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are affecting all parts of the production chain. Various initiatives and approaches are set
up to help companies adopt the principles of the fourth industrial revolution with respect
sustainability. Within these actions the use of modern maintenance approaches such as
Maintenance 4.0 is highlighted as one of the prevailing smart & sustainable manufacturing
topics. The goal of this paper is to describe the latest trends within the area of maintenance
management from the perspective of the challenges of the fourth industrial revolution and
the economic, environmental and social challenges of sustainable development. In this work,
intelligent and sustainable maintenance was considered in three perspectives. The first per-
spective is the historical perspective, in relation to which evolution has been presented in the
approach to maintenance in accordance with the development of production engineering. The
next perspective is the development perspective, which presents historical perspectives on
maintenance data and data-driven maintenance technology. The third perspective, presents
maintenance in the context of the dimensions of sustainable development and potential op-
portunities for including data-driven maintenance technology in the implementation of the
economic, environmental and social challenges of sustainable production.
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Introduction

Manufacturing companies and equipment man-
ufacturers face two major changes affecting their
business: digitalization and the sustainability. From
the point of view of digitalization in the literature
on production, the changes are referred to as the
next (fourth) industrial revolution, which is often re-
ferred as ‘Smart manufacturing’, ‘Industry 4.0’ and
‘Smart Factory’ [1]. Only two years ago, Industry
4.0 was considered the future, today it is a wide-
ly accepted reality that changes the way companies
operate and affects almost every industry around
the world [2]. The term Industry 4.0 is defined in
literature in many ways. Depending on the direc-
tion of the research conducted by the authors, vari-

ous aspects are highlighted [3]. In general, Industry
4.0 can be defined as a term collectively describing
changes in technological scope and organization of
value chains [4]. This definition highlights two main
aspects of digital transformation, namely the tech-
nological aspect and the business aspect. The tech-
nological aspect refers, among other things, to new
possibilities of implementing and monitoring process-
es through the use of digital technologies [5, 6], while
the business aspect includes primarily new business
models [7]. In Industry 4.0 environment, manufac-
turing systems are able to monitor physical process-
es, create a so-called ‘digital twin’ of the physical
system, and make smart decisions by real-time com-
munication and cooperation with humans, machines,
sensors, etc. [8, 9].
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The second major change affecting manufactur-
ers is the sustainable development (SD). Brundtland
Commission (1987) defined SD as ‘development that
meets the needs of the present without compromis-
ing the ability of the future generation to meet their
own needs’. In sustainable development environment,
there has been an increased pressure on manufac-
turing companies to think beyond traditional eco-
nomic measure and evaluate environmental and so-
cial effects of the business. As described by [10] sus-
tainable manufacturing seeks to ensure that produc-
tion will be performed economically, considering re-
sources use, and securing social standards.

In the Industry 4.0 context, sustainable manu-
facturing definition and approach can be linked with
production systems developed in order to be con-
scious, transparent, intelligent, efficient, flexible, ag-
ile, collaborative and responsive [11]. Digitalization
and sustainability are important topics for manufac-
turing industries as they are affecting all parts of the
production chain. According to [11] ‘both approach-
es present practices’ convergence, such as: design for
disassembly, remanufacturing, and recycling applied
in the life cycle management; reverse logistics for cir-
cular economy, ‘lean and green management’ for re-
source efficiency; sustainable design reducing safety
risks for workers’ and consumers’ eliminating the use
of toxics parts in the product and production pro-
cesses’.

In such a context, various initiatives and ap-
proaches are set up to help companies adopt the prin-
ciples of the fourth industrial revolution with respect
sustainability. Within these actions the use of mod-
ern maintenance approaches such as Maintenance 4.0
(also called Smart Maintenance) is highlighted as one
of the prevailing smart & sustainable manufacturing
topics [12, 13].

The goal of this paper is to describe the lat-
est trends within the area of maintenance manage-
ment from the perspective of the challenges of the
fourth industrial revolution and the economic, envi-
ronmental and social challenges of sustainable deve-
lopment.

The rest of the paper is as follows. Firstly (chap-
ter 2), a short literature review related to evolution
on maintenance is introduced. In the next chapter,
the evolvement history of maintenance data is re-
viewed and date driven maintenance technologies are
presented. The fourth chapter is devoted to issues of
sustainable maintenance. The fifth chapter presents
the potential applications of Maintenance 4.0 tech-
nology in relation to the economic, social and en-
vironmental challenges of sustainable development.
Finally, the main conclusion is presented.

From Maintenance 1.0
to Maintenance 4.0

In the last years, due to the evolution of technol-
ogy, machines have become more and more complex
and they also became more critical in terms of reli-
ability and availability. To reduce the risk and mini-
mize the consequences of unexpected stops and dis-
ruptions in digitalized manufacturing, maintenance
must take a key role [13]. Over time, maintenance
has evolved from reactive (Maintenance 1.0 – M1.0)
to preventive (Maintenance 2.0 – M2.0) and then to
condition based (Maintenance 3.0 – M3.0), to current
predictive and prescriptive approach which is usually
denoted as Maintenance 4.0 – M4.0 (Fig. 1).

Fig. 1. Development of industrial maintenance.

During the first generation (Corrective mainte-
nance or Maintenance 1.0), the machines were slow
and simple to work and were simple in design and
easy for repairing. Machine operators were responsi-
ble for equipment maintenance. Maintenance actions
were based on solving the faults that have already
happened. As the complexity of the machines grew
and the maintenance operations increased, enterpris-
es started to include maintenance departments in
their structure. The objective of maintenance depart-
ment was to reduce the number of corrective main-
tenance actions applied through periodic checks and
replacement of worn parts. The concept of a system
of planned preventive repairs has appeared (Main-
tenance 2.0). Its essence is servicing machines and
devices at predetermined time intervals while often
making use a checklist of original equipment manu-
facturers (OEM) recommendations.

The start of automation or more complex systems
paved the way for maintenance to next generation –
Maintenance 3.0 (also called Condition Based Main-
tenance – CBM). The expectations of maintenance
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were of higher equipment availability and reliabil-
ity, better product quality, long equipment life and
great cost effectiveness. The development of automa-
tion gave the ideas for developing more maintenance
models, which would contribute the production and
profit. According to [14], CBM is a maintenance pro-
gram that recommends maintenance actions (deci-
sions) based on the information collected through
condition monitoring process.

With the Industry 4.0, new maintenance
paradigm, innovative methods and tools have to be
developed. Maintenance has to change towards the
requirements of Industry 4.0 to become an enabler
for the smart factory [15]. In the context of Indus-
try 4.0, the maintenance function is often denoted as
Maintenance 4.0 or Smart Maintenance [16] and is
defined as:
• ‘a subset of the smart manufacturing system

represented by self-learning and smart machines
that predicts failure, makes diagnosis and triggers
maintenance actions’ [17];

• ‘is the application of machine learning, automat-
ed processes and robotics/drones to reliability and
maintenance activities’ [18];

• ‘is about predicting future failures in assets and ul-
timately prescribing the most effective preventive
measure by applying advanced analytic techniques
on big data about technical condition, usage, envi-
ronment, maintenance history, similar equipment
elsewhere and, in fact, anything possibly relating
to the performance of an asset’ [19].
According to [20], ‘Smart Maintenance stands for

an intelligent and learning maintenance management
focusing on permanent improvement’. According to
[21] ‘Maintenance 4.0 does predictive analytics and
suggests feasible solution, with major application in
Industry 4.0 and especially on those maintenance as-
pects that deals with collection of data, its anal-
ysis and visualization and asset decision-making’.
Recently [22] developed a conceptual definition of
Smart Maintenance as ‘an organizational design for
managing maintenance of manufacturing plants in
environments with pervasive digital technologies’
and defined the four underlying dimensions: data-
driven decision-making, human capital resource, in-
ternal integration, and external integration.

Given the above, Smart Maintenance or Mainte-
nance 4.0 describes a set of techniques to monitor the
current condition of machines with the goal to pre-
dict upcoming machine failure by using automated
(near) real-time analytics and supervised or unsu-
pervised machine learning, and to prescribe optimal
course of action in real time, analyse potential deci-
sions and interaction between them.

Predictive maintenance employs the use of sen-
sors to precisely collect data describing manufac-
turing equipment’s condition and overall operational
state. The data can then be analysed to predict when
failure events will occur [23]. The key technologies
involved in predictive maintenance are data collec-
tion and analysis technologies, such as Internet of
Thinks (IoT), cloud computing, predictive analysis
(such as fuzzy logic, neural networks, evolutionary
algorithms, machine learning, probabilistic reason-
ing), and equipment repair technologies [24–26]. Gru-
bic [27] suggests that the use of predictive mainte-
nance strategy is stimulated by servitization.

At the top level of Maintenance 4.0 (Fig 1), the
use of advanced data analytics methods allows to not
only predict when a failure occurs, but also by us-
ing libraries of standard maintenance tasks, prescribe
recommendations to avoid such a failure and opti-
mize maintenance schedulers and resources. Thus,
the concept of prescriptive maintenance goes far be-
yond simply predicting failures [28]. Based on the
analysis of historical data and real-time data on the
state of the machine, required maintenance measures
are predicted by a system and a course of action is
prescribed. Prescriptive maintenance means chang-
ing the paradigm and moving from planned pre-
ventive maintenance to proactive and smart main-
tenance planning [29].

Data-driven maintenance

Maintenance data from time perspective

For any scientific maintenance practices, data
are one of the most important requirements. In
the Maintenance 1.0 age, because of manufacturing
equipment was simply, maintenance activities were
of low complexity. As a result, the data generated
in the maintenance tasks was limited, as it existed
mostly in the form of equipment operator experience.
Machine operators and storage in operators’ memory
collected the maintenance data manually.

In the Maintenance 2.0 age, the way data was ac-
quired and processed has changed. The increase in
demand for products has led, among other things, to
an increase in mechanization. Availability, durabili-
ty and costs were recognized as important factors for
achieving business goals. Enterprises began to estab-
lish specialized technical services (separate organiza-
tional units) to carry out maintenance and repair
tasks, and machine and device operators in prac-
tice did not participate in these activities and had
no impact on their scope. Maintenance data was in-
creasingly handled by maintenance managers. Main-
tenance managers began to employ more systemat-
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ic methods to document and analyse maintenance
data. The raw data was recorded in written docu-
ments rather than stored in machine operator mem-
ory. Machine-related data was used to support de-
cisions concerning machine maintenance, repair, and
replacement. In particular, statistical models were in-
troduced to analyse failure rate and spare parts con-
sumption. Nevertheless, despite the fact that a larger
quantity of maintenance data was analysed through
scientific methods, data was still handled manual-
ly by maintainers. Therefore, the utilization rate of
maintenance data remained relatively low.

With the introduction of the next industrial rev-
olution (referred to in the literature as the informa-
tion age), the role of information technologies and
the scope of their application in production process-
es increased. Consequently, the companies gained
the ability to obtain a large amount of data on
both production processes and maintenance process-
es. Many factors influenced this ability. First, in or-
der to facilitate maintenance management in produc-
tion enterprises, IT systems, e.g. CMMS (Computer
Maintenance Management System), have been used.
Secondly, machine and device manufacturers have
started to use computer systems such as computer-
aided design (CAD) and computer aided manufac-
turing (CAM) to modify and optimize new machines.
Thirdly, electronic devices and computers began to
be used to automatically control production devices.
Data from the processes of use and maintenance pro-
cesses of machines and devices began to be stored in

computer systems and managed by information sys-
tems. In addition, the effectiveness of data analysis
has also increased due to the use of computational
models. Still, in the decision-making process, the re-
sults of the analysis required interpretation by heads
of maintenance. Due to implementation costs and
competences necessary to maintain maintenance IT
systems, many manufacturing companies (especial-
ly small and medium-sized enterprises) still found
it difficult to benefit from the value of maintenance
data.

In recent years, due to the significant increase
in digitization and automation, as well as the com-
plexity of production equipment, requirements for
maintenance management have changed [15]. To-
day’s maintenance managers face great challenges to
increase output, to reduce equipment downtime, to
lower costs, and to do it all with less risk to safety and
the environment. Thanks to new technologies of In-
dustry 4.0 (such as the Internet of Things and cloud
computing), the possibility of collecting and storing
as well as their processing and analysis has signifi-
cantly increased. As a result, heads of maintenance
departments, and consequently business managers,
can start to benefit from the value of data. Effec-
tive analysis of data enables equipment manufactur-
ers and machines users to deepen their understanding
of equipment, processes, services, employees, suppli-
ers, and regulators requirements. The comparison of
maintenance data in different maintenance ages is
shown in Table 1.

Table 1
Comparison of maintenance data in different maintenance ages.

Maintenance 1.0 Maintenance 2/0 Maintenance 3.0 Maintenance 4.0

Data source Operator experience Maintainer and ma-
chines

Operator, main-
tainer, machines,
information and
computer sys-
tems

Operator, maintain-
er, information sys-
tems, OEM and sup-
pliers data

Data collection Manual collection Manual collection Semi-automated
collection

Automated collection
via sensors and IoT

Data storage Operator memory Written documents Databases Cloud services

Data analysis Arbitrary Reliability theory
based on Bathtub
curve assumption

Conventional al-
gorithms

Fuzzy logic, neutral
networks, evolution-
ary algorithms, ma-
chine learning

Data transfer Verbal communication Written documents Digital files Digital files

Data management N/A Human operators Information sys-
tems

Cloud and artificial
intelligence
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Data-driven innovation in maintenance

The term ‘data-driven’ means the fact that imple-
mented activities and processes are primarily stim-
ulated by data, not by intuition or experience. In-
creasing easier access to data and awareness of the
possibilities offered by data in the decision-making
process drives enterprises to shift towards a new type
of maintenance strategy called data-driven mainte-
nance [30–33]. Research conducted by [34] show, that
among 14 most important innovations in mainte-
nance till 2020 five (smart sensor, big data, integrat-
ing asset management IT systems, mobile solution
and 3D design/virtual reality) are primarily data-
driven, where several of the process-driven innova-
tions, such as CBM, are also strongly data-driven
(Fig. 2).

Fig. 2. Interdependencies between the ‘Top 14’ mainte-
nance innovations [34].

Data is the key to intelligent maintenance. Un-
til recently, the main problem for maintenance man-
agers was the lack of information sources. Today
the situation has changed. Over the past ten years,
due to the intense development of information and
communication technologies and their applications
in production systems, and the development of sen-
sor technology (e.g. smart sensors that allow, among
others, digital signal processing and wireless data
streaming) have caused that the maintenance sys-
tem managers have gained a lot new data sources.
These new data sources are rapidly generating large
amounts of different types of data, known as big da-
ta. That data are available for maintenance decision
makers and provide opportunities for enhancing the
performance of maintenance processes [35, 36]. Big
data has been often described as the next frontier
for innovation, competition, and productivity. The
use of data allows a better understanding of fac-
tors affecting the operation of individual machines
and entire systems and provide more opportunity to
predict upcoming issues in an equipment or system.
Thanks to this, the implementation of maintenance
activities will be able to be carried out in a more

predictive way than before. However, due to a lack
of knowledge and understanding, data from machine
use and operation processes is often left unused be-
cause people simply do not know how to extract use-
ful information and/or knowledge from data, or do
not recognize the potential that is hidden in all col-
lected data. To explore data, advanced data analysis
is required. Runkler [37] defines data analytics as the
use of mathematical methods to obtain information
from data in order to optimize processes and sup-
port decision-makers in the decision-making process.
Big data analysis (BDA) is the sub-area of big da-
ta concerned with adding structure to data to sup-
port decision-making as well as supporting specific
usage scenarios. From the point of view of mainte-
nance management, BDA can help maintenance de-
partments in the company and OEM to better un-
derstand the open and hidden information contained
within the data and enables identification of the data
which from future decision-making perspective (e.g.
on investments, changes of service strategy etc.) are
the most important [38, 39]. Karim et al. [40] devel-
oped the concept for Maintenance Analytics. This
concept based on four phases (Fig. 3): descriptive
analytics, diagnostic analytics, predictive analytics
and prescriptive analytics.

Fig. 3. Maintenance analytics phases.

Descriptive analytics answers the question ‘What
happened?’ by providing information about previ-
ous maintenance operations. Diagnostic data analy-
sis can respond to ‘Why it happened?’ by identifying
causes. Predictive analytics estimates future events
(what will happen, when?) by learning from histor-
ical maintenance data (possibly in real-time). Pre-
scriptive analytics can respond to ‘What should be
done?’ by providing actionable recommendations for
decision making and improving and/or optimizing
forthcoming maintenance processes. Both descriptive
and diagnostic analytics methods are reactive while
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predictive and prescriptive analytics approaches are
proactive.

Analysing the literature, it can be stated that
Big Data analytics in maintenance has opened new
opportunities to support maintenance managers in
the decision-making process, while for scientists it
has opened new research areas. For example, [41] de-
veloped an industrial big data pipeline architecture,
which is designed to meet the needs of data-driven in-
dustrial analytics applications focused on equipment
maintenance in large-scale manufacturing. Solution
presented in the paper is based on real-world require-
ments obtained from manufacturing facility. Cortadi
et al. [42] proposed solution for the predictive main-
tenance problem in a real machining process. The
authors developed a decision-making application to
provide a visual analysis of the Remaining Useful Life
(RUL) of the machining tool. Truong [43] used Big
Data Cloud and IoT to provide a predictive analytics
approach for maintenance. On the other hand, many
new challenges have been raised. One of the gaps in
the existing literature on the analysis of large data
sets in maintenance is that the proposed concepts
and solutions are either only useful for some types
of maintenance problems, or are not detailed enough
and do not describe the procedures for analysing data
and components needed to develop specific data anal-
ysis solutions in maintenance systems. Therefore, in
order to effectively apply the analysis of large data
sets in maintenance systems and support decision-
makers in the decision-making process, it is neces-
sary to integrate skills and knowledge in the field
of information and communication technologies with
engineering knowledge and expert knowledge.

An important aspect of using large data sets is
the visualization of analysis results, including the
presentation of trends and other forecasts using ap-
propriate visualization tools [44]. Due to the com-
plexity of large data sets, conventional data visual-
ization tools and techniques such as tables, bars or
line charts are insufficient. Visualizing big data re-
quires some innovative approaches. The main pur-
pose of modern methods of data representation is
to improve the forms of images, diagrams or ani-
mations so that they are useful for decision-makers
without forgetting that human perception is, howe-
ver, limited.

According to [45], the trend recognized in visu-
alization of big data sets is implementation of aug-
mented reality (AR). AR visualization is a popular
visualization technique that combines the real world
and virtual objects. The literature on AR identifies
maintenance service as one of the growing applica-
tion areas [46–50]. A set of possible applications and

benefits that AR could provide to maintenance, re-
pair and assembly tasks have been analysed by [51,
52]. Webel et al. [53] developed a method for multi-
modal AR-based training of maintenance skills. Ac-
cording to [54], AR technology in maintenance, vi-
sualizing digital instruction in real time on the real
working area, can potentially lead to many advan-
tages, such as: ‘employ less-skilled operators; data
are up to date; time and cost saving; error rate re-
duction; knowledge is retained in the system and not
in people; the information level can be adapted to
the user skills’. Masoni et al. [55] present a solu-
tion for remote maintenance based on off-the-shelf
mobile and AR technologies. Manuri et al. [56] pro-
posed a system for supporting maintenance proce-
dures through AR. The system consists a computer
vision algorithm, which is able to evaluate, at each
step of a maintenance procedure, if the user has cor-
rectly completed his task, or not. The areas with
a great number of applications of AR in maintenance
processes are: aerospace [57–59], automotive [60–62]
and industrial plants [4, 63]. Due to the increas-
ing complexity of maintenance processes, various as-
sistants (e.g., tablets with smart software, smart-
phones, and virtual assistants) increasingly support
employees of technical departments. Using an AR ap-
plication on smartphones or tablets supports main-
tenance technicians in making informed decisions
about maintenance and repair activities and their
safe implementation.

In the context of Industry 4.0, a digital machine
is not only the material result of the production pro-
cess. The digital machine is also an intelligent source
of data obtained from the process of its use. These
data allow physical machines to gain a new virtual
dimension by building their digital equivalent called
‘digital twin’ [64–66]. According to [67], ‘A digital
twin is a virtual representation of a physical object
called a Physical Twin. The physical and the digi-
tal twin may be connected to each other. A digital
twin can provide more information about its physical
twin than the physical twin itself can provide’. By us-
ing cloud-connected sensors embedded in machines,
it is possible to send data from the operational le-
vel in real time, and this allows you to create cur-
rent virtual simulations of real machines (real-world
machines). One of the areas of application of digi-
tal twin technology is and will be in the near future
to monitor the operational status and functionality
of complex and critical machines, especially in indus-
tries where an emergency event can have catastroph-
ic consequences for people and the environment. Ac-
cording to [65] and [68] digital twin can be used
to predict of the remaining useful life (RUL) of the
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physical machine by using a combination of physics-
based models and data-driven analytics. Wang et al.
[69] presents a digital twin reference model for rotat-
ing machinery fault diagnosis. Cattaneo and Mac-
chi [70] developed a maintenance digital twin solu-
tion for a drilling machine with low availability of
run-to-failure data. Research conducted among oth-
ers by [64, 66, 71] indicate that the use of digital
twin technology gives a number of possibilities in
the field of simulation and optimization of mainte-
nance processes, including but not limited to: eval-
uation of machine conditions based on descriptive
methods and machine learning algorithms, identifi-
cation and evaluation of potentially applicable main-
tenance methods as well as integration, analysis and
management of data from machines and production
processes and their processing at equal stages of the
machine / technical system life cycle. In general, the
far-reaching goal of research is to launch a digital
twin for any real technical system. One of the im-
portant factors enabling the implementation of this
goal is the completeness of the database necessary to
build such models and then supply them with oper-
ational data that would allow updating the status of
the digital twin. The challenge, therefore, is the in-
tegration of real-time data streams into simulation-
based and digital models of machines for real-time
(re) configuration and online directing of machines.

The next of the most frequently mentioned tech-
nologies supporting Maintenance 4.0 are a group
of technologies referred to as a common name
Additive Manufacturing. According to ISO/ASTM
52900:2015, Additive Manufacturing (AM) is ‘the
process of joining materials to make objects from 3D
model data, usually layer upon layer, as opposed to
subtractive and formative manufacturing methodolo-
gies’. From the point of view of maintenance, the aim
is to utilize 3D printing technology to reduce stock
levels and optimize all of the logistics, which sur-
round maintenance activities. According to [72], 3D
printing ‘will have a significant impact on the spare
parts business. 3D printing will enable suppliers to
increase the availability of spare parts, reduce lead
time, and decrease costs’.

In summary, data-driven technologies of Industry
4.0 provide a set of main directions and suggestions
for implementing data-driven maintenance strate-
gies. The incentive for the implementation and ap-
plication of new technologies by both machine users
and their manufacturers is a set of benefits, among
which the most frequently mentioned are [73]: im-
proving the efficiency and availability of production
equipment, reducing costs, flexibility in approaching
customer requirements. In addition, in the case of

OEMs it is possible to reduce the total cost of own-
ership and reduce the risk to customers [74].

Sustainability-driven maintenance

In the last few years, research has focused on
a sustainable manufacturing paradigm, which aims
to develop sustainable production processes, innova-
tive technologies, and new tools for evaluating eco-
nomic, environmental, and social impacts of industri-
al assets. According to [75], ‘The maintenance activ-
ity is by nature an important lever for action on the
sustainability of production systems’. As described
by [76], ‘maintenance as part of the circular econ-
omy can be considered, first, as an enabling sys-
tem to sustain the artefact throughout its life cycle,
then as a key tool to keep the regeneration poten-
tial of this artefact, and finally, as a target system
that must be sustainable’. In this context ‘mainte-
nance function, necessary to ensure the availability,
reliability, and safety of industrial assets, could be-
come one of the main pillars for sustainable man-
ufacturing’ [12]. As such, sustainability goals must
be included in conventional maintenance processes.
Jasiulewicz-Kaczmarek and Żywica [77] defined Sus-
tainable Maintenance as ‘a set of proactive technical,
economic and management activities implemented
throughout the whole life-cycle of a technical facili-
ty aimed at realizing functions of a technical facility,
ensuring at the same time the achievement of goals
and the ability to create the economic, environmental
and social value for all stakeholders in the long-term
horizon’.

In the last years, the role of maintenance as con-
tributing to the sustainable manufacturing has at-
tracted more attention [12, 78, 79]. Hennequin and
Restrepo [80] proposed a fuzzy system to estimate
the hedging point and preventive maintenance peri-
od values taken into account the economic cost, an
environmental impact corresponding to greenhouse
gas emissions and a social impact corresponding to
machine ergonomics and incidents. Afrinaldi et al.
[81] developed a mathematical model optimizing the
preventive replacement schedule to minimize the to-
tal economic and environmental impacts of an as-
set. Hoang et al. [82] proposed the Residual Ener-
gy Efficiency Life concept, to estimate the time left
before the object loses its energy efficiency prop-
erty. Ighravwe and Oke [83] based on four of the
sustainability criteria (economic, environmental, so-
cial and technical) proposed the structure of mainte-
nance system sustainability for manufacturing con-
cerns. The authors developed the idea of selecting
the proper maintenance strategy based on integrat-
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ed fuzzy axiomatic design (FAD) principle and fuzzy-
TOPSIS. Boral et al. [84] proposed a hybrid artificial
intelligence based conceptual decision-making model
to solve sustainable maintenance strategy selection
problems. Singh and Gupta [85] identified fourteen
maintenance factors for sustainable performance im-
provement. By using ISM (Interpretive structural
modelling) and fuzzy MICMAC (Matriced’ Impacts
Croisés Appliquée á un Classement) the authors de-
veloped a framework for sustainable performance
improvement and ranking the major driving fac-
tors by TOPSIS approach. According to the authors
top management support and commitment, strategic
planning and implementation, continuous upgrada-
tion of maintenance system to reduce manufacturing
lead-time and cost are major factors to ensure the
sustainable competitive advantage.

Based on literature review maintenance contri-
bution to business competitive priorities and more
sustainable manufacturing processes has two main
dimensions: sustainability dimension (represented by
the three sustainability aspects: economic, environ-
mental and social) and life-cycle dimension (repre-
sented by three life-cycle phases: beginning of life
(BOL), middle of life (MOL) and end of life (EOL)).
Regarding the economic aspect of maintenance con-
tribution, there are four relevant economic factors
affected by the maintenance function: quality and
productivity, delivery on time, innovation and cost
[86]. With reference to the social aspects, according
to [87], in maintenance management, ‘social impli-
cations’ should be made ‘mandatory’ instead of ‘if
applicable’. Social sustainability of maintenance pro-
cesses involves wider social benefits that can be de-
rived from delivering high quality maintenance ser-
vices. This means investing to maximize contribu-
tions to people’s health and safety, development of
their competences, satisfaction from work, etc. Fi-
nally, environmental sustainability can be achieved
by resource efficiency (water, air, energy, spare parts
and materials), prevention of environmental dam-
age, emission reductions and land conservation [22,
88, 89].

The perspective of the life cycle of manufactur-
ing equipment has prompted the redefinition of the
maintenance role as being ‘a prime method for life
cycle management whose objective is to provide so-
ciety with the required functions while minimizing
material and energy consumption’ [90]. In Sustain-
able Maintenance, the perspective of life cycle man-
agement focuses on the management of information
along the equipment life cycle. Effective and effi-
cient maintenance processes depend upon compa-

nies’ ability to leverage their data assets for decision
making, planning, and executing maintenance activ-
ities.

From the point of view of sustainable production,
it is also important to note that none of the compa-
ny’s organizational functions and no process add val-
ue on its own (independently). Maintenance serves
several different stakeholders, each with their own
focus. Generally, these are production, business, and
society. The challenge for the maintenance manag-
er is to balance the interests of production (uptime,
overall equipment effectiveness), business (spent as
a percentage of the total asset value), and society
(environment, health & safety). The typical trade-
off choices in maintenance arise from trying to pro-
vide the maximum value to stakeholders. From the
one hand companies want to maximize quality (e.g.,
repair quality, doing it right the first time), service
level (e.g., prevention of failures), output (e.g., relia-
bility and uptime) and at the same time, they want
to minimize time (e.g., time and mean time to repair
– MTTR), costs (e.g., cost per unit output) and risk
(e.g., predictability of unavoidable failures) [91].

Smart & sustainable maintenance

According to [92], the enabling technologies of the
Maintenance 4.0 could become key-drivers in pursuit
of sustainable maintenance and asset life-cycle man-
agement. Digital technologies integrated within the
Maintenance 4.0 concept enable real-time access to
detailed information on the status, availability and
current location of the technical facility. From the
point of view of managing the life cycle of techni-
cal facilities and meeting the challenges of sustain-
able maintenance, this is very important. It increases
the transparency of information about the real con-
dition of a technical object throughout its life cycle
and enables appropriate actions to be taken to ex-
tend the life cycle by the OEM or service provider
[93]. In addition, making decisions regarding main-
tenance based on data instead of relying on people’s
experience can increase the credibility of decisions,
and thus increase the effectiveness of ongoing main-
tenance activities and the efficiency of related human
and material resources (spare parts and auxiliary ma-
terials).

The literature analysis shows that deploying
data-driven maintenance approach creates many new
opportunities for improving maintenance processes.
The improvements concern all dimension of sustain-
ability (Table 2).
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Table 2
Benefits from implementation of new technologies in Maintenance confronted with SD dimensions – examples.

Potential benefits Description References

E
co

n
om

ic
d

im
en

si
on

Improves economic effi-
ciency.

Predictive maintenance can reduce machine
downtime and the cost of unplanned down-
time. Regular maintenance of machines and
systems can increase their service life.

[1, 15, 25, 34, 42, 70, 84, 85, 94, 95]

Reduces maintenance
time

Continuously evaluation of the captured data
makes it possible to determine the best time
for an upcoming maintenance. Automatic re-
ports for maintenance scheduling and proac-
tive repairs reduce maintenance time and de-
creases overall maintenance costs.

Improves machine per-
formance

The permanent analysis of the collected data
makes it possible to improve the performance
of the machine and achieve higher productivity
in the long run.

Decreases spare parts
inventories

3D printing can provide benefits in spare parts
creating, particularly it is good solution when
parts that are discontinued are needed.

E
nv

ir
on

m
en

ta
l

d
im

en
si

on

Decreases spare parts
and lubricant utiliza-
tion.

With condition-based, predictive and main-
ly prescriptive maintenance worn equipment
parts are replaced only when necessary, lubri-
cants are changed only as needed, rather than
on a fixed schedule for planned or preventive
maintenance.

[1, 13, 15, 18, 34, 38, 42, 84, 94, 96]

Improves environmen-
tal safety

Breakdowns of machinery can lead to catas-
trophic events. By predicting issues before
they escalate, it will be able to reduce envi-
ronmental impact.

Minimizes end of life
waste

Predictive maintenance promoted by big data
analytics extends the lifespan of machinery.

Optimizes energy con-
sumption

Enhancing ecological footprint by better gaug-
ing and controlling energy consumption and
environmental conditions for energy conserva-
tion.

S
oc

ia
l

d
im

en
si

on

Implements new edu-
cational model.

Through virtual reality, it is possible to ed-
ucate operators, by teaching the right opera-
tions to do for maintenance or machine setup.
The augmented reality system aims to replace
old paper manuals that are difficult to under-
stand.

[12, 72, 73, 75, 78, 97, 98]

Improves worker safety Breakdowns of machinery can lead to catas-
trophic events and harm workers. By predict-
ing issues before they escalate, it will be able
to reduce accidents and boost team morale.

Improves working con-
dition

Through the application of virtual reality it is
possible to obtain additional information and
to proactively assess different variants of main-
tenance processes realization to optimize the
key factors of the given operation of manual
work, visibility, accessibility, usability of equip-
ment, comfort and risk factors.

Improves workers satis-
faction

Work performed in safe and healthy condi-
tions improves the efficiency of the mainte-
nance staff and increases their motivation and
efficiency.

Some studies have described servitization as
a useful business model to address environmental
and social demands [99]. Rodseth et al. [94] present-
ed a structured approach for data-driven predictive
maintenance in terms of profit loss indicator. The

outcomes of this study suggested that a data-driven
maintenance strategy had a positive effect on profit
loss indicator values, which can be analysed for long-
term sustainability. Zhang et al. [100] proposed BDA
architecture for maintenance processes of complex
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products to make better cleaner production decisions
based on lifecycle data. According to [101] usage of
BDA can significantly enhance the ability to predict
failures for key spare parts. By applying predictive
maintenance service, the reliability of machines can
be increased and empty load energy consumption due
to stopping and restarting of equipment and down-
time can be reduced. Furthermore, by using the spare
part prediction service, the inventory cost and mate-
rial consumption can also be reduced. Bevilacqua et
al. [102] proposed a data analytic model for IoT, in
order to integrate the data collected from different
sources (e.g., workstations energy consumption, ma-
terial delivery date from suppliers, working time and
manufacturing cycle) and to improve energy-aware
decision-making. Macchi et al. [64] suggested digital
twin modelling as full of promises about the lifecy-
cle management of assets. Bevilacqua et al. [66] pro-
posed a reference model for the implementation of
Digital Twin models with the purpose of enhancing
the safety level of employees in the workplace. Ac-
cording to the authors, the developed Digital Twin
model will enable virtual modelling of maintenance
processes, thus preventing high-risk events for oper-
ators.

In summary, maintenance management today is
experiencing a real change in both human and tech-
nological organizational level. Maintenance function
taking on ever-increasing importance within corpo-
rate functions. Now, it is not only simple production
index with an unavoidable cost generation. Today
maintenance is a competitive tool and is considered
a profit centre in all respects.

Conclusions

For many years, maintenance was considered as
nonvalue-adding activity with a low level of automa-
tion and digitization. However, the last decade of de-
velopment in the area of intelligent technologies and
models for analysing large data sets has created new
opportunities not only in the scope of increasing the
reliability, availability and efficiency of using techni-
cal objects, but also in the scope of challenges of envi-
ronmental and social implementation of sustainable
development. Today, maintenance is closely related
to the activity of a production company aiming to
produce high quality products. The quality of main-
tenance operations determines the current quality of
production means, i.e. devices and machines, which
largely determines the quality of products.

In this work, intelligent and sustainable mainte-
nance was considered in three perspectives. The first
perspective is the historical perspective, in relation to

which evolution has been presented in the approach
to maintenance in accordance with the development
of production engineering. The next perspective is
the development perspective, which presents histor-
ical perspectives on maintenance data and data-
driven maintenance technology. The third perspec-
tive, on the other hand, presents maintenance in the
context of the dimensions of sustainable development
and potential opportunities for including data-driven
maintenance technology in the implementation of the
economic, environmental and social challenges of sus-
tainable production.

The amount of dynamically changing data gener-
ated over the entire life cycle of technical objects is
growing. Data-based production technologies are an
inspiration for using data-based maintenance. A set
of benefits resulting from such an approach, such as
improving the efficiency and availability of the com-
pany’s technical resources, reducing costs, or flexibil-
ity in approaching clients’ requirements is an incen-
tive for the implementation and application of new
technologies, by both machine users and their manu-
facturers. The collected data can be used not only to
increase the efficiency of production machinery and
equipment, and thus to achieve economic goals, but
also to more efficient use of resources (technological
media, consumables and spare parts), and thus sup-
port the enterprise in achieving environmental and
social. Maintenance of machinery and equipment is
therefore considered in an increasingly broader con-
text.
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