output of the
MAC block is based on the selection of XOR of the sign bit of
the inputs and the sign bit of the previous output. The input for
the 16-bit 4:1 MUX is the output of the 16-bit 2:1 MUX. The
inputs for the 16-bit 4:1 MUX is latched at the positive edges
of clock 7. The operation of the 16-bit 4:1 MUX is explained
in Table 2. Finally, a 16-bit register is used at the output so that
the internal glitches don՚t change the output value. The 16-bit
register block is enabled with clock 8, which yields the OUT
(SFMAC output), OUT_exp (output exponent) and C2 (sign bit
of the output). The SFMAC architecture is not only implemented
in GPDK 90 nm but also TSMC 130 nm CMOS technology.
Table 3 shows a power comparison of SFMAC architecture at
different CMOS technologies in a specific input vector. The
simulation period is kept as 40 ns because:
1.	The reset signal (active low) is low till 10.8 ns and
2.	The clock signals have a time period of 12 ns.

Therefore, until 23.2 ns, the output signal remains at 0. The
power consumption of the implemented designs is calculated

using Cadence Spectre Tool. The static power is evaluated for
2 V supply voltage, whereas the average power is measured for
a simulation period of 40 ns and at a frequency of 83.33 MHz.
The average power consumption of the SFMAC in TSMC
130 nm is higher than GPDK 90 nm because the transistor
sizing is higher in 130 nm technology, which affects the load
capacitance Cload. Similarly, the static power consumption is
also a function of device geometry. Therefore, a circuit con-
sisting of a higher device dimension has higher static power
consumption. The average power of a CMOS circuit is given
by (5).

	 Pavg = αT CloadVDD fclk� (5)

where Pavg is the average power consumption; αT is the activity
factor; Cload is the load capacitance; VDD is the supply voltage
and fclk is the clock frequency. On the other hand, the calcu-
lation of delay of the overall SFMAC architecture is done by
identifying the critical path. While calculating the delay, the
maximum possible input is provided so that the worst-case sce-
nario can be obtained. Further, the influence of the clock is also
considered while calculating the delay.

4.1. Comparison with existing architectures. The power and
delay are the most belied factors in CMOS circuits. Power opti-
mization leads to a significant decrease in the speed of operation
on VLSI circuits. Therefore, proper selection of supply voltage
should be ensured while designing low-power VLSI circuits.
The comparison in terms of power consumption as well as delay
of the proposed SFMAC architecture with the existing MAC
architectures are shown in Table 4. It is challenging to compare
the proposed SFMAC architecture with those who are already
available in the literature because most of the available archi-
tectures in the literature have used HDL based approach. On
the other hand, the proposed architectures are implemented in
Cadence Virtuoso 90 nm and 130 nm environment. Moreover,
almost 99% of the architectures available in the literature have
neither implemented for signed operation nor floating-point
designs. Though there are some architectures in the literature
that have used the clocking signals for the accumulation of data
only (in the register or accumulator) most of the architectures
haven՚t used any clocking signal. Any circuit in asynchronous
mode can՚t be implemented in a real-time application. There-
fore, the practical applicability of such architecture needs to
be further tested. Most of the architectures explained in the

Table 2
The operation of the 16-bit 4:1 MUX based on the two select lines

XOR of the sign
bit of the inputs

Sign bit of the
previous output

Operation

0 0 No change or true form

0 1 Pass the output of the
16-bit 2:1 MUX as such

1 0 Pass the output of the
16-bit 2:1 MUX as such

1 1 2’s complement

Table 3
Comparison of SFMAC at supply voltage 2 V and simulation period

40 ns in GPDK 90 nm and TSMC 130 nm CMOS technology

SFMAC
Architecture

Static
power in
μW (For

VDD = 2 V)

Average power in
μW (For VDD = 2 V

and simulation
period = 40 ns)

Area (total
number of

transistors)

TSMC 130 nm 2398.76 25990 25783

GPDK 90 nm 476.94 7980 25783

842

R. Sarma, C. Bhargava, and S. Jain

Bull. Pol. Ac.: Tech. 68(4) 2020

Table 4, are implemented for unsigned-fixed-point MAC oper-
ation and only one architecture (i.e. Zhang, et al., 2018 [25]) is
implemented for floating-point signed operation.

The differences are clearly visible from the Table 4 that the
performance of [6, 26, 27] have a significantly higher static as
well as average power (in mW) than proposed SFMAC archi-
tecture. The delay of the unsigned fixed-point architecture in
[27] is lesser than the proposed architecture because the oper-
ating frequency of the said architecture is much larger than the
proposed SFMAC architecture. The performance of [28, 29]
are evaluated in 90 nm and 180 nm technologies for 16-bit
operations at 1 V and 8-bit operations at 1.8 V respectively.
Though, the power consumptions of the existing work men-
tioned in [28, 29] are lesser than proposed SFMAC architecture
(the existing circuit՚s performance analysis is performed in sup-
ply voltage lesser than 2 V whereas for the SFMAC the supply

voltage is 2 V). Still, these two existing architectures are capa-
ble of performing the MAC operation on a fixed point unsigned
number only. Therefore, the existing MAC architectures men-
tioned in [28, 29] have limited scope. Though the architectures
mentioned in [30] are implemented in 180 nm technology and
1.8 V supply voltage for 16-bit MAC operation, the power con-
sumption is way more than the SFMAC architecture. The Vedic
multiplier based MAC architecture in [30] has a little advantage
in speed in comparison to the proposed SFMAC architecture
but at the cost of very high power consumption. For the archi-
tecture mentioned in [31], the implementation is done for 1-bit
unsigned fixed-point MAC operation in 32 nm CMOS and
CNTFET technology and hence, comparison with 8-bit SFMAC
is not relevant. Though the architecture mentioned in [25] is
the only existing MAC architecture capable of performing on
signed floating-point input, the comparison analysis with pro-

Table 4
Proposed SFMAC Vs existing architectures

Sl
No. Author Existing architecture description Tool/HDL

used
Power Consumption and

Delay Analysis

Proposed SFMAC (in 90 nm,
2 V supply for 8£8 bit operation)

Power Consumption
@ 83.33 MHz Delay

1 Shanthala, et al.,
2009 [26]

Pipelined Multiply Accumulate Unit
(fixed-point) in 180 nm technology, 1.8 V
at 83.3 MHz and 8£8 bit operation

Cadence
Virtuoso

Power: 50.26 mW

Static Power:
0.476 mW

Average Power:
7.98 mW

2564.9 ps

Delay: Not Specified

2 Jagadees, et al.,
2013 [6]

Multiply Accumulate Unit (fixed-point) in
180 nm technology, 1.8V at 217 MHz and
64£64 bit operation

Verilog HDL
Power: 177.732 mW

Delay: 4900 ps

3 Hoang, et al.,
2010, [27]

Pipelined Multiply Accumulate Unit
(fixed-point) in 65 nm technology, 1.1 V at
591 MHz and 16£16 bit operation

VHDL
Power: 8.2 mW

Delay: 1312 ps

4 Esmaeili, et al.,
2012 [28]

Multiply Accumulate Unit (fixed-point)
in 90 nm technology, 1 V at 100 MHz and
16£16 bit operation

HDL in
Cadence
HSPICE
simulator

Power: 1.506 mW

Delay: Not Specified

5 Akbarzadeh,
et al., 2015 [29]

Pipelined Multiply Accumulate Unit
(fixed-point) in 180 nm technology, 1.8 V
and 8£8 bit operation

HDL in
Synopsys

Design
Compiler

Dynamic
Power Static Power

3.627 mW 2.010 mW

Delay:1550 ps

6
Rahul
Narasimhan,
et al., 2015 [30]

Multiply Accumulate Unit (fixed-point) in
180 nm technology, 1.8 V at 5 MHz and
16£16 bit operation

Verilog
HDL

MAC using
Booth

MAC using
Vedic

Power:
493.648 mW

Power:
1765.241 mW

Delay:
11489.4 ps

Delay:
1169.12 ps

7 Karthikeyan,
et al., 2016 [31]

Multiply Accumulate Unit (fixed-point) in
32 nm CMOS and CNTFET technology
and 11 bit operation

No details
are

provided

CMOS Tech CNTFET Tech

0.9902 mW 0.6335 mW

Delay: Not Specified

8 Zhang, et al.,
2018 [25]

Fixed/Floating-Point Multiply Accumulate
Unit in 90 nm technology for 16-bit
half-precision multiplication

VHDL
Power: 14.07 mW

Delay: 800 ps

843

A MUX based signed-floating-point MAC architecture using UCM algorithm

Bull. Pol. Ac.: Tech. 68(4) 2020

posed SFMAC shows that the performance of SFMAC is much
better in terms of power consumption. Additionally, the analysis
mentioned in [25] doesn՚t specify any operating frequency of
the architecture. Hence, the delay comparison of [25] with the
proposed SFMAC architecture is not viable.

3.	 Conclusions

A suitable power-efficient high-speed MAC unit for signed-
floating-point operation is designed using high-speed UCM
architecture. The 8£8-bit signed-floating-point MAC (SFMAC)
architecture using basic 2:1/4:1 multiplexer is a novel design,
which consumes less power at a supply voltage of 2 V and
83.33 MHz operating frequency. The step-wise architectural
design is also elaborated in this paper. For design and imple-
mentation, the Cadence Spectre tool is used at GPDK 90 nm
as well as TSMC 130 nm CMOS technologies. Based on eval-
uation parameters such as size, supply voltage and operating
frequency, proposed SFMAC architecture consumes less power
and tolerable amount of worst-case delay. Therefore, it has
applicability in low-power high-speed DSP architectures.

References
	 [1]	 A. Abdelgawad and M. Bayoumi, “High speed and area efficient

multiply accumulate (MAC) unit for digital signal processing ap-
plications”, IEEE Int. Symp. Circuits and Systems, New Orleans,
LA, USA, 3199–3202 (2007).

	 [2]	 N.J. Babu and R. Sarma, “A novel low power multiplyaccumu-
late (MAC) unit design for fixed point signed numbers”, Ad-
vances in Intelligent Systems and Computing 394(1): 675–690
(2016).

	 [3]	 P. Bhattacharyya, B. Kundu, S. Ghosh, V. Kumar, and A. Dan-
dapat, “Performance analysis of a low-power high-speed hybrid
1-bit full adder circuit”, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 23(10), 2001–2008 (2014).

	 [4]	 M.J. Liao, C.F. Su, C.Y. Chang, and A.C.H. Wu, “A car-
ry-select-adder optimization technique for high-performance
booth-encoded wallace-tree multipliers”. IEEE Int. Symp. Cir-
cuits and Systems, Phoenix-Scottsdale, USA, 81–84 (2002).

	 [5]	 S. Deepak and B.J. Kailath, “Optimized MAC unit design”,Int.
Conf. on Electron Devices and Solid State Circuit (EDSSC),
Bangkok, Thailand, 1–4 (2012).

	 [6]	 P. Jagadees, S. Ravi, and K.H. Mallikarjun, “Design of a high
performance 64 bit MAC unit”,Int. Conf. on Circuits, Power and
Computing Technologies, Nagercoil, India, 782‒786 (2013).

	 [7]	 T. Francis, T. Joseph, and J.K. Antony, “Modified MAC unit for
low power high speed DSP application using multiplier with
bypassing technique and optimized adders”, 4th Int. Conf. on
Computing, Communications and Networking Technologies (IC-
CCNT), Tiruchengode, India, 1–4 (2013).

	 [8]	 R. Warrier, C.H. Vun, and W. Zhang, “A low-power pipelined
MAC architecture using baugh-wooley based multiplier”, 3rd
Global Conf. on Consumer Electronics (GCCE), Tokyo, Japan,
505–506 (2014).

	 [9]	 B.J. Xia, P. Liu, and Q.D. Yao, “New method for high perfor-
mance multiply-accumulator design”, Journal of Zhejiang Uni-
versity Science 10(7), 1067–1074 (2009).

	[10]	 L. Topor-Kaminski and P. Holajn, “Multiple-input floating-gate
MOS transistor in analogue electronics circuit”, Bull. Pol. Ac.:
Tech. 52(3), 251–256 (2004).

	[11]	 P. Kwiatkowski, “Employing FPGA DSP blocks for time-todig-
ital conversion”, Metrol. Meas. Syst. 26(4), 631‒643 (2019).

	[12]	 T. Marciniak, R. Weychan, A. Stankiewicz, and A. Dab-
rowski, “Biometric speech signal processing in a system with
digital signal processor”, Bull. Pol. Ac.: Tech. 62(3), 589–594
(2014).

	[13]	 K. Wawryn and R. Suszynski, “Low power 9-bit pipelined A/D
and 8-bit self-calibrated D/A converters for a DSP system”, Bull.
Pol. Ac.: Tech. 61(4), 979–988 (2013).

	[14]	 E. Jamro, A. Dabrowska-Boruch, P. Russek, M. Wielgosz, and
K. Wiatr, “Novel architecture for floating point accumulator with
cancelation error detection”, Bull. Pol. Ac.: Tech. 66(5), 579–587
(2018).

	[15]	 K.B. Jaiswal, N. Kumar, P. Seshadri, and G. Lakshminarayanan,
“Low power wallace tree multiplier using modified full adder”,
3rd Int. Conf. on Signal Processing, Communication and Net-
working (ICSCN), Chennai, India, 1–4 (2015).

	[16]	 M.J. Rao and S. Dubey, “A high speed and area efficient booth
recoded wallace tree multiplier for fast arithmetic circuits”, Asia
Pacific Conf. on Postgraduate Research in Microelectronics
and Electronics (PRIMEASIA), Hyderabad, India, 220–223
(2012).

	[17]	 X.V. Luu, T.T. Hoang, T.T. Bui, and A.V. Dinh-Duc, “A high-
speed unsigned 32-bit multiplier based on booth-encoder and
wallace-tree modifications”, Int. Conf. on Advanced Technolo-
gies for Communications (ATC’14), Hanoi, Vietnam, 739–744
(2014).

	[18]	 N. Itoh, Y. Naemura, H. Makino, Y. Nakase, T. Yoshihara, and
Y. Horiba, “A 600-MHz 54-bit multiplier with rectangularstyled
wallace tree”, IEEE J. Solid-State Circuits 36(2), 249‒257
(2001).

	[19]	 D. Paradhasaradhi, M. Prashanthi, and N. Vivek, “Modified
wallace tree multiplier using efficient square root carry select
adder”, Int. Conf. on Green Computing Communication and
Electrical Engineering (ICGCCEE), Coimbatore, India, 1–5
(2014).

	[20]	 T.Y. Kuo and J.S. Wang, “A low-voltage latch-adder based tree
multiplier”, IEEE Int. Symp. Circuits and Systems, Seattle, WA,
804–807 (2008).

	[21]	 S. Khan, S. Kakde, and Y. Suryawanshi, “VLSI implementation
of reduced complexity wallace multiplier using energy efficient
CMOS full adder”, Int. Conf. on Computational Intelligence and
Computing Research, Enathi, India, 1–4 (2013).

	[22]	 R.D. Kshirsagar, E.V. Aishwarya, A.S. Vishwanath, and P. Jay-
akrishnan, “Implementation of pipelined booth encoded wallace
tree multiplier architecture”, Int. Conf. on Communication and
Green Computing Conservation of Energy (ICGCE), Chennai,
India, 199–204 (2013).

	[23]	 B.N.M. Reddy, H.N. Sheshagiri, and S. Shanthala, “Implemen-
tation of low power 8-Bit multiplier using gate diffusion input
logic”, 17th Int. Conf. on Computational Science and Engineer-
ing, Chengdu, China, 1868–1871 (2014).

	[24]	 R. Sarma, C. Bhargava, and S. Jain, “UCM: A Novel Approach
for Delay Optimization”, Int J Performability Eng 15(4),
1190‒1198 (2019).

	[25]	 H. Zhang, H.J. Lee, and S.B. Ko, “Efficient fixed/floatingpoint
merged mixed-precision multiply-accumulate unit for deep learn-
ing processors”, IEEE Int. Symp. Circuits and Systems, Florence,
Italy, 1–5 (2018).

844

R. Sarma, C. Bhargava, and S. Jain

Bull. Pol. Ac.: Tech. 68(4) 2020

	[26]	 S. Shanthala, C.P. Raj, and S.Y. Kulkarni, “Design and VLSI
implementation of pipelined multiply accumulate unit”, 2nd
Int. Conf. on Emerging Trends in Engineering and Technology
(ICETET-09), Nagpur, India, 381–386 (2009).

	[27]	 T.T. Hoang, M. Sjlander, and P. Larsson-Edefors, “A highspeed,
energy-efficient two-cycle multiply-accumulate (MAC) architec-
ture and its application to a double-throughput MAC unit”, IEEE
Trans. Circuits Syst. I, Reg. Papers 57(12), 3073– 3081 (2010).

	[28]	 S.E. Esmaeili, A.J. Al-Kahlili, and G.E.R. Cowan, “Low-swing
differential conditional capturing flip-flop for LC resonant clock
distribution networks”, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., 20(8), 1547–1551 (2012).

	[29]	 N. Akbarzadeh, S. Timarchi, and A.A. Hamidi, “Efficient mul-
tiply-add unit specified for DSPs utilizing low-power pipeline
modulo 2n + 1 multiplier”, 9th Iranian Conf. on Machine Vision
and Image Processing, Tehran, Iran, 120–123 (2015).

	[30]	 A.R. Narasimhan and R.S. Subramanian, “High speed multiply-
accumulator coprocessor realized for digital filters”, Int. Conf.
on Electrical, Computer and Communication Technologies (ICE-
CCT), Coimbatore, India, 1–4 (2015).

	[31]	 K.V. Karthikeyan, R. Babu, N. Mathan, and B. Karthick, “Per-
formance analysis of an efficient MAC unit using CNTFET
technology”, Recent Advances In Nano Science And Technology,
Chennai, Tamilnadu, India, 2525–2531 (2016).

