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Abstract
In the framework of non-destructive evaluation (NDE), an accurate and precise characterization of defects is
fundamental. This paper proposes a novel method for characterization of partial detachment of thermal barrier
coatings from metallic surfaces, using the long pulsed thermography (LPT). There exist many applications,
in which the LPT technique provides clear and intelligible thermograms. The introduced method comprises
a series of post-processing operations of the thermal images. The purpose is to improve the linear fit of
the cooling stage of the surface under investigation in the logarithmic scale. To this end, additional fit
parameters are introduced. Such parameters, defined as damage classifiers, are represented as image maps,
allowing for a straightforward localization of the defects. The defect size information provided by each
classifier is, then, obtained by means of an automatic segmentation of the images. The main advantages
of the proposed technique are the automaticity (due to the image segmentation procedures) and relatively
limited uncertainties in the estimation of the defect size.
Keywords: thermography, non-destructive testing, thermal barrier coatings, image segmentation, uncertainty
analysis.
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1. Introduction

The infrared thermography (IR) is among the most attractive non-destructive evaluation
(NDE) techniques allowing for the identification of material defects affecting the structures
and specimens under test. The IR technique has the advantages of low cost, easy operation,
high speed, and wide area coverage, from defect detection and characterization of engineering
materials to the assessment of the state of historical and archaeological artefacts for cultural
heritage preservation, [1–4].

The crucial aspect of such kind of NDE technology is the combination of infrared thermogra-
phy technology and the specimen heating excitation which can be performed by means of different
techniques, [1–4].
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One of the most often employed NDE testing is the pulsed thermography. In this technique,
the surface of the analysed component is heated with a brief light pulse by means of a high-power
source.

An infrared camera, then, collects the temperature response of the specimen’s surface, that
can be obtained by means of a series of post-processing operations to be implemented to the
acquired raw thermographic images. The possible presence of superficial and sub-superficial
defects provokes an alteration of the heating up and cooling rates of the flawed regions, [2].
The thermographic images so obtained, exhibit the presence of thermal contrasts in those pixels
corresponding to the defected regions of the specimen under analysis.

Such a contrast highlights possible defects. However, the acquired raw thermograms are
characterized by non-neglectable noise levels. These interfering effects are caused by the presence
of the background radiation and, possibly, not uniform heating of the target surface.

Therefore, a direct analysis of the raw thermal images does not allow for an accurate defect
detection [5]. In this regard, the scientific literature reports several effective and efficient method-
ologies, aimed at signal enhancement, e.g. thermographic signal reconstruction (TSR) [6, 7],
pulsed phase thermography (PPT) [8, 9], principal component thermography (PCT) [10], the
slope (m) and the determination coefficient (R2) of the linear fit of the properly treated thermal
data on the logarithmic scale [11].

Recently, the long pulse thermography (LPT) technique has been profitably developed. In LPT
technique, the surface of the component under investigation, is heated up for few milliseconds
[12] (typically hundreds of milliseconds up to a few seconds). There are so many applications
mentioned in the scientific literature according to which the long pulse excitation technique can
be more effective for some applications [13–16].

The authors of references [12] and [17] have shown that the processing techniques, commonly
used for the Dirac delta heating pulse, can be applied to finite duration heating pulse.

The aim is to refine and improve the least square fit of the thermal data (during the surface
cooling) obtained by a series of novel processing steps to be implemented in the thermograms,
acquired by means of the LPT technique. The effectiveness of defect detection of the fit slope
(m) and the determination coefficient (R2) will be significantly enhanced by adopting an opti-
mization algorithm to better utilize the spatial information derived from the thermographic data.
Additionally, the authors introduce the fit intercept (q) and fit standard deviation (Sρ) as defect
detectors, [18].

Within the framework of the proposed technique, the thermal image segmentation is funda-
mental for the detection of defects. The segmentation distinguishes the image pixels related to
flawed regions from the sound pixels and it is mainly based on grouping pixels (sharing common
colour features) into connected regions, [19–21]. Such approach, allows the determination of
defect size directly from thermographic images, as already proven in [22].

The presented approach not only enhances the resolution of the detection but also facilitates
automated selection of the suspected regions without any prior knowledge about features. The
experimental results strongly indicate that the algorithm can reliably extract the inner defect
information and improves the contrast between the defect area and the sound area, allowing also
for an accurate and precise sizing of the detected defects.

The study will be conducted on a series of test specimens exhibiting thermal barrier coatings
(TBCs). The test specimens are affected by partial detachment of the TBC. The aim pursued, is
the detection, localization and sizing of such defects.
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1.1. Theoretical background

In long pulsed thermography, a high-energy pulse (during from few hundreds of milliseconds
up to a few seconds) is projected onto the surface under analysis, by means of one or more than one
flash lamps. Figure 1 illustrates a typical experimental test bench normally used in thermographic
inspections.

Fig. 1. Experimental assembly for the pulsed thermographic inspection.

The time duration of the exciting pulse influences the thermal behaviour of the entire specimen
under test. Once the heat flux is absorbed by the sample surface, the heat conduction through
the material takes place. Therefore, the propagation of the heat inside the specimen leads to a
progressive decrease of temperature surface. An IR thermal camera, controlled by a computer,
acquires the surface temperature response.

2. Materials and experimental procedure

2.1. Tested specimens description

The specimens used are three discs (diameter 25 mm and thickness 5 mm), with metallic
bondcoat and a ceramic topcoat (thickness 200 µm) which is yttria stabilized zirconia (YSZ),
deposited with the high velocity oxy fuel (HVOF) technique. The specimens, developed and
exploited by the same authors in [18], have been realized keeping the same thickness of the
substrate and of the TBC coating, but with an adhesion defect (Fig. 2a). The method used for
the realization of the specimens with detachment of TBC involves the following implementation
phases: drilling of the basis metal specimens, insertion of a copper pin, moulding and sandblasting

a) b)

Fig. 2. Tested samples during the production of the adhesion defect (a),
picture of one of the reference-coated samples (b), [18].
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of the surface, application of the bondcoat and topcoat, pin removal, insertion of base material
plugs (Fig. 2a). Figure 2b shows the final sample.

In this paper, a circular defect is simulated (at the centre of the sample), with 2 mm, 3 mm
and 5 mm. The base specimen is identical for the three case studies. The specimens are identified
with letters A, D and E, respectively.

2.2. Experimental setup

The test instrumentation, already employed in a previous work by the same authors [18],
comprises a 1064 nm wavelength Ytterbium pulsed fibre laser generating a pulse excitation of
duration 500 ms and the collimated laser spot with a diameter of about 8 mm.

Figure 3 shows the used experimental setup, comprising the thermal camera, the laser lamp
and the tested specimen (on the left side of the picture). Table 1 lists the main features of the used
thermal camera.

Fig. 3. Experimental assembly for the pulsed thermographic inspection, [18].

Table 1. FLIR X6540 SC features.

Feature Specification
Detector type Focal plane array

Sensor material InSb

IR max. resolution 640 × 512

Applied windowing 176 × 136

Frame rate 500 Hz

Spectral range 3–5 µm

Thermal sensitivity < 25 mK (18 mK typical)

Temperature measurement accuracy ±1◦C (1.8◦F) or ±1%

Lens SWB 50 mm f/3 Bayonet

Focal length 50 mm (±5%)

Field of view in degrees 10.97

Distance to target 0.70 ± 0.07 m

Instantaneous field of view 0.25 ± 0.03 mm/pixel
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2.3. Measurement procedure

In this sub-section, the authors introduce the overall measurement procedure performed on
specimens A, D and E (of diameter size 2 mm, 3 mm and 5 mm respectively).

For each tested specimen, a repeatability test has been performed. Performing repeatability
tests is an essential part of the estimation of the uncertainty granted by the introduced algorithm
and it is aimed at evaluating the degree of precision of the outcome of the algorithm.

In this work, the authors performed five repetitions for each specimen. Each repetition consists
in the application of a thermal cycle to the analysed specimen and the collection of temperature
data of its surface, during the cooling stage. The consecutive cycle is applied once the tested
sample has reached a standard temperature referred to the laboratory conditions. Therefore, for
each specimen, five data sets are obtained.

When performing a repeatability test, the experimenters made sure that the repetitions are
performed under the following conditions:

– Same method.
– Same operator.
– Same test location.
– Same experimental equipment.
– Same environmental conditions.
– Same measurement configuration.
– Same test specimen.
Cycles repeated over a relatively short period of time (compatible with the achievement of

the cooling completion of the specimen between each repetition). Then, the proposed algorithm
is implemented in each dataset, in order to obtain the information about defect location and size
pertaining to each test and analysed specimen. Type A uncertainty evaluation approach is adopted,
in order to estimate the repeatability of the technique, [23].

3. Description of the proposed algorithm

In this section, the authors describe the proposed algorithm and the steps leading to the
defects detection and characterization. The algorithm consists in a series of operations to be
directly implemented on the thermographic images.

Figure 4 shows a synthetic chart of the introduced algorithm, with a brief description of the
implemented steps, which are going to be discussed in the following sections.

3.1. Data pre-processing

The data pre-processing steps are basically aimed at the raw data arrangement in order to make
them suitable for the implementation of the main algorithm. The main purposes achieved are the
de-noising of the raw thermograms and the automatic selection of the region of interest (ROI),
referring to the effective specimen area where the main algorithm is going to be implemented.
The target of this sub-section is to illustrate the operations implemented in the data pre-processing
stage. The figures shown below are relative to one of the tests concerning specimen A (circular
defect of 2 mm size).

In the de-noising operation, a Gaussian-weighted moving average over each window of a single
raw thermographic image is considered. Figure 5 and Fig. 6 show, respectively, the time sequence
of the raw thermograms and the Gaussian smoothing window employed for the smoothing of the
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Data pre-processing

Raw thermograms smoothing with 
a Gaussian window

Selection of Region of Interest
(ROI) corresponding to the 
effective specimen area, 

excluding the background pixels

Selection of the initial and last 
time frames delimiting the 

effective specimen cooling stage

Main algorithm implementation

Iteratively reweighted least
squares fit of the temperature time 

history of each ROI pixel during
the effective cooling stage

Introduction and calculation of the 
so-called damage classifiers

deductable from the fit

Arrangement of the damage
classifiers into image maps

Data post-processing for damage
quantification

Otsu’s segmentation of damage
classifiers’ maps for each

replication

Computation of the mean number
of defect pixels

Defect shape characterization by 
means of appropriate metrics

Defect mean size evaluation along
with its extended uncertainty

Entropy based evaluation for the 
assessment of the best 

performing damage classifier

Fig. 4. Flowchart of the proposed algorithm.

Fig. 5. Time sequence of raw thermograms. Fig. 6. Single raw thermogram with Gaussian
window for image smoothing.
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images. Figure 7 and Fig. 8 illustrate the comparison between an arbitrary raw thermogram and
the relative smoothed version. The smoothing operation is desirable, although the overall trend of
the surface temperature is predictable (and monotonically decreasing during the post-excitation
period). Indeed, the same single pixel may not behave as predicted in two consecutive times,
because of inevitable and undesirable noise influence. These undesirable effects are typically
composed of high frequency components and they should be removed in order to couple each
pixel with a physically consistent monotonically decreasing temperature trend.

Fig. 7. Raw noisy thermogram. Fig. 8. Filtered thermogram
(Gaussian window, 7 × 7 pts).

A further crucial operation here considered refers to the identification of the group of pixels
relative to the effective specimen area. The selection of the ROI is fundamental because it allows
to isolate the specimen area from the surrounding image background, with the advantage of
considerably limiting the number of pixels subjected to the main algorithm.

The ROI selection is automatically performed and it is based on the mean temperature of
the time history of the acquired thermograms prior to the laser excitation of the sample under
analysis. Figure 9 illustrates the time history of a single pixel on the specimen surface. The red
dashed line indicates the time (prior to the laser excitation) considered for the computation of
the pixel mean temperature. Figure 10 shows the mean temperature map prior to the thermal
excitation, along with the relative colormap with the temperature levels indicated.

Fig. 9. Time history selection for a single specimen pixel. Fig. 10. Mean Temperature map prior to laser excitation.
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It is worth stressing here that the figures contained in this subsection, are relative to a single
repetition of the excitation of specimen A. Since the main object of this section is to illustrate and
present the algorithm, the images for specimens D and E (tested in this work) are omitted.

The ROI extraction from the mean temperature map is based on Otsu’s segmentation algo-
rithm [24]. Basically, the algorithm is based on the image threshold approach. The image pixels
are grouped into m = 3 classes, each of them representing, respectively, the background, the
support and the specimen. The implementation of the algorithm is automatic, once the number of
classes (i.e. the objects to detect) is stated. Then, the algorithm computes the pixel threshold val-
ues separating the three classes. Such automatic computation is accomplished once the minimum
of the intra-class variance is achieved, [25].

Figure 11 identifies the three areas (background, specimen’s support and the main specimen)
on the basis of the Otsu’s algorithm. The indication of the mean temperatures relative to each
area is reported in Fig. 12.

Fig. 11. Identification of the three areas based on Otsu’s
algorithm.

Fig. 12. Mean temperatures of the three detected areas.

The foreground area extracted from the segmentation operation (Fig. 12), is not circular
like it should be. Indeed, the upper portion of the segmented area, is irregular and its pixels
exhibit a temperature that makes them belong to the material. This discrepancy is due to an
anomalous temperature distribution among those pixels, which have to be considered as artefacts.
So, the first step of the algorithm implementation deals with the removal of the pre-excitation
time history. Briefly, the mean pre-excitation temperature (from the previous step) is subtracted
from the effective temperature time history. This operation (performed for each pixel) provides
the term ∆T (difference between the actual temperature and the average temperature prior to the
thermal excitation). Figure 13a shows the whole-time temperature trend of a pair of those artefact
pixels, compared to another pair of pixels actually belonging to the material. Figure 13b shows
their locations. The remarkable differences in those trends allow to set a criterion of further
restriction of the ROI area, limiting the ROI to the pixels exhibiting a temperature trend that
is physically consistent with heating and cooling stages. In addition, Fig. 13b shows the actual
ROI area.

Figure 14 is the chart of the temperature trend of a single pixel, Fig. 15 shows the same trend
in the log-log scale. In Fig. 15 the pre-excitation stage (P.S.), the effective cooling (intermediate
stage, I.S.) and the very late stage (L.S.) are shown. With reference to Fig. 15, the whole
trend of ∆T is significantly varying. The Fourier heat diffusion law (valid for semi-infinite solid
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a) b)
ROI pixel #1

ROI pixel #2

Artifact pixel #1

Artifact pixel #2

ROI edge

Fig. 13. Temperature time history of two arbitrary ROI pixels and two artefact pixels (a), their spatial location (b).

instantaneously heated) is strictly valid in the intermediate stage, where the actual sample cooling
is occurring.
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Fig. 14. Entire ∆T time history of an arbitrary
ROI pixel.
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Fig. 15. Log-Log ∆T time history for the same pixel.

Since the analysis should be performed in the actual cooling stage, the appropriate removal
of the early and the last stages is fundamental. In addition, the detection of the beginning and
the ending frames of the intermediate stage may lead to deceptive results. Indeed, the accurate
selection of the beginning of the cooling stage (in particular immediately after the laser excitation)
may be compromised because of the possible infrared camera saturation, exacerbating the non-
linear behaviour and invalidating the hypothesized model. In the proximity of the late stage the
hypothesized trend is less clear because of the noise due to non-negligible convection and/or stray
radiation mechanisms.

The first cooling frame (of each specimen pixel) has been set fifty frames after the maximum
temperature (for each pixel) is reached, to ensure that the temperature decay has actually started.
The selection of the last frame has been performed on the basis of statistical considerations.

The last frame is in correspondence with the time when the ∆T curve crosses the band shown
in Fig. 16 for the first time.
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Fig. 16. Last frame selection. Mean ∆T , the upper and lower bounds about mean ∆T are represented.
Confidence interval of 95% ∆̄T ± 2σ, σ standard deviation.

3.2. Main algorithm description

The main feature of the proposed algorithm is to simplify and automate the detection of defects
affecting samples with thermal barrier coatings. As pointed out in the introductory section, many
algorithms have been introduced in the NDE field. Surely, the thermographic signal reconstruction
(TRS) [8], is among the most performing techniques. Along with the main technique employed
for the thermographic analysis, a detailed and careful analysis of the algorithm results should be
considered. Indeed, only a correct interpretation of the analysis outcomes can lead to an accurate
and precise localization and quantification of the defects.

The proposed technique is based on a series of enhancements of the linear fit of the log-log
time history of the surface ∆T , [11, 17]. The previously described automatic selection of the ROI
and the actual cooling stage of each pixel (within the ROI) represent fundamental steps towards
the efficiency of the proposed technique.

The idea inspiring this work is to implement a linear least squares fit of the actual cooling
stage of each pixel representative of the specimen surface. From the consideration made in
the introductory section, it can be argued that sound ( “good”) pixels should have a slope of
− 0.5 that is independent of material properties. Pixels exhibiting anomalies of thermal diffusion
mechanisms (symptomatic of defects) may deviate from such a trend. Therefore, a simple linear
least squares analysis for each pixel is useful for the discrimination of defect pixels. Figure 17
and Fig. 18 illustrate the temperature data and the linear fit for the same defect pixels and sound
pixels, respectively. The differences between the trends in Fig. 17 and Fig. 18 support the idea of
grouping defect and non-defect pixels, according to the values taken by certain fit features.

In this paper, the authors introduce a robust version of least squares technique. The algorithm
takes advantage of iteratively reweighted least squares (IRLS) fit, using a Talwar weighting
function, [26–27]. Generally, the IRLS technique addresses the issue of data containing significant
outliers. In this study, the relative importance of possible outliers (predominantly in the beginning
and the end frames of the log-log ∆T time trend and possibly due to incorrect selection of
both frames) could lead to misleading fit estimation. Therefore, an iterative weighted regression
(accomplished by iteratively weighting each data point) ensures better and more precise results.

The authors have extracted the distributions of fit slope and determination coefficient for
each specimen pixel. Additionally, the authors also introduce the fit standard deviation (Sρ) and
intercept (q) distributions. The following figures present the robust regression results (set in figure
maps) for the three tested specimens (A, D and E).
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Fig. 17. Data and linear fit comparison plots
for defect pixels #1 and #2.
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Fig. 18. Data and linear fit comparison plots
for sound pixels #1 and #2.

Figure 19 up to Fig. 22 show, respectively, the slope, the R2, the intercept and the standard
deviation maps of the fit of each pixel relative to specimen A.

Fig. 19. Map of fit slope of specimen A. Fig. 20. Map of determination coefficient, R2, specimen A.

Fig. 21. Map of fit intercept, q, specimen A. Fig. 22. Map of fit standard deviation, Sρ , specimen A.

229



G. Dinardo, L. Fabbiano, et al.: AUTOMATIC DEFECT DETECTION AND CHARACTERIZATION BY THERMOGRAPHIC . . .

Figure 23 up to Fig. 26 show the map of fit slope, the determination coefficient distribution,
the fit intercept map and the fit standard deviation for specimen D.

Fig. 23. Map of fit slope of specimen D. Fig. 24. Map of determination coefficient, R2, specimen D.

Fig. 25. Map of fit intercept, q, specimen D. Fig. 26. Map of fit standard deviation, Sρ , specimen D.

Figure 27 up to Fig. 30 show, respectively, the slope, the R2, the intercept and the standard
deviation maps of the fit of each pixel relative to specimen E.

Fig. 27. Map of fit slope of specimen E. Fig. 28. Map of determination coefficient, R2, specimen E.
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Fig. 29. Map of fit intercept, q, specimen E. Fig. 30. Map of fit standard deviation, Sρ , specimen E.

The presented maps give interesting qualitative indications of both location and size of the
defects in the three tested specimens. Along with the optimization of the regression technique
(for the mitigation of the bias effect introduced by the not proper selection of the first and last
frames) and the introduction of the fit intercept and standard deviation as defect markers, the
authors propose a further segmentation of the fit maps. This additional step allows to distinguish
between sound and defect pixels within the ROI and quantify the size of the detected flaws.

3.3. Data post-processing

This sub-section is devoted to the description of post-processing operations to implement
on the image maps of the fit parameters introduced in the previous sections. These operations,
representing the main peculiarity of the proposed algorithm, allow to elaborate on the information
and results derived from the preceding steps, and put them onto images defining the damage
classifier maps.

The damage classifier maps have been obtained by means of an Otsu’s segmentation of the fit
parameter images. Since the information brought by the images pertains only to the ROI pixels,
it is possible to divide the ROI domain into two classes: the sound pixels and the defect pixels.

The threshold value distinguishing both sub-domains is computed by maximizing the between-
classes variance (σ2

B). By way of example, Fig. 31 and Fig. 32 illustrate the histogram of pixel
counts and theσ2

B function for fit slope, intercept and standard deviation relative to a test performed

a) b) c)

Fig. 31. Otsu’s algorithm implementation for m (a), q (b) and Sρ (c) maps, specimen A.

231



G. Dinardo, L. Fabbiano, et al.: AUTOMATIC DEFECT DETECTION AND CHARACTERIZATION BY THERMOGRAPHIC . . .

on specimens A and D. In these cases, the results relative to fit determination coefficient are not
reported because of the segmentation give unintelligible results.

a) b) c)

Fig. 32. Otsu’s algorithm implementation for m (a), q (b) and Sρ (c) maps, specimen D.

Figure 33 illustrates the Otsu’s segmentation results for specimen E.

a) b)

c) d)

Fig. 33. Otsu’s algorithm implementation for m (a), R2 (b), q (c) and Sρ (d) maps, specimen E.

Figure 34a, Fig. 34b and Fig. 34c, show, respectively, the damage classifier maps for fit slope,
fit intercept and fit standard deviation attributable to one test performed on specimen A.

Figure 35a, Fig. 35b and Fig. 35c illustrate the same damage classifier maps for specimen D.
It is worth pointing out that in both cases, the map pertaining to the fit determination coefficient
is omitted because of poor quality segmentation.

Figure 36a, Fig. 36b and Fig. 36c show, respectively, the damage classifier maps for fit slope,
determination coefficient, fit intercept and fit standard deviation for specimen E.
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a) b) c)

Fig. 34. Damage classifier maps m (a), q (b) and Sρ (c). Specimen A.

a) b) c)

Fig. 35. Damage classifier maps m (a), q (b) and Sρ (c). Specimen D.

a) b) c) d)

Fig. 36. Damage classifier maps m (a), R2 (b), q (c) and Sρ (d). Specimen E.

4. Results

A set of five repetitions is available for each specimen. As pointed out in section 2.3, the
repetitions are needed in order to assess the repeatability and the stability of the performance
of the method. The outcome of the algorithm consists of a series of damage classifier maps,
pertaining to each fit parameter. The graphic representation from Otsu’s segmentation allows the
computation of the number of pixels pertaining to the detected defect region. Therefore, the inner
core, where the defect is located, can be quantitatively defined.

Table 2 lists the mean value and the extended uncertainty of the number of pixels pertaining
to the defect area in specimen A.

Table 2. Results for specimen A, units in pixel.

Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Deviation Sρ

Mean Value 53.8 NC 49.4 49.8

Ext. Unc. 95% 2.9 NC 0.5 0.8
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The determination coefficient results are omitted because of the poor segmentation quality.
The fit intercept and standard deviation parameters are characterized by the lowest uncertainties
among the five preformed replications.

Table 3 and Table 4 report the number of pixels of the defect area for specimen D and E
respectively.

Table 3. Results for specimen D, units in pixel.

Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Deviation Sρ

Mean Value 111.6 NC 112.6 112.0

Ext. Unc. 95% 1.1 NC 0.9 1.2

Table 4. Results for specimen E, units in pixel.

Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Deviation Sρ

Mean Value 314.2 307.2 314.8 314.6

Ext. Unc. 95% 1.2 1.6 0.4 0.5

It is worth pointing out that an increase of the flaw main size ensures a more accurate and
precise detection. In addition, as the defect diameter increases, the mean values resulting from
the fit slope, intercept and standard deviation maps get quite similar. Only the fit determination
coefficient R2 does not fulfil such behaviour.

4.1. Defect shape metrics

An accurate and appropriate characterization of the detected flaws plays an important role in
the assessment of the detectability effectiveness granted by the proposed technique. The ability to
bring out pixels (pertaining to presumptive defects) resembling connected areas having recogniz-
able shapes is essential. This subsection deals with a series of considerations aimed at defining
the detected defect by a morphological point of view. Therefore, some morphology indices are
introduced in Table 5.

Table 5. Shape metrics definitions.

Index Definition

Circularity C = 4π
A

P2 (1)

Solidity Ψ =
A

CA
(2)

Eccentricity Ξ =
d f

MA
(3)

Aspect Ratio AR =
NA

MA
(4)

Roundness Ω = 4
A

πMA2 (5)

The circularity C mathematically describes the degree of similarity of the detected pixel
ensemble to a perfect circle. In (1), the term A is the number of pixels and P the perimeter,
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calculated as the distance between each adjoining pair of pixels around the border of the region.
A unitary value is representative of a perfect circle. As C approaches 0, the shape is less circular.

The solidity Ψ describes how much a shape is convex or concave. In (2), the denominator CA
is the homologous area enclosed by a convex hull. A unitary solidity indicates a perfect convex
shape.

Equation (3) introduces eccentricity Ξ and it is computed as the ratio between the distance
between the foci (df ) of an ellipse and its major axis length (MA). The value is between 0 and 1,
(0 and 1 are degenerate cases). An ellipse whose eccentricity is 0 is actually a circle, while an
ellipse whose eccentricity is 1 is a line segment.

A similar metric indicating the extent to which a shape can be approximated to an ellipse is
the aspect ratio, AR, introduced by (4). It is the ratio between the minor axis length (NA) and the
major axis length.

Equation (5) introduces the roundness Ω. Roundness is similar to circularity but it is more
robust towards possible irregular borders along the perimeter as it involves the major axis length
instead of the perimeter.

Figure 37 shows the fit intercept map for a test performed on specimen E. In particular, the
defect pixel ensemble (in grey), the convex hull and the perimeter are shown. Figure 38 illustrates,
for the same case, the ellipse circumscribing the defect, along with its major and minor axes.

Perimeter

Convex Hull

Convex Hull Vertices

Fig. 37. Detected defect shape descriptors: blob’s perime-
ter and solidity (intercept fit map, spec. E, test #1).

5.4

4.9

Pseudo-Ellipse

Major Axis

Minor Axis

Fig. 38. Detected shape descriptors (intercept fit map,
spec. E, test #1): aspect ratio, major and minor axes, units

in mm.

Table 6, Table 7 and Table 8 introduce the mean values (deriving from the five replications)
of the damage classifiers for specimens A, D and E.

Table 6. Shape metrics (average values) of the segmented defect area, specimen A.

Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Dev. Sρ

C 0.88 NC 0.98 0.88

Ψ 0.95 NC 0.98 0.97

Ξ 0.53 NC 0.35 0.47

AR 0.79 NC 0.88 0.85

Ω 0.77 NC 0.87 0.88
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Table 7. Shape metrics (average values) of the segmented defect area, specimen D.

Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Dev. Sρ

C 0.84 NC 0.92 0.86

Ψ 0.97 NC 0.99 0.95

Ξ 0.44 NC 0.31 0.37

AR 0.89 NC 0.95 0.93

Ω 0.89 NC 0.95 0.90

Table 8. Shape metrics (average values) of the segmented defect area, specimen E.

Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Dev. Sρ

C 0.91 0.87 0.97 0.91

Ψ 0.96 0.98 1.00 0.91

Ξ 0.44 0.45 0.17 0.39

AR 0.98 0.89 0.99 0.92

Ω 0.89 0.88 0.93 0.89

The segmentation of the image maps of the introduced fit indices leads to the detection of
defect areas (for the three tested specimens), which can be considered circular with excellent
approximation. Also in this case, the results relative to the fit determination coefficient for
specimens A and D are omitted because of the poor segmentation results. For all the other
cases, the circularity, eccentricity, aspect ratio and roundness confirm the effective defect shape
obtainable from m, q and Sρ. In addition, the solidity values and, therefore, the deviation of the
detected main area from the homologous convex one, indicate shapes characterized by highly
regular borders.

4.2. Defect size calculation

This sub-section presents the results for the calculation of the detected defect size. Once the
segmented defects have been obtained, the diameter is estimated.

The authors introduce the Feret diameter for the evaluation of defect main size, [28]. For each
segmented image pertaining to a defined damage classifier, many Feret diameters, computed at
different orientations, are considered. Such an approach allows the estimation of the directional
uncertainty, which considers the imperfect circularity of the detected shapes. In addition, the
performed repetitions for each specimen, allow the estimation of the repeatability uncertainty.

Therefore, for each damage classifier, the diameter overall uncertainty takes into account the
standard deviation of the Feret diameters (as the considered orientation changes) within a single
repetition and the standard deviation of the Feret diameter mean values among the repetitions.
The first contribution is referred to as within standard deviation and the second contribution is
referred to as between standard deviation.

Figure 39 shows the maximum and the minimum Feret diameters of detected defect from the
fit intercept map pertaining to a test on specimen A. Figure 40 and Fig. 41 illustrate the same
information for specimens D and E.
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Convex Hull

Convex Hull Vertices

Max Feret Diameter

Max Feret Caliper Lines

Min Feret Diameter

Min Feret Caliper Lines

1.87 2.17

Fig. 39. Feret diameters computed from q map
(specimen A, 1st repetition).

Convex Hull

Convex Hull Vertices

Max Feret Diameter

Max Feret Caliper Lines

Min Feret Diameter

Min Feret Caliper Lines

2.85

3.24

Fig. 40. Feret diameters computed from q map
(specimen D, 1st repetition).

Convex Hull

Convex Hull Vertices

Max Feret Diameter

Max Feret Caliper Lines

Min Feret Diameter

Min Feret Caliper Lines

5.34

4.85

Fig. 41. Feret diameters computed from q map
(specimen E, 1st repetition).

The defect mean diameter is estimated as follows:

⟨
d
⟩
=

∑5

m=1
Nmd̄m∑5

m=1
Nm

. (6)

In (6), the subscript m refers to the m-th repetition, Nm the number of estimated Feret diameters
for a single defect image and d̄m the mean Feret diameter for the m-th repetition.

The standard uncertainty contribution due to the within standard deviation is given by the
following equation:

uw =

√√√√√√√∑5

m=1
νmS2

m∑5

m=1
νm√∑5

m=1
Nm

. (7)

In (7) the term νm is the degree of freedom number of the m-th repetition and S2
m is the Feret

diameter variance of the m-th repetition. The standard uncertainty related to the between standard
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deviation is as follows:

ub =

√
1

M − 1

∑5

m=1

(
d̄m −

⟨
d
⟩)2

√
M

. (8)

In (8), M is the number of repetitions. The overall standard uncertainty is computed by
combining uw and ub according to the Root Sum of Squares (RSS) rule. Therefore, it is extended
to 95% level of confidence according to the Welch–Satterthwaite formulation, [23]. Table 9,
Table 10 and Table 11 list the final results for specimens A, D and E, respectively.

Table 9. Defect mean diameter and extended uncertainty (95%) for specimen A, units in mm.

Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Dev. Sρ

Mean Diameter 2.07 NC 1.99 1.98

Ext. Uncertainty 0.17 NC 0.16 0.16

Table 10. Defect mean diameter and extended uncertainty (95%) for specimen D, units in mm.

Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Dev. Sρ

Mean Diameter 2.98 NC 2.99 2.98

Ext. Uncertainty 0.24 NC 0.09 0.12

Table 11. Defect mean diameter and extended uncertainty (95%) for specimen E, units in mm.

Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Dev. Sρ

Mean Diameter 5.03 4.94 5.00 5.00

Ext. Uncertainty 0.24 0.98 0.02 0.12

Also in this case, the results for the fit determination coefficient are not reported because
of very poor segmentation quality of R2 maps for specimens A and D. The fit zero-intercept
damage classifiers are characterized by the best accuracy and precision. Therefore, an analysis
involving only the uncertainties of the segmentation results, suggests that the q parameter is the
best performing one.

4.3. Segmentation goodness evaluation metrics

In this sub-section, the authors suggest an alternative and more interesting approach to the
evaluation of the quality of information carried by each introduced damage classifier. Such
approach is based on the evaluation of the effectiveness of the segmentation images of each
damage classifier.

In this paper, the authors define a segmentation evaluation method which is objective (i.e.
quantitative) and unsupervised. The need for an unsupervised evaluation method arises from the
lack of a reference image (the so-called ground image). The method is based on the concept of
information entropy, [29–31].

The evaluation parameter having a good segmentation maximizes the uniformity of pixels
within each segmented region and minimizes the uniformity across the pixels of contiguous
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regions. Therefore, since the entropy provides a measure of the degree of disorder within a region,
it is an excellent descriptor of overall segmentation quality.

Given a segmented image, the entropy of a generic j-th region is:

Hj ≜ −
∑
m

P(xi) log P(xi) . (9)

In (9), the term P(xi) is the probability of state xi , i.e. the probability that a pixel has a
value of xi . Once the entropy of each segmented region and the entropy of the overall images are
calculated, the Segmentation Entropy (SE) is computed as follows:

SE ≜

∑N

j=1
Hj − H f

H f
. (10)

In (10), H f is the entropy of the whole image and the term N is the total number of segmented
regions two in this case study). Therefore, the so-defined Segmentation Entropy gives an insight
into the degree of uniformity (for relatively low SE) or non-uniformity (for relatively large SE)
of the luminance value of pixels grouped in each segmented region.

Table 12 lists the SE average values of the damage classifiers for each tested specimen. In all
the cases, the fit intercept parameter is characterized by the lowest values.

Table 12. Segmentation entropy of the damage classifiers.

Specimen Fit Slope m Det. Coef R2 Fit Intercept q Fit Standard Dev. Sρ

A 2.39 NC 0.092 0.13

D 0.11 NC 0.064 0.11

E 0.14 1.4 0.05 0.12

A comprehensive analysis of computed mean diameter along with its uncertainty, shape factors
and segmentation entropy seem to suggest that for such a kind of test specimen, characterized by a
simulated topcoat detachment defect, the zero-intercept value of the fit of the log-log temperature
time history (during the cooling stage) is the best performing damage classifier.

5. Conclusions

This paper proposes a novel algorithm for the detection and quantification of subsurface
defects representative of possible partial detachments of TBCs from the underlying metallic
substrate.

The algorithm is based on a series of operations to be implemented on thermograms that are
representative of the time evolution of the surface temperature of the test specimen under analysis.
The thermal excitation of the specimen is carried out by means the Long Pulsed Thermography
technique, which is particularly effective for TBC’s defect detection.

The method develops and enhances the polynomial fit of the logarithmic time history of the
surface temperature during its cooling stage. The enhancements of the polynomial fit technique,
are aimed at improving the accuracy of the detection by means of the introduction of certain
damage classifiers, obtainable from the fit analysis and related to the fit slope, determination
coefficient, intercept and standard deviation. Additionally, the algorithm consists of a series of
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steps, to be implemented automatically without any a priori knowledge about the distribution
of pixels between the background and the foreground regions and the distribution of pixels
between defect and sound regions within the identified foreground. In fact, the main feature of the
algorithm is based on a series of automatic image segmentations, which have the main purpose of
identifying the ROI (and then, the effective ensemble of specimen pixels to which to implement
the computations) and the defect pixels inferable from the damage classifiers’ maps.

In order to analyse the algorithm performance, the authors developed an experimental setup,
comprising the IR instrumentation and the data acquisition and processing system. Several spec-
imens have been tested, based on the same component carrying a defect of three different sizes.

Additionally, the authors developed a measurement plan for the assessment of the algorithm
repeatability, consisting of a set of five repetitions for each specimen, with a detailed characteri-
zation of the involved uncertainties.

The classifiers deducted from each test are organized in images. These are conveniently
post-processed by means of an automatic segmentation. The set of connected defect pixels gives
a visual representation of the defect shape and extent. In addition, the segmentation allows for the
direct evaluation of the defect main size along with its estimated uncertainty.

In order to further validate the introduced technique, the authors introduce a series of shape
descriptors in such a way that the morphological coherence of the detected defect areas can be
assessed.

Furthermore, the authors suggest an additional indicator, for the identification of the best
performing damage classifier in the presented case study. The indicator is based on the information
entropy within each segmented region and across the segmented regions deduced from the damage
classifiers maps.
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