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Abstract 

Satellite remote sensing provides a synoptic view of the land and a spatial context for measuring drought 
impacts, which have proved to be a valuable source of spatially continuous data with improved information for 
monitoring vegetation dynamics. Many studies have focused on detecting drought effects over large areas, given 
the wide availability of low-resolution images. In this study, however, the objective was to focus on a smaller 
area (1085 km2) using Landsat ETM+ images (multispectral resolution of 30 m and 15 m panchromatic), and to 
process very accurate Land Use Land Cover (LULC) classification to determine with great precision the effects 
of drought in specific classes. The study area was the Tortugas-Tepezata sub watershed (Moctezuma River), lo-
cated in the state of Hidalgo in central Mexico. The LULC classification was processed using a new method 
based on available ancillary information plus analysis of three single date satellite images. The newly developed 
LULC methodology developed produced overall accuracies ranging from 87.88% to 92.42%. Spectral indices 
for vegetation and soil/vegetation moisture were used to detect anomalies in vegetation development caused by 
drought; furthermore, the area of water bodies was measured and compared to detect changes in water availabil-
ity for irrigated crops. The proposed methodology has the potential to be used as a tool to identify, in detail, the 
effects of drought in rainfed agricultural lands in developing regions, and it can also be used as a mechanism to 
prevent and provide relief in the event of droughts. 
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INTRODUCTION 

Droughts occur in all climatic zones and are 
mostly related to the reduction of precipitation re-
ceived over an extended period, such as a season or 
a year [MAHMOOD et al. 2015; SAADAT et al. 2011; 
SIERRA-SOLER et al. 2015]. The impacts of a drought 

increase slowly and often accumulate over many 
months, and may linger years after the end of the 
drought [BELAYNEH et al. 2014; SAADAT et al. 2014]. 
Unlike other natural hazards, the impacts of droughts 
are often spread over large geographical areas. 
Droughts rank first among all natural hazards when 
measured in terms of the number of people affected 
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[HEWITT 1997; MISHRA, SINGH 2010; OBASI 1994; 
WILHITE et al. 2007], which emphasizes the impor-
tance of investigating how this natural phenomenon 
disturbs ecological and socio-economic systems 
[DANESHMAND et al. 2014; NAMDAR et al. 2014;  
NIAZI et al. 2014].  

Droughts affect virtually all regions; however, 
they do so in such a variety of ways that each system 
often has its own concept of drought, and its own cri-
teria for gauging the severity of drought. Defining 
drought is therefore difficult [REDMOND 2002], since 
it is relative to the system of interest. Differences in 
hydro-meteorological variables and socio-economic 
factors as well as the stochastic nature of water de-
mands in different regions around the world have be-
come an obstacle to having a universal definition of 
drought [MISHRA, SINGH 2010].  

This study focused on developing an original 
methodology for investigating agricultural drought in 
semiarid developing regions where drought poses 
a significant threat to rainfed smallholder farmers. 
The methodology was tested in central Mexico but 
has the potential to be used in other regions with simi-
lar conditions. Rainfed agricultural production in 
these areas is focused mainly on producing self-suffi-
ciency crops for the poorest sectors in society that 
depend on this economic activity. Agricultural 
drought occurs when there is not enough available 
plant soil moisture in the root zone [JOHAN 2003]. 
Agricultural drought is generally characterized by two 
key factors: the estimated water demand and expected 
water supply. The formulation of these key factors for 
a region largely depends on the agro-climatic condi-
tions [YUREKLI, KURUNC 2006]. The capacity of soils 
to retain and release water depends on factors such as 
soil texture, depth, structure, organic matter content, 
and biological activity [BOT, BENITES 2005].  

Remotely sensed approaches have been used to 
detect agricultural drought, and are often associated 
with image reflectance using spectral indices to indi-
cate vegetation condition such as the normalized dif-
ference vegetation index NDVI, and soil/vegetation 
wetness such as the normalized difference wetness 
index NDWI and the tasseled cap wetness TCW, de-
scribed below. 

The normalized difference vegetation index 
NDVI is a spectral index that has been shown to be 
highly correlated with parameters associated with 
plant health and productivity, and has been widely 
used for drought detection [BARBOSA et al. 2006; 
KOGAN 1995a; LENNEY 1995; PETERS et al. 2002; 
RAHIMZADEH-BAJGIRAN et al. 2012]. The NDVI has 
been used successfully to identify stressed and dam-
aged crops and pastures but interpretive problems 
arise when results are extrapolated over non-
homogeneous areas. NDVI has two components: ecol-
ogy and weather. The need for multi temporal NDVI 
analysis for detecting drought is because in any single 
NDVI image in a given growing season, barren fields 
may be indistinguishable from temporarily fallow 

healthy fields, and immature crops with low-density 
cover could be confused with poor crops [LENNEY et 
al. 1996]. Therefore, when NDVI has been used for 
the analysis of weather impact on vegetation, the 
weather component must be separated from the eco-
system component [RAHIMZADEH BAJGIRAN et al. 
2008]. It has also been found that NDVI correlates 
with net primary production, biomass, vegetation 
fraction, and yield [GOWARD et al. 1985; LENNEY et 
al. 1996; MASELLI et al. 1992; QUARMBY et al. 1995; 
RASMUSSEN 1992; UNGANAI, KOGAN 1998]. 

The NDWI proposed by GAO [1996] can be ob-
tained using the near infrared NIR and shortwave in-
frared SWIR channels. Gao found that NDWI is 
a measure of liquid water molecules in vegetation 
canopies that interact with the incoming solar radia-
tion, and is less sensitive to atmospheric scattering 
effects than NDVI. GU et al. [2007; 2008] evaluated 
the relationship between NDVI and NDWI using 
MODIS 500-m satellite imagery in Oklahoma and 
Kansas, USA. They found good correlation between 
the two indices; they also found that NDWI was more 
sensitive to drought than NDVI. RHEE et al. [2010] 
sought to identify a drought index that had the possi-
bility to be used for agricultural drought monitoring in 
arid/semiarid regions, as well as humid/sub-humid 
regions, while also using MODIS data. They found 
that NDWI has a better response in arid/semiarid re-
gions than in humid regions when detecting drought 
because of good correlations with other precipitation 
and temperature indices. It is convenient to detect 
drought at larger scales using coarse resolution im-
agery such as MODIS; however, this approach cannot 
provide detailed land cover response to precipitation 
anomalies.  

In semi-arid developing regions, medium resolu-
tion remotely sensed data has been used to assess the 
impacts of drought. VANDERPOST et al. [2011] used 
Landsat imagery to assess the long-time condition of 
rangeland in semiarid areas of Botswana. By calculat-
ing vegetation indices, they found significant degrada-
tion in vegetation corresponding to the droughts be-
tween 1984 and 2000. The technique used was limited 
by the many gaps in the long-time coverage, and 
hence there was a lack of continuity in terms of change.  

The tasseled cap transformation TCT has been 
widely used for vegetation mapping and monitoring 
land cover change [FADHIL 2011; JIN, SADER 2005; 
OETTER et al. 2001]. The TCT of Landsat thematic 
mapper consists of six multispectral features, all of 
which could be potentially differentiated in terms of 
stability and change in a multitemporal data set [JIN, 
SADER 2005]. The first three features have been la-
beled brightness, greenness, and wetness (band 1, 2, 
and 3, respectively). The third feature, wetness, has 
been shown to be sensitive to soil plant moisture [JIN, 
SADER 2005]. Tasseled cap wetness TCW contrasts 
the sum of the visible and the near-infrared bands 
with the sum of the shortwave bands [JIN, SADER 
2005].  
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The NDWI and TCW have both been used in stud-
ies to detect drought or disturbance in ecosystems. JIN 
and SADER [2005] used a time series of both NDWI 
and TCW derived from Landsat to compare forest dis-
turbances in Maine, USA. They found high correla-
tions (>0.95) between the two indices. FADHIL [2011] 
used NDWI and TCW to detect drought effects on 
vegetation in the Iraqi Kurdistan region. He derived 
both spectral indices from two Landsat images from 
consecutive years to calculate five vegetation and 
soil/vegetation moisture indices and performed 
change detection. This study did not include a classi-
fication of the vegetation, so it is unclear how the dif-
ferent kinds of vegetation were affected by the 
drought.  

The response to drought effects is differentiated 
by the vegetation cover, but none of the above-
mentioned spectral indices has the potential to classify 
on their own crops from other classes. The knowledge 
of Land Use Land Cover LULC plays an important 
role in identifying areas where the effects of drought 
can cause damage in ecosystems and in agricultural 
lands. The identification of rainfed crops and dynam-
ics over different precipitation conditions has not been 
thoroughly and explicitly explored in the past. In this 
study, the delineation accuracy of agricultural lands 
and specifically where dry-land farming is practiced 
was of great importance. There are many approaches 
that have been used to associate image reflection data 
with vegetation characteristics. Over the last decades, 
various studies have shown the efficacy of satellite 
imagery in characterizing vegetation cover [DE ASIS, 
OMASA 2007; FOCARDI et al. 2008; JOSHI et al. 2006] 
forests [LABRECQUE et al. 2006; SIVANPILLAI et al. 
2007] and crops [COHEN, SHOSHANY 2002; WARD-
LOW et al. 2007]. Additionally, several authors have 
used LULC maps in satellite based agricultural 
drought monitoring [DIOUF, LAMBIN 2001; RHEE et 
al. 2010; WILHELMI, WILHITE 2002].  

In this study, the objective was to develop an 
original methodology to acquire very accurate Land 
Use Land Cover LULC maps to report in depth the 
effects of drought in rainfed agricultural lands in Cen-
tral Mexico. Given the advent of climate change and 
increasingly severe extreme events such as droughts 
in many different parts of the world [ADAMOWSKI et 
al. 2009; 2010; 2012a, b; ADAMOWSKI, PROKOPH 
2013; ARAGHI et al. 2015; CAMPISI et al. 2012; HAI-
DARY et al. 2013; NALLEY et al. 2012; 2013; PINGALE 
et al. 2013; TIWARI, ADAMOWSKI 2013], these types 
of maps will be useful in helping to manage water 
resources more sustainably [BUTLER, ADAMOWSKI 
2015; HALBE et al. 2013; INAM et al. 2015; KOLIN-
JIVADI et al. 2014a, b; MEDEMA et al. 2014a; b; 
STRAITH et al. 2014]. Four medium resolution Land-
sat ETM+ images were used, corresponding to early 
and late summer. According to local farmers, during 
the early summer in a normal year vegetation is usu-
ally in development and then progresses to maturity 
through the end of the same season. This season in 

central Mexico corresponds to June and August, and 
the years analyzed in this study were 2000 and 2005. 
These specific years were chosen based on a previous 
study for the same study area by SIERRA-SOLER et al. 
[2015] that analyzed Standardized Precipitation Index 
SPI trends for the period 1975–2013. In this study, the 
year 2000 consistently showed positive values of SPI 
(normally wet conditions) and 2005 continually 
showed negative SPI values (corresponding to ab-
normally dry conditions). After the classification of 
the four images was completed, spectral indices indi-
cating vegetation condition NDVI and soil/vegetation 
moisture (NDWI and TCW) were calculated. The clas-
sification helped to interpret how different vegetative 
covers were affected by the low precipitation regis-
tered in 2005. This methodology has the potential to 
be used as a tool to identify, in detail, the effects of 
drought in rainfed agricultural lands in developing 
regions, and it can also be used as a mechanism to 
prevent and provide relief in the event of droughts. 

STUDY AREA 

The Tortugas-Tepezata sub watershed (Fig. 1) is 
one of the sub-watersheds of the Moctezuma River, 
and is located in the state of Hidalgo in central Mex-
ico. The Moctezuma River is inside the Panuco Hy-
drological Region that flows from the Valley of Mex-
ico into the Gulf of Mexico. The Panuco River Hy-
drologic Region covers most of the state of Hidalgo, 
with runoff coefficients in the range of 20 to 30% 
[CONANP 2003]. This hydrologic region has been 
divided into two: High Panuco and Lower Panuco. 
The study area is in the first, the High Panuco. 

The interest of studying this semiarid area of cen-
tral Mexico is due to the importance of rainfed agri-
culture in the region. Even though there are other eco-
nomic activities such as tourism, the majority of the 
rural towns in the area depend directly or indirectly on 
 

 
Fig. 1. Location of the study area; source: own elaboration 
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local agriculture for food security. Furthermore, social 
exclusion, poverty, illiteracy, and access to services 
make this particular region vulnerable in the event of 
droughts. 

The Metztitlán basin, along with Tortugas Te-
pezata basin, originates in the Amajac River. The 
main feature of the sub watershed is the river canyon 
that flows 100 km. There are three major sections: the 
first entry to South Canyon with the Rio Grande Tu-
lancingo, the second at the junction with the San 
Sebastian River and Venados River, and the third 
starts at District 08 Metztitlán (the Metztitlán River), 
north of the sub-basin. This river runs SE to NW, and 
the N flows into the Metztitlán Lagoon north of the 
Tortugas-Tepezata watershed. In the geological past, 
the river ran without forming the lagoon, but during 
the Holocene the Cerro El Tajo suffered a massive 
collapse forming the reservoir [CONANP 2003]. The 
climate is generally warm, dry, and semidry in differ-
ent parts, which is determined by the rain shadow ef-
fect the Sierra Madre Oriental has on this region. The 
mean annual temperature is around 20–24°C. In the 
rainy season, during the summer, trade winds release 
their moisture on the windward side and the elevated 
parts of the mountain range, where forests are pine 
and oak, among other cold temperate vegetation 
[CONANP 2003]. 

In Mexico, drought monitoring at the national 
scale is performed via the North America Drought 
Monitor (NADM), which is a cooperative effort be-
tween drought experts in the United States, Mexico, 
and Canada. The data produced by NADM focuses 
only on three data driven indexes: the SPI, the PDSI, 
and the Percent of Average Precipitation. Other stud-
ies in Mexico have reported qualitative drought im-
pacts, documenting smallholder rainfed maize pro-
duction and climatic risk [EAKIN 2000], climate 
change impacts on food security [APPENDINI, LIV-
ERMAN 1994], estimates of the effects of El Niño 
Southern Oscilation (ENSO) on crop yield, and vul-
nerability and adaptation to drought [LIVERMAN 
1990]. However, very little has been done in the re-
gion using remotely sensed data in combination with 
meteorological analysis to estimate the effects of 
drought on rainfed agricultural production, making 
this study both original and significant. 

MATERIALS AND METHODS 

MATERIALS  

1. Four Landsat ETM+ Satellite Images: corre-
sponding to the available images for the initial and 
final stages of summer (June 25 and August 28, 2000 
and June 07 and August 10, 2005). These images 
were chosen because they were all the images avail-
able that were clear from clouds for the desired pe-
riod. Each scene selected included the entire surface 
of the study area. The scenes were carefully selected 
for different periods of time according to the different 

seasons that represented different stages of vegetation 
development. This was done with the purpose of 
comparing rainfed crop conditions in seasons with 
normal versus dry precipitation conditions. 

2. Two digital ancillary layers were also collected 
to assist in the interpretation and classification of the 
remotely sensed data. These were a 1:25 000 topog-
raphic map, and a 1:50 000 scale climatic zone map. 
These maps were used to follow SAADAT et al.’s 
[2011] methodology for the development of the 
LULC maps.  

3. Ground Truth Data: 132 samples were col-
lected via fieldwork across all the study areas where 
roads permitted access. Each sample comprised cata-
loguing different land use and land cover classes that 
were used to create ground truth maps for assessing 
the accuracy of the supervised classification per-
formed by the remote sensing software (explained 
below). The visits were performed accompanied by 
a hired native guide and driver familiar with the area, 
and with a good understanding of the local agricul-
tural practices. Farmers, residents, and local authori-
ties were engaged in conversation with the intent of 
investigating agricultural practices, past natural disas-
ters (such as droughts, fires and floods) and land use 
changes in the past 10–15 years. 

4. ERDAS Imagine (version 8.7) and Arc Info 
(version 9) software were used for image classifica-
tion, drought indices, processing, and data analyses. 

LULC CLASSIFICATION  

General description 

Classification of Landsat ETM+ images follow-
ing SAADAT et al.’s [2010] methodology proceeded in 
five general steps: (i) preprocessing of the images, (ii) 
random extraction of a training sampling location: an 
unsupervised classification and two digital ancillary 
layers served in identifying potential LULC areas to 
aid in identifying sampling points, (iii) supervised 
classification of the image into LULC classes, (iv) 
enhancement of the LU classification via image seg-
mentation and zonal statistics, and (v) enhancement of 
the LC classification via NDVI. Each step is described 
below in detail. 

Preprocessing images 

The Landsat ETM+ satellite products have 8 in-
dividual bands, each representing different portions of 
the electromagnetic spectrum. The four Landsat 
ETM+ were subject to preprocessing, which consisted 
of several steps (Fig. 2). Bands 1–5 and 7 range in the 
visible spectrum blue, green, red, near-infrared NIR, 
and mid infrared MIR, with 30 m of spatial resolution, 
a panchromatic band with 15 m band 8, and a thermal 
band with 60 m resolution band 6. Given the low 
resolution of the thermal band, 6.1 and 6.2 were not 
used.  Bands 1–5 were combined into a multilayer im- 
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Fig. 2. Image preprocessing; source: own elaboration 

age and the study area was clipped. Pan-sharpening 
(or image fusion) was performed with the objective of 
providing better image resolution. This was per-
formed by fusing the 30 m resolution multilayer with 
the 15 m resolution panchromatic image. The PCA 
method was used because a major goal of this tech-
nique is to reduce data file size, while still retaining 
the spectral information of the six ETM+ bands 
[SAADAT et al. 2011].  

Atmospheric effects such as the amount of water 
vapor, distribution of aerosols, and scene visibility 
affect the raw imagery. Such effects were eliminated 
so that images taken in different times could be com-
pared accurately. 

The Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercubes (FLAASH) atmospheric correc-
tion module in ENVI software was used for atmos-
pheric correction to retrieve spectral reflectance data 
from the multispectral Landsat ETM+ images. Images 
were subjected to geo-referencing and image-to-image 
registration was performed. This process was verified 
by importing the tracks recorded from the GPS that 
were obtained during fieldwork as ground control 
points. After preprocessing of all images was com-
pleted, the study area was clipped from each scene. 

Extraction of a training sampling location 

Training samples were chosen to encompass 
a full variety of potential LULC classes such as forest, 
irrigated agriculture, pastureland, rainfed agriculture, 
shrubs, and water bodies across the study area. This 
process (Fig. 3) was performed by processing an un-
supervised classification with 20 different classes 

with 95% of convergence threshold and maximum 
iterations of 10. This map was used as support to 
identify sampling locations across the study area, 
which was used to support the accuracy of the super-
vised classification. The total number of training 
sampling locations used for the study was 150; how-
ever, due to the inaccessibility of some of these areas, 
only 132 training sampling locations were recorded 
during the performed fieldwork during the months of 
January–March 2013. 

 
Fig. 3. Extraction of sampling point location map; source: 

own elaboration 

Supervised classification of the images into LULC 
classes 

Six classes were identified to describe the rural 
landscape in central Mexico for the supervised classi-
fication (Fig. 4). Land use land cover (LULC) was 
classified as follows: rainfed agriculture (RA), irri-
gated agriculture (IA), forest (F), shrubland (Sh), pas-
tureland (P), and water bodies (W). SAADAT et al. 
[2011] further classified pasturelands and forests us-
ing differences in densities; however, for the purposes 
of this study, the process was not needed since the 
focus was to understand the response of rainfed agri-
culture to drought. To increase the accuracy of these 
maps, a χ2 threshold at 90% confidence level was ap-
plied to the results. In this process, the identification 
pixels had a 10% chance of being misclassified. These 
pixels were put into class “0” and defined as “un-
known” areas. These unknown areas were reviewed 
observing their spectral signatures and resampling 
adjacent areas. Again, a supervised classification was 
performed with the samples plus the spectral signature 
sampling points until only a small pixel group (about 
1% of the total area) was left unclassified. 
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Fig. 4. Supervised classification; source: own elaboration 

Image segmentation and zonal statistics 

In an effort to further increase classification accu-
racy, an image segmentation algorithm was applied to 
the Landsat ETM+ images (Fig. 5) using the Bonnie 
Ruefenacht algorithm [RUEFENACHT et al. 2002]. Im-
age segmentation is a process used as a way of parti-
tioning raster images into segments based on pixel 
values and locations. Pixels that are spatially con-
nected and have similar values are grouped in a single 
segment to isolate objects of varying size, shape, and 
homogeneity. This algorithm merges groups of pixels 
into polygon objects (raster to vector format) but it is 
unable to classify them [SAADAT et al. 2011], thus the 
need for combining the images with zonal statistical 
analysis.  

The zonal statistics present a distribution of each 
LULC within each segmented polygon. The reason 
for image segmentation is to use the resultant polygon 
vector map in combination with the supervised classi-
fication raster map and zonal statistics to generate 
a new classified polygon map, the idea being to elim-
inate mixed pixels. It was found that for the six LU 
classes, the majority distribution was always more 
than 90% within any one segmented polygon. Thus, 
each segmented polygon was fully classified to the 

90% majority, creating one layer for each of the six 
LU classes. 

Assessing the accuracy of remotely sensed data 

To evaluate the accuracy of the LULC maps that 
were processed, reference sampling locations were 
chosen to encompass the complete variety of the clas-
ses throughout the study area. Also, climate and to-
pographic maps were taken into account to perform 
sampling. In total, 132 sites were extracted based on 
the stratified random sampling procedure. Each sam-
ple comprised cataloguing different land use and land 
cover classes that were used to create ground truth 
maps for assessing the accuracy of the supervised 
classification performed by the remote sensing soft-
ware. The field work was performed accompanied by 
a hired local guide and driver who had significant 
knowledge of the area and of the local agricultural 
practices. Farmers, residents, and local authorities 
were interviewed with the intent of investigating agri-
cultural practices, past natural disasters (such as 
droughts, fires and floods), and land use changes in 
the past 10–15 years. This process was recorded by 
importing the tracks and control points recorded from 
the GPS and complemented with photographic evi-
dence. 
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Fig. 5. Image segmentation and zonal statistics; source: own elaboration 

Spectral analysis for detecting drought effects  
on vegetation 

A drought index is a prime variable for assessing 
the effect of a drought and defining different drought 
parameters, which include intensity, duration, sever-
ity, and spatial extent [MISHRA, SINGH 2010]. It 
should be noted that a drought variable should be able 
to quantify the drought for different time scales for 
which a long time series is essential. The most com-
monly used time scale for drought analysis is a year, 
followed by a month [MISHRA, SINGH 2010]. The 
yearly time scale can be used to abstract information 
on the regional behavior of droughts, while the 
monthly time scale is more appropriate for monitoring 
the effects of drought in situations related to agricul-
ture, water supply, and groundwater abstractions 
[PANU, SHARMA 2002]. A time series of drought indi-
ces provides a framework for evaluating drought pa-
rameters of interest [MISHRA, SINGH 2010]. To en-
compass a drought’s effects on the different classes of 
vegetation cover, two vegetation conditions and vege-
tation/soil moistures were chosen. 

Normalized difference vegetation index NDVI 

NDVI was designed on the premise that healthy 
vegetation has a low reflectance in the visible portion 
of the electromagnetic spectrum due to the absorption 
by chlorophyll and other pigments and high reflec-

tance in the Near Infrared NIR because of the internal 
reflectance by the mesophyll spongy tissue of a green 
leaf. NDVI is calculated as the ratio of the red RED 
and the Near Infrared NIR bands of a sensor system, 
and is represented by the following equation [KOGAN 
1995a]: 

 
REDNIR
REDNIRNDVI

+
−

=   (1) 

NDVI values range from –1 to +1. Because of 
high reflectance in the NIR portion of the electromag-
netic spectrum, healthy vegetation is represented by 
high NDVI values between 0.05 and 1. Higher NDVI 
indicates a greater level of photosynthetic activity. 
Conversely, non-vegetated surfaces such as water 
bodies yield negative values of NDVI. Bare soil areas 
have NDVI values close to 0 due to higher reflectance 
in both the visible and the NIR portions of the elec-
tromagnetic spectrum [RAHIMZADEH BAJGIRAN et al. 
2008]. 

The normalized difference water index NDWI 

The normalized difference water index NDWI is 
a more recent satellite-derived index from the NIR and 
short wave infrared SWIR channels that reflect chang-
es in both the water content and spongy mesophyll in 
vegetation canopies. NDWI is calculated as follows 
[GAO 1996]: 
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MidIRNIR
MidIRNIRNDVI

+
−

=   (2) 

where NIR is the Near Infrared band and MidIR is the 
Mid Infrared Band. 

Because NDWI is influenced by both desiccation 
and wilting of vegetative canopy, it may be a more 
sensitive indicator than NDVI for drought monitoring 
[MISHRA, SINGH 2010]. NDVI and NDWI sense simi-
lar depths through vegetation canopies. However, 
NDWI is less sensitive to atmospheric effects than 
NDVI. NDWI does not completely remove the back-
ground soil reflectance effects, similar to NDVI be-
cause the information about vegetation canopies con-
tained in the 1.24 µm channel is very different from 
that contained in the red channel [GAO 1996]. For this 
reason, NDWI should be considered complementary 
but not a substitute for NDVI. 

NDWI was calculated for the 18 Landsat ETM+ 
images. In the same way as previously done for 
NDVI, the NDWI output layers were divided by the 
LULC classes and in this way each class could be 
analyzed separately, and a NDWI time series per class 
was plotted with the purpose of discerning the differ-
ent NDWI values per class in different stages of the 
growing seasons in the two dry and normal years. 

Tasseled cap transformation wetness TCW 

Numerous methods have been developed for 
transforming available information from multispectral 
sensors to derive features to interpret characteristics 
of the land surface. Such methods include the three 
indices based on ratios and differences of bands. The 
Tasseled Cap Transformation of Landsat Multispec-
tral Scanner and Thematic mapper [CRIST, CICONE 
1984] offers a way to optimize data viewing for vege-
tation studies.  

The different bands in a multispectral image can 
be visualized as defining an N-dimensional space, 
where N is the number of bands. Each pixel, posi-
tioned according to its data file value in each band, 
lies within the N-dimensional space. This pixel distri-
bution is determined by the absorption/reflection 
spectra of the imaged material. For viewing purposes, 
it is advantageous to rotate the N-dimensional space 
such that one or two of the data structure axes are 
aligned with the view X and Y axes. In particular, the 
axes that are largest for the data structure produced by 
the absorption peaks are of special interest for the 
application. Research has produced three data struc-
ture axes that define the vegetation information con-
tent. This option can show these three axes (or layers) 
as a degree of brightness, greenness, and wetness, as 
calculated by the tasseled cap coefficients used. Layer 
1 (red) outputs the brightness component and indi-
cates areas of low vegetation and high reflectors, layer 
2 (green) is the greenness component and indicates 
vegetation status, and layer 3 (blue) is the wetness 
component that indicates water and moisture in the 
scene. 

The tasseled cap transformation wetness TCW 
was used to determine the amount of moisture being 
held by the vegetation or soil, and was thus termed 
wetness [FADHIL 2009]. TCW images were derived 
from ETM images of the study area using the tasseled 
cap transformation algorithm with ER Mapper ac-
cording to the following equation [JIN, SADER 2005]: 

 
)(4572.0)(7112.0)(3406.0

)(3279.0)(1973.0)(1509.0

2SIWRSWIRNIR
RGBTCW

−−+
+++= (3) 

where B, G, R, NIR, SWIR, and SWIR2 are the Landsat 
ETM+ 6 bands, excluding the thermal bands and the 
panchromatic band. 

Change detection 

Change detection is the process through which 
changes in the state of a phenomenon are identified by 
observing it over repeated time intervals. Given the 
availability of repetitive coverage and a constant im-
age quality, it is one of the main applications of re-
mote sensing. 

The change detection approach adopted in this 
study was a post-classification comparison followed 
by a change threshold algorithm. It consisted of using 
the spectral indices calculated (NDVI, NDWI and 
TCW) from the four Landsat ETM+ images and then 
the data classification to produce an image difference 
algorithm threshold calculation. The products from 
this procedure were the two change maps correspond-
ing to the difference in values for the beginning and 
the end of the summer (June and August). Further-
more, to investigate and validate the changes in spe-
cific areas in rainfed agriculture, the 44 samples taken 
during the field work were used to extract the values 
of the spectral indices for the different images. The 
spectral index values for the same locations were 
compared and tested for significant differences for all 
pairs of images corresponding to a α of 0.01. Statisti-
cal significance was tested for the same months in 
different years.  

RESULTS 

LAND USE LAND COVER (LULC) MAPS 

Four Land Use Land Cover Maps were processed 
from the Landsat ETM+ images. Based on ground-
truth, the accuracy of the finalized LULC maps de-
rived from the Landsat ETM+ images acquired for 
different periods of the year was calculated. LULC 
maps consisted of 6 classes (see Fig. 6) that mainly 
define this rural landscape in central Mexico: forests 
(F), irrigated agriculture (IA), pastureland (P), rainfed 
agriculture (RA), shrubland (SH), and water bodies 
(W). Due to the SLC-off, 15.95% of the pixels in the 
study area were lost for all images corresponding to 
173.19 km2 for year 2005. The use of SAADAT et al.’s 
[2010] methodology to process the LULC maps re-
sulted in very high accuracy,  ranging from 87.88% to 
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Fig. 6. LULC maps of June 2000 (overall accuracy 90%) and August 2005 (overall accuracy 97%); note the effects  

of SLC-off in the 2005 map were almost 10% of the image was lost; source: own elaboration 

92.42%. The landscape in central Mexico is very di-
verse and heterogeneous. Farmers have shaped the 
land to satisfy their needs and have altered the land-
scape to overcome abnormally dry conditions by 
building small dams and water reservoirs. Moreover, 
farmers have adapted management practices such as 
irrigating pronominally the most profitable crop in the 
region, which is alfalfa because of the importance of 
self-subsistence livestock in the region. Also, fertiliz-
ers and pesticides are used to increase yields.  

The importance of having very accurate maps is 
that when detecting change of spectral indices and 
then evaluating it for each class, the results provide 
a very precise insight on how the specific class be-
haved in the year, with an anomalous deficit of pre-
cipitation. Such evidence has the potential to be very 
useful for decision makers to provide solutions for 
local stakeholders depending on such activities. Note 
in Table 1 the difference of areas for all classes be-
tween those of 2000 and 2005. All areas in 2000 are 
bigger due to the data gaps of the Landsat imagery 
SLC-off of 2005. However, the percentage of areas is 
very similar. 

Table 1. Average area for each class for June and August in 
2000 and 2005 

Year 2000 Year 2005 
Class name area 

km2 
% of the 
territory 

area 
km2 

% of the 
territory 

Clouds 11.03 1.02 0 – 
Forest 211.30 19.47 176.64 19.94 
Irrigated agriculture 23.81 2.19 19.68 2.22 
Pastureland 224.66 20.71 171.01 19.30 
Rainfed agriculture 413.26 38.09 346.42 39.10 
River  15.88 1.46 9.16 1.03 
Shrubland 181.30 16.71 161.4 18.22 
Water 3.76 0.35 1.763 0.20 
Total area 1084.99 100.00 886.07 100.00 

Source: own study. 

NDVI RESULTS 

In a previous study by SIERRA-SOLER et al. 
[2015] performed for the same study area as the pre-
sent paper, a precipitation analysis using the Stan-
dardized Precipitation Index of monthly precipitation 
from January 1980 to December 2012 was performed. 
In this study the SPI was processed using this monthly 
data. The 9-month SPI compares the precipitation for 
that period with the same 9-month period over the 
historical record, and it is a good indicator of seasonal 
conditions affecting agriculture. The year 2000 was 
observed to have normal wetness conditions because 
it presented consistent positive results within ap-
proximately one standard deviation in the 9-month 
SPI values that increased in April, peaking in the 
month of June and then diminishing over the subse-
quent months. The year 2005 persistently showed 
consistently dry conditions throughout the 6 meteoro-
logical stations in the study area. This year presented 
values ranging from mild drought during the first 
months of the year, to extreme drought in May, June, 
and July, according to the SPI results recorded from 
meteorological stations. 

During summer, rainfed crops in central Mexico 
can be expected to have developed and should be en-
tering the mature stages by the end of summer to be 
harvested by September. NDVI change detection of 
the images corresponding to the initial final stages of 
summer was performed (Fig. 7). The identified nega-
tive change in NDVI is significant in the two periods 
analyzed. For the month of June, most classes showed 
a significant decrease in NDVI values in most regions 
(Tab. 2). It was found that for NDVI in June, 85.69% 
of the vegetated areas (representing 749.99 km2) de-
creased by 10% or more. Even though this decrease is 
relevant, it should be noted that there is an 18 day gap 
between the two images; however, there were no im-
ages available for closer dates to be compared. 
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Fig. 7. NDVI change maps of June and August; the comparison was made between the normal year (2000) and the detected 

dry year (2005); source: own study 

Table 2. Area in km2 of each LULC class categorized in the 
change in NDVI for June 2000 vs. June 2005 

Area, km2 

Class name de-
creased 
>10% 

some 
decrease 
(1–9.9%)

some 
increase 
(1–9.9%) 

increase 
>10% total 

Forest 133.49 38.80 3.47 0.88 176.64
Irrigated 
agriculture 17.31 1.50 0.47 0.40 19.68 

Pastureland 127.78 37.64 2.87 2.72 171.01
Rainfed 
agriculture 318.27 21.87 3.60 2.69 346.42

Shrubland 153.13 5.56 1.38 1.32 161.40
Total 749.99 105.38 11.78 8.00 875.15

Source: own study. 

Table 3. Area in km2 of each LULC class categorized in the 
change in NDVI for August 2000 vs. August 2005 

Area, km2 

Class name de-
creased 
>10% 

some 
decrease 
(1–9.9%)

some 
increase 
(1–9.9%) 

increase 
>10% total 

Forest 37.85 66.16 71.12 0.00 175.13
Irrigated 
agriculture 8.56 4.91 5.98 0.00 19.45 

Pastureland 117.96 43.10 0.00 19.51 180.57
Rainfed 
agriculture 146.65 98.70 97.21 0.00 342.57

Shrubland 86.39 41.46 30.82 0.00 158.66
Total 397.41 254.33 205.13 19.51 876.38

Source: own study. 

Low NDVI values mean there is little difference 
between the red and NIR signals. This manifestation 
of a negative change condition is therefore interpreted 
and associated with a lower photosynthetic activity of 
an important part of the study area that was analyzed. 
The August NDVI change map presented a less severe 
scenario of negative change; however, 74% of the 
total territory did experience at least some decrease in 
photosynthetic activity compared to the normal year. 
According to the LULC maps, rainfed agriculture rep-
resents approximately 58% of the total region, and for 
both periods analyzed these were the greatest exten-
sions of land to have significant decreases in NDVI 
values (see Table 2 and 3). It can be noted that 28% of 
the area classified as rainfed agriculture had a slight 
positive change in NDVI. Forests also had a slight 
increase in NDVI, with an increase ranging between 
1–9% of 71.12 km2 of forested area. The area classi-
fied as rainfed agriculture (RA) presented significant 
NDVI change, representing more than 10% or more in 
negative change. 

During fieldwork, 44 out of the 132 samples cor-
responding to rainfed agriculture were documented as 
ground truth data. Such samples were used to extract 

and compare NDVI values for the particular sampled 
points representing rainfed agricultural lands (Fig. 8). 
The negative change in the mean values of NDVI for 
both dates is significant. During the month of June, 
there was no overlap of NDVI values, representing an 
evident decrease in vegetation health and a negative 
mean value of 19.34% for the sampled points. By Au-
gust, even though there was an overlap of some of the 
samples taken, the mean value of all points was re-
duced by 16%. This indicates that the overall health 
of vegetation for the sampled locations just before the 
harvest was affected. 

NDWI AND SOIL/VEGETATION MOISTURE 

The normalized difference water index NDWI is 
a measure of liquid water molecules in vegetation 
canopies that interact with the incoming solar radia-
tion. The NDWI algorithm was processed with the 
purpose of analyzing the trends in vegetation moisture 
in the study area in the months of June and August 
2000 and 2005; this was done during the summer pe-
riod since rainfed crops in central Mexico have devel-
oped and entered the mature stages by the end of 
summer and are then harvested by September. 

NDVI change for June 2000 vs 2005 NDVI change for August 2000 vs 2005 
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Fig. 8. The 44 samples in rainfed agriculture NDVI values comparison for the initial and final stages of summer;  

a) June 2000 vs. June 2005; b) August 2000 vs. August 2005 source: own study 

Using the LULC classification, 
the NDWI statistics were extracted 
for each of the LULC classes. In this 
way, it was possible to verify the 
moisture trends of each class in dif-
ferent stages of the growing season 
(Fig. 9). Each class had consistent 
patterns of mean NDWI throughout 
the 18 scenes, with values that slow-
ly increased before the summer and 
continued to increase until they 
peaked in the month of August; they 
then decreased by November when 
the rainy season ended. All classes 
peaked in NDWI values during the 
summer months with the highest val-
ues during August. Rainfed agricul-
ture and pasturelands consistently 
had the lowest values of NDWI, but 
followed the same trends as other 
classes. 

The values for all classes in the 
year 2005 showed lower than normal 
values compared to the year 2000. The year 2011 was 
peculiar, with low values and a decrease for June, and 
a peak in August. The year 2000 and 2005 were fur-
ther investigated to compare the behaviors.  

Change maps of NDWI were created (Fig. 10). 
Similar to the NDVI, the identified negative change in 
NDWI was substantial in the two periods analyzed, 
and especially for June 2005. For the month of June, 
most classes showed a significant decrease in NDVI 
values in most regions (Tab. 4). It was found that for 
NDWI in June, 81.9% of the vegetated areas (repre-
senting 725.08 km2) decreased by 10% or more. This 
manifestation of negative change condition is inter-
preted and associated with lower moisture in the 

vegetation of significant parts of the study area ana-
lyzed. 

The case of August change was different. In this 
month, 20% of the study area had a significant de-
crease in NDWI values, while 64% had some de-
crease. For the area classified as rainfed agriculture, 
84% had at least some decrease in NDWI; however, 
20% of this area had a 10% or more decrease. 

The NDWI did not show severe negative change 
for the month of August for most classes. The de-
crease (1–9%) could be dismissed; however, it is im-
portant to note that rainfed agriculture and pasture-
lands continuously showed the greatest negative re-
sponse for the study period.  
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Fig. 10. NDWI change of June and August. The comparison was made between the normal year (2000) and the detected dry 

year (2005); source: own study  

Table 4. Area in km2 of each LULC class categorized in the 
change in NDWI for June 2000 vs. June 2005 

Area, km2 

Class name de-
creased 
>10% 

some 
decrease 
(1–9.9%) 

some 
increase 
(1–9.9%) 

increase 
>10% total 

Forest 120.08 41.78 12.93 1.36 176.14
Irrigated 
agriculture 17.37 1.29 0.75 0.24 19.65

Pastureland 116.49 56.88 6.01 2.13 181.52
Rainfed 
agriculture 319.38 19.76 4.86 2.60 346.60

Shrubland 151.75 7.80 1.35 0.56 161.46
Total 725.08 127.50 25.91 6.89 885.38

Source: own study. 

TCW AND SOIL/VEGETATION MOISTURE 

The results of the soil/vegetation moisture indica-
tor TCW demonstrated a clear decrease in the soil/ 
vegetation during the period studied (Fig. 11). This 
particular spectral index showed a very similar nega-
tive response for both months analyzed. A significant 
decrease in TCW was found for June (72.4%) and 
August (64.9%) for the whole study area (Tab. 5, 6). 
This represented 84% of the rainfed agriculture, 
which showed a decrease of more than 10% in TCW 
values.  

    
Fig. 11. TCW change of June and August; the comparison was made between the normal year (2000) and the detected dry 

year (2005); source: own study 
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Table 5. Area in km2 of each LULC class categorized in the 
change in TCW for June 2000 vs. June 2005 

Area, km2 

Class name de-
creased 
>10% 

some 
decrease 
(1–9.9%) 

some 
increase 
(1–9.9%) 

increase 
>10% total 

Forest 68.09 71.01 0.01 35.51 174.61
Irrigated 
agriculture 15.97 3.42 0.00 3.40 22.80

Pastureland 157.08 19.49 0.01 3.23 179.81
Rainfed 
agriculture 288.81 48.44 0.02 3.33 340.60

Shrubland 120.59 26.37 0.00 12.01 158.97
Total 650.53 168.74 0.04 57.48 876.80

Source: own study. 

Table 6. Area in km2 of each LULC class categorized in the 
change in TCW for June 2000 vs. June 2005 

Area, km2 

Class name de-
creased 
>10% 

some 
decrease 
(1–9.9%) 

some 
increase 
(1–9.9%) 

increase 
>10% total 

Forest 68.09 75.01 25.51 5.67 174.27
Irrigated 
agriculture 13.97 2.42 2.40 0.95 19.75

Pastureland 127.08 19.49 3.23 29.35 179.15
Rainfed 
agriculture 248.81 38.44 31.69 23.47 342.41

Shrubland 110.59 24.37 19.01 4.83 158.80
Total 568.53 159.74 81.84 64.26 874.38

Source: own study. 

CONCLUSION  

In many semiarid developing regions such as 
Central Mexico, droughts have the potential to cause 
crop failure and threaten food security for poor farm-
ers. Rainfed agriculture is practiced widely in these 
regions, and consequently, poor smallholder produc-
ers are exposed to losing their self-sufficiency produc-
tion. The innovative methodology proposed in this 
study had the objective of investigating rainfed agri-
culture response to dry conditions using remotely 
sensed data. Four Land Use Land Cover (LULC) 
maps were processed from single imagery using 
a new methodology, obtaining overall accuracies 
ranging from the lowest at 87.88% to the highest at 
92.42%. The importance of developing high accuracy 
LULC maps is based on the fact that when detecting 
change of spectral indices and then evaluating it for 
each class, the results provide detailed insight on how 
specific classes develop in years with dry conditions. 
The period of study selected corresponded to the 
months of June and August (initial and final stages of 
summer) with the objective of understanding vegeta-
tion response to dry conditions at a crucial state of 
development. This period is where rainfed crops in 
Central Mexico are expected to have developed and 
entered mature stages by the end of the summer in 
order to be harvested by September. Three spectral 
indices (NDVI, NDWI, and TCW) were processed and 

analyzed to detect change of a normal and a dry year 
(2000 and 2005, respectively). 

All the spectral indices that were processed indi-
cated a clear decrease in photosynthetic activity NDVI 
and soil/vegetation moisture (NDWI and TCW) for the 
year 2005 compared to 2000, particularly in the 
month of June. However, the negative change for the 
final stages of summer (month of August) should not 
be underestimated. Persistently, rainfed agriculture 
and pastureland were the classes that presented the 
greatest percentages of negative change in all the ob-
tained indices.  

The changes perceived in the values of NDVI, 
NDWI, and TCW supported the conclusion that vege-
tation condition was negatively affected by the low 
rainfall observed in the year 2005. In June 2005 com-
pared to June 2000, the results showed that 85.7% of 
the total study area had a negative change in vegeta-
tion condition NDVI and also 81.8% vegetation/soil 
moisture NDWI. In both cases, the decrease was of 
10% or more, providing evidence of drought pres-
ence. For August 2005 compared to August 2000, 
74.3% of the total study area presented negative 
change (at least –5%) of vegetation condition NDVI 
and 83.4% of vegetation/soil moisture NDWI. There is 
an 18 day gap between the two dates compared; how-
ever, there were no images available for closer dates 
to be compared. 

Droughts are difficult to define because of their 
intricate nature, the variables that influence the phe-
nomenon, and the way they are perceived by the sys-
tems in the region of interest. The results presented in 
this paper could be compared to other semi arid areas; 
however, drought perception is different for every 
region because of the different water demand, ecosys-
tems, and infrastructure. In summary NDVI, NDWI, 
and TCW post classification comparisons and image 
differencing techniques have proven to be useful 
methods for tracing environmental changes in the 
study area, and a similar approach could be explored 
in other regions.  

The proposed methodology has several strengths 
and weaknesses. High accuracy maps enabled an un-
derstanding of how different classes of vegetation 
changed in condition and soil/vegetation moisture for 
specific key months of development. This detailed 
information has the potential to be used as back-
ground information for prevention and relief action. 
Vegetation and soil/vegetation moisture spectral indi-
ces used in this study have been very well docu-
mented in the literature and are pertinent to detect 
drought effects on vegetative cover.  

The first disadvantage is the above-mentioned 
18-day gap between the images analyzed. Further-
more, to quantify the severity of the drought studied 
in this paper, it should be compared with other peri-
ods where dry conditions were present. Landsat 8 was 
launched in February 11, 2013 and it will provide new 
imagery of the earth at medium resolution, which 
could have great potential to be used for drought mon-
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itoring in the future. Future research in the area 
should focus on comparing other dry events with the 
results obtained in this study, where significant envi-
ronmental negative change was found related to dry 
conditions.  

Unlike other natural hazards, the impacts of 
drought are not reflected on infrastructure and spread 
over large geographical areas, which results in diffi-
culty in the quantification of impact and for the provi-
sion of relief [MISHRA, SINGH 2010]. The present 
study found a negative response of vegetation and 
soil/vegetation moisture for the year 2005; however, 
further efforts must be made to understand longer 
time series of imagery to compare the response of this 
drought to others.  

The results have the potential to be used as back-
ground information for decision makers such as the 
Water Council of the State of Hidalgo (CEAAH in 
Spanish) or the Water National Commission 
(CONAGUA in Spanish) to identify areas that are 
more prone to be vulnerable to droughts because of 
the meteorological and environmental context in 
which they are situated.  
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Dokładne mapy użytkowania i pokrycia terenu (LULC) w śledzeniu suszy rolniczej w zasilanych opadowo 
agro-ekosystemach środkowego Meksyku 

STRESZCZENIE 

Słowa kluczowe: mapy LULC, susza, teledetekcja, wskaźniki spektralne 

Teledetekcja zapewnia synoptyczny ogląd Ziemi i kontekst przestrzenny do pomiarów efektów susz, co 
okazało się cennym źródłem ciągłych danych dla monitorowania dynamiki roślinności. Wiele badań koncentro-
wało się na śledzeniu skutków suszy na rozległych obszarach ze względu na łatwą dostępność obrazów o małej 
rozdzielczości. Celem przedstawionej pracy była jednak analiza mniejszego obszaru (1085 km2) z użyciem zdjęć 
Landsat ETM+ (wielospektralna rozdzielczość 30 m, panchromatyczna – 15 m) oraz przeprowadzenie dokładnej 
klasyfikacji użytkowania i pokrycia powierzchni terenu (ang. Land Use Land Cover – LULC) z zamiarem okre-
ślenia z dużą dokładnością skutków suszy w poszczególnych klasach. Terenem badań była Tortugas-Tepezata, 
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zlewnia II rzędu rzeki Moctezuma, zlokalizowana w stanie Hidalgo w środkowym Meksyku. Klasyfikację LULC 
przeprowadzono z użyciem nowej metody bazującej na dostępnych dodatkowych informacjach i analizie trzech 
zdjęć satelitarnych wykonanych w różnym czasie. Opracowana na nowo metodyka LULC zapewniła dokładność 
w granicach od 87,88 do 92,42%. Spektralne wskaźniki dla roślinności i wilgotności gleby oraz roślin wykorzy-
stano do wykrycia anomalii w rozwoju roślinności spowodowanych suszą. Ponadto zmierzono i porównano po-
wierzchnię zbiorników wodnych w celu sprawdzenia zmian w dostępności wody do nawadniania upraw. Propo-
nowana metodyka może służyć jako narzędzie szczegółowej identyfikacji skutków suszy w zasilanych opadowo 
obszarach rolniczych oraz jako mechanizm zapobiegania i łagodzenia skutków suszy. 
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