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Abstract: The smart grid concept is predicated upon the pervasive With the construc-
tion and development of distribution automation, distributed power supply needs to be
comprehensively considered in reactive power optimization as a supplement to reactive
power. The traditional reactive power optimization of a distribution network cannot meet
the requirements of an active distribution network (ADN), so the Improved Grey Wolf
Optimizer (IGWO) is proposed to solve the reactive power optimization problem of the
ADN, which can improve the convergence speed of the conventional GWO by changing the
level of exploration and development. In addition, a weighted distance strategy is employed
in the proposed IGWO to overcome the shortcomings of the conventional GWO. Aiming
at the problem that reactive power optimization of an ADN is non-linear and non-convex
optimization, a convex model of reactive power optimization of the ADN is proposed, and
tested on IEEE33 nodes and IEEE69 nodes, which verifies the effectiveness of the proposed
model. Finally, the experimental results verify that the proposed IGWO runs faster and
converges more accurately than the GWO.
Key words: active distribution network (ADN), Improved Grey Wolf Optimizer (IGWO),
reactive power optimization, second-order cone relaxed convex model

1. Introduction

With the increasing attention to the economic and safe operation of power systems, how to
reduce network losses, improved power quality, and improved economic efficiency have become
practical problems faced by power researchers under the premise of ensuring safe and reliable
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operation of the system. Reactive power optimization of a distribution network refers to the
rational distribution of reactive power by using various optimization algorithms, so as to achieve
reactive power balance and ultimately reduce the active loss of the distribution network. The
research on the reactive power optimization of an early distribution network mainly focuses on
reactive power optimization intelligent algorithms, such as an artificial bee colony optimization
algorithm [1], particle swarm optimization algorithm [2, 3], genetic algorithm [4] and so on. The
emergence and development of distributed power sources pose new challenges to the reactive
power optimization of distribution networks. As a supplement to the reactive power, distributed
power supplies need to be considered in reactive power optimization. With the construction
and development of distribution automation, research and demonstration of key technologies for
an active distribution network (ADN), more and more active devices and controllable devices in
distribution networks [5], and the automation level of distribution networks continuous improving.

In this paper, considering that the reactive power optimization of the ADN is a non-convex
nonlinear problem, the reactive power distribution convex model of the ADN is established, and
the model is convexly relaxed by the second-order cone relaxation (SOCP) technique. Then the
IGWO algorithm is proposed to optimize the model and the simulation experiments are carried
out in IEEE33 nodes and IEEE69 nodes. At the same time, compared with the standard The Grey
Wolf Optimizer (GWO) algorithm, the effectiveness of the proposed algorithm under different
distribution network scales is verified by experimental results.

The remainder of the paper is organized as follows: Section 2 discusses related literature work,
Section 3 presents the reactive power optimization convex model and formulates the problem,
Section 4 describes the GWO algorithm in detail and proposes the Improved Grey Wolf Optimizer
(IGWO). The experimental results were analyzed in Section 5. Finally, Section 6 concludes the
paper.

2. Literature work

Reactive power optimization of a distribution network needs new development, and an ADN
provides new ideas and means for reactive power optimization of the distribution network. For
example, distribution network reconstruction requiring fast communication and control technol-
ogy [6]; demand side response of intelligent terminals, intelligent measuring instruments, and
intelligent control technologies [7]; active and reactive power of distributed power sources ac-
cording to the real-time operating state of the network real-time scheduling, etc. [8, 9]. At the
same time, the ADN can also control the parallel capacitor switching and the on-load tap changer
taps in real time and accurately. Yue Yang and Peishuai Li [10, 11] proposed an adaptive robust
reactive power optimization model for the unbalanced distribution network caused by distributed
generation (DG) power, which alleviated the overvoltage problem and reduced the control cost.
However, this model does not consider the coordination of the DG with capacitors, transformers
and other equipment. Under normal circumstances, the controlled equipment can be divided into
continuous drinking discrete controllable devices. The discrete controllable devices are controlled
by switches and should not be adjusted frequently due to their service life and existing manufac-
turing techniques. Therefore, the total running time of the discrete controllable devices is limited,
which leads to the development of dynamic reactive power optimization (DRPO) models [12, 13].
Literature [14] proposed a two-stage multi-period mixed integer convex model, which analyzes
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the trade-off between risk mitigation and investment cost minimization. In the literature [15],
based on the generalized Benders decomposition method, combined with the most conditional
decomposition, a multi-period optimal reactive power flow model with voltage safety constraints
is proposed. However, due to the large-scale multi-cycle mixed integer nonlinear programming
problem, the amount of data increases, which increases the computational burden and time. Re-
cently, the secondary relaxation technique has been studied in the distribution network, which
gives a reasonable solution and significantly improves the computational performance [16, 17].

A swarm intelligence optimization algorithm is a new bionic algorithm based on the natural
survival of the fittest and the special behavior of various biological groups. A number of scholars
have tried to improve different optimization algorithms to form an improved intelligent optimiza-
tion algorithm. The improved intelligent optimization algorithm could overcome the flaws in the
original intelligent algorithm with satisfying results.

There is a considerate number of remarkable researches on the improved intelligent opti-
mization algorithm. For example, [18] presents a new technique by hybridizing both the Whale
Optimization Algorithm (WOA) and Bat Algorithm (BA), the experimental results show that
compared with the WOA, the WOA-BA can achieve better results in fewer iterations. Shamsaldin
A.S. [19] et al. imitate transportation behavior such as searching and selecting routes for move-
ment by donkeys in the actual world and put forward the Donkey and Smuggler Optimization
(DSO) Algorithm Then, the algorithm that is inspired by the bee swarming reproductive process,
known as the fitness dependent optimizer (FDO), was developed by [20]. The results are compared
with other modern algorithms and reveal that the FDO results show better performance in most
cases and comparative results. In order to better handle the classification of employee’s behavior,
[21] modified particle swarm optimization with a neural network via the Euclidean distance, and
the model produced satisfactory results. The Grey Wolf Optimizer (GWO) is a new group social
intelligence heuristic technology that can simulate the social rank and hunting behavior of gray
wolves in nature [22]. [23] proposed that because the GWO has a good balance between explo-
ration and development, it successfully solved many optimization problems. [24] proposed a new
hybrid evolutionary algorithm based on the GWO and the Bees Algorithm, the suggested hybrid
method could be efficiently used for wide range problems of global optimization. The Inertia
Constant Mean Grey Wolf Optimizer (ICMGWO) Algorithm was developed by S.B. Singh et al.
[25] for improving search accuracy and convergence speed. In the literature [26], a hybrid model
that includes a modified recurrent neural network with an adapted GWO is proposed to forecast
students’ outcomes, which has the better accuracy when compared with other models.

A great quantity of literature studies have proved that the swarm intelligence optimization
algorithm has broad application prospects in all walks of life. Considering the shortcomings of
the GWO algorithm, such as easily falling into local optimal solution and slow convergence speed,
this paper proposes an improved GWO algorithm to solve the reactive power optimization convex
model of an ADN.

3. Active distribution network reactive power optimization convex model

In this section, we introduced the reactive power optimization convex model for an ADN.
Section 3.1 describes how to establish the model. In Section 3.2, the convex relaxation of the
model is achieved by using SOCP technique.
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3.1. Establishment of reactive power optimization model

A distribution network has the advantage of a topological network, so the distribution network
power flow can be described by the branch flow formula [27–29]:

Pj =
∑

k∈δ( j)

Hjk −
∑

i∈π ( j)

(
Hi j − ri jLi j

)
, ∀ j ∈ B, (1)

where, Pj is the injected active power of bus j, δ( j) is the set of bus lines of bus j, π( j) is the
bus set of bus j, Hi j is the active power flow of bus i to j, and ri j is the branch. The resistance of
(i, j), li j is the branch current of the branch (i, j).

Q j =
∑

k∈δ( j)

G jk −
∑

i∈π( j)

(
Gi j − xi j li j

)
+ bs. jU2

j , ∀ j ∈ B, (2)

where, Q j is the reactive power injected into bus j, Gi j is the reactive power flow of bus i to j,
xi j is the reactance of the branch (i, j), and bi j is the parallel susceptance of bus j to ground.

U2
j = U2

i − 2
(
ri jHi j + xi jGi j

)
+

(
r2
i j + x2

i j

)
li j, ∀(i, j) ∈ E\Θ. (3)

Among them, Uj is the voltage amplitude of bus j, E is the branch set, andΘ is the transformer
branch group.

U2
j

w2
i j

= U2
i − 2

(
ri jHi j + xi jGi j

)
+

(
r2
i j + x2

i j

)
li j, ∀(i, j) ∈ Θ, (4)

where, wi j is the branch (i, j) transformer tap ratio.

H2
i j + G2

i j = li jU2
i , ∀(i, j) ∈ E. (5)

The objective function is the minimum total network loss for T time periods:

min
Qc (t), ρ(t), o(t)

T∑
t=1

∑
(i, j)∈

(
ri j, li j (t)

)
. (6)

Among them, Qc,(t) is the capacitor running time, ρ(t), o(t) represent the optimal running
time of the parallel capacitor and voltage, and T is the total running time.

The boundary constraints are as follows:

Cj (t) = Cmin
j + s j ρ j (t), ∀ j ∈ ΩD , (7)

Cmin
j ≤ Cj (t) ≤ Cmax

j , ∀ j ∈ ΩD . (8)

Then this paper adopts SOCP for convex relaxation [16, 17].
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3.2. SOCP relaxation method of reactive power optimization model
Firstly, let

U2
j (t) = v j (t), ∀ j ∈ B,

then constraints are as follows:
1
2
vj (t)Cj (t) +Qc, j (t) −QL, j (t) =

∑
k∈δ( j)

G jk (t) −
∑

i∈π ( j)

(
Gi j (t) − xi j li j (t)

)
+ bs, jvj (t),

∀ j ∈ B, t = 1, ...,T .
(9)

Among them, the voltage square magnitude of vj bus j:

vj (t) = vi (t) − 2
(
ri jHi j (t) + xi jGi j (t)

)
+

(
r2
i j + x2

i j

)
li j (t), ∀(i, j) ∈ E/Θ, t = 1, ...,T, (10)

ni j∑
k=0

Oi j,k (t)(
ωi j,k

)2 vj (t) = ui (t) − 2
(
ri jHi j (t) + xi jGi j (t)

)
+

(
r2
i j (t) + x2

i j (t)
)

li j (t), (11)

H2
i j (t) + G2

i j (t) = li j (t)vi (t), ∀(i, j) ∈ E, (12)(
Umin

j

)2 ≤ vj (t) ≤
(
Umax

j

)
, ∀ j ∈ B. (13)

The constraint in (12) leads to a non-convex problem. In order to solve this problem, the
second-order cone relaxation technique is adopted.








2Hi j (t)
2Gi j (t)

li j (t) − ui (t)








 ≤ li j (t) + vi (t), ∀(i, j) ∈ E. (14)

Each integer variable ρ j (t) should be recombined into a combination of 0–1 binary variables.
Since any integer has a unique binary code, the binary code of ρ j (t) can use the binary variable
λ j,0(t), λ j,1(t), ..., λ j,τ j (t) which means:

ρ j (t) = 20λ j,0(t) + 21λ j,1(t) + . . . + 2τ jλ j,τ j (t), (15)

where λ j,0(t), λ j,1(t), ..., λ j,τ j (t) are binary variables representing integer variables ρ j with
binary variables.

According to the boundary constraints of (7) and (8):

s j
(
20λ j,0(t) + 21λ j,1(t) + . . . + 2τ jλ j,τ j (t)

)
≤ Cmax

j − Cmin
j . (16)

By means of the Big-M method, can be linearized, so that:
−M

(
1 − λ j,k (t)

)
≤ σ j,k (t) − vj (t) ≤ M

(
1 − λ j,k (t)

)
−Mλ j,k (t) ≤ σ j,k (t) ≤ Mλ j,k (t), ∀j ∈ ΩD, k = 1, ..., τ j

. (17)

Substituting (15) into:
T∑
t=2

���ρ j (t + 1) − ρ j (t) ≤ ηc. j, ∀ j ∈ ΩD,
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T∑
t=2

������
τ j∑
k=0

2k
(
λ j,k (t + 1) − λ j,k (t)

)
≤ ηc. j , ∀ j ∈ ΩD . (18)

According to the above formula, the reactive power optimization model can be changed to a
standard 01 mixed integer second-order cone scheme:

min
Qo (t), λ(t), λo (t)

T∑
t=1

∑
i, j∈E

(
ri j li j (t)

)
. (19)

Among them, λ(t) ∈ {0, 1}, o(t) ∈ {0, 1}, QC ∈ Continous.

4. Improved Grey Wolf Optimizer

In this section, we described how to improve the traditional GWO algorithm. Section 4.1
introduces the strategy of the traditional GWO algorithm. In Section 4.2, we use the weighted
distance criterion to improve the performance of the GWO. Then, the computational complexity
of the IGWO algorithm is analyzed in Section 4.3.

4.1. Traditional Grey Wolf Optimizer (GWO)
a. Surround the prey

The grey wolf hunts for prey. To simulate the surrounding behavior, the gray wolf algorithm
updates the position by:

Di =
���Ci · Xp (t) − Xi (t)

��� , (20)

Xi (t + 1) = Xp (t) − Ai · Di , (21)

where t is the current number of iterations, Xi indicates the position of the gray wolf in the search
space, and Xp indicates the position of the prey. The vectors Ai and Ci are calculated as follows:

Ai = 2a · r1 − a, (22)
Ci = 2 · r2 , (23)
a = 2 − 2t/tmax , (24)

where Ai and Ci are the coefficient vectors, r1 and r2 are the random parameters in [0, 1], and a
is a number that linearly decreases from 2 to 0.

b. Prey on prey
In order to search for the best position of the prey, it is assumed that the first three wolves (α,

β and δ) have better information on the location of the potential prey, so each wolf can update
their position according to the best search agent:

Dα = |C1 · Xα (t) − Xi (t) | , (25)
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Dβ =
���C2 · Xβ (t) − Xi (t)

��� , (26)

Dδ = |C3 · Xδ (t) − Xi (t) | , (27)

X1 = Xα (t) − A1 · Dα , (28)

X2 = Xα (t) − A2 · Dβ , (29)

X3 = Xδ (t) − A3 · Dδ , (30)

Xi (t + 1) = (X1 + X2 + X3) /3, (31)

where Xα, Xβ , Xδ represent the positions of the first three optimal waves, and Xi is the position
of the current solution.

4.2. Improved Grey Wolf Optimizer (IGWO)
According to 3.1, when the random value of A is [−1, 1], the gray wolf attacks the prey,

the local search process begins. When A > 1, the wolves are forced to conduct a global search.
According to Equation (24), as the number of iterations increases, the parameter a decreases
linearly from 2 to 0, which reduces the convergence speed of the algorithm.

a = ξ exp(−θ · k), (32)

where ξ and θ are two parameters that control the convergence characteristics of each point when
the GWO algorithm is iterated k times.

(31) is weighted in each iteration and can be re-described as follows:

ω1 = Aα · Cα , ω2 = Aβ · Cβ , ω3 = Aδ · Cδ , (33)

X (k + 1) =
ω1 · X1 + ω2 · X2 + ω3 · X3

ω1 + ω2 + ω3
. (34)

4.3. Computional complexity analysis
The computational complexity of the proposed improved GWO is discussed as follows:

firstly, calculating the fitness value f i of N gray wolf individuals requires N operations, and
the complexity of the fitness function is O(D), the individuals who select the top three fitness
values need at most 3N−3 operations, recording the optimal solution Xα and the number of
operations plus one. Next, calculating the distance between the remaining individuals ω and Xα,
Xβ , Xδ according to Equations (25)–(27) requires 3(N−3) perations, updating the position of the
wolf and prey needs 3D+1 calculation according to (28)–(31). Afterwards, for the entire gray

wolf population, calculating the distance between the gray wolves requires at most
N (N − 1)

2
operations. At last, since the algorithm performs at most t times (t is the set maximum number of
iterations), the time complexity of the algorithm is approximately

o
[
t · (D + 2) · N (N − 1)

2

]
≈ o

[
N2Dt

2

]
by approximating and simplifying the calculation.
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5. Results analysis

In this section, the proposed algorithm is simulated on the IEEEE33 node distribution network
and the IEEE69 node power distribution system.

The total active load of the IEEE33 node system is 3715.0 kW, the total reactive load is
2 300 kvar, the node voltage threshold is 0.95–1.05 pu, and the rated normal operation capacity of
the branch is 5 MVA. The voltage at the 17-node is greatly branched and the voltage reaches the
lowest value. Therefore, the distributed generation (DG) power supply is installed here to improve
the reactive power support. The DG rated capacity is 800 kW, and the power factor is adjustable
from −0.95 to 0.95. The total active load of the IEEE69 node system is 3802.19 kW, the total
reactive power is 2694.60 kvar, the node voltage standard value is 0.95–1.05 pu, and the rated
normal operation capacity of the branch is 5 MVA. The capacitors are installed at three nodes
of 18, 47, and 52. Each node is installed with up to ten groups of 50 kvar each. The DG access
points are 26, 49, 68 to improve reactive support.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

03 1329282752 62

02 121918

32 4222 32

Capacitor

Distributed 

Power

Fig. 1. Improved 33 bus test system
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32 33 34 35 42 43 44 45 46 47 48 49 50 51 52 53 54

55 56

Fig. 2. Improved 69-node test system

The program code is written in Matlab 2014 software, running on a microcomputer with
Intel Celeron G550, 2.6 GHz CPU, and 2 GBRAM. The selected parameters are adjusted to be:
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the maximum number of iterations tmax = 100, the population number is 50, and the allowable
voltage limit 0.9, 1.05 pu.

Table 1 shows the evaluation between the standard GWO and IGWO in terms of the best
fitness function, standard deviation, and average fitness function. It can be seen that the standard
deviation of the IGWO is obviously smaller than that of the GWO, so the IGWO algorithm is
more stable.

Table 1. The evaluation between GWO and IGWO

GWO IGWO

Best fitness function f11(x) =
n∑
i=1
|xi | +

n∏
i=1
|xi | f21(x) =

n∑
i=1

( |xi + 0.5| )2

Average fitness function f12(x) =
n∑
i=1

x2
i f21(x) = max

1

{ |xi | , 1 ≤ i ≤ n
}

Standard deviation 0.2755 0.0551

In this experiment, the original network power flow calculation (ONPFC) has no capacitor
and the distributed generation (DG) power supply in the network, as well as the transformer tap
position is 0. DG-free reactive power optimization (NDGRPO) is the traditional reactive power
optimization, it changes the capacitor switching amount and transformer gear position to achieve
the minimum network loss; fixed DG reactive power optimization (FDGRPO) is the initial smart
grid reactive power optimization, the DG is added to the network, but the DG output is fixed. The
ADN reactive power optimization (ADNRPO) includes the simulation results of all the active
management measures mentioned above. They are in Table 1.
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Fig. 3. Curve of voltage distribution calculation of original network power flow of different nodes in IEEE

It can be seen from Table 2 that on the IEEE33 node system, the ADNRPO is reduced by
5.96% compared with the FDGRPO, which is 65.85% lower than the traditional reactive power
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optimization network loss. It can be seen from Table 2 that at the IEEE69 node, the ADNRPO
loss is 17.06% lower than the loss with the FDGRPO, which is 70.87% lower than that of
the NDGRPO. It can be seen that the IGWO algorithm has a better effect on reactive power
optimization in the large-node system, lower network loss, and gives better results.

Table 2. IGWO optimization results in different reactive power optimization methods
(33-node system)

Reactive power
optimization Network loss/kW

Capacitor switching/kvar Transformer
gearNode 5 Node 30

ONPFC 200.612 Null Null Null

NDGRPO 111.35 450 450 +4

FDGRPO 40.291 450 350 +4

ADNRPO 38.026 400 300 +4

Table 3. IGWO algorithm optimization results in different reactive power optimization methods
(69-node system)

Reactive power
optimization Network loss/kW

Capacitor switching/kvar Transformer
gearNode 18 Node 47 Node 52

ONPFC 224.999 Null Null Null Null

NDGRPO 148.386 450 450 450 +5

FDGRPO 52.112 450 350 350 +4

ADNRPO 43.218 400 300 350 +5

This paper proposes the following four specific optimization strategies to conduct experiments,
and verify the validity of this model by narrowing the difference between the proportions of each
optimization strategy. P0 = [0, 0, 0] (original network); P1 = [0.7, 0.2, 0.1] (lower level
of system intelligence); P1 = [0.5, 0.3, 0.2] (the level of system intelligence has improved);
P1 = [1/3, 1/3 1/3] (the system reaches the level of ADN intelligence). It can be seen from Fig. 4.
that although the DG is added, in the case of P1 and P2, the DG reactive support is insufficient,
resulting in low voltage under P1 and P2; the adjustment of P1 and P2 optimization strategies is
basically the same, mainly capacitors. With the transformer, the two voltage curves do not change
much; P3 is a combination of three optimization strategies, the specific gravity is equal, and the
voltage of each node is greatly improved.

Fig. 5 shows that the ADNRPO loss is only 17.06% lower than the loss with the FDGRPO, so
the voltage difference between the two curve nodes is not large. The node voltage of the original
network appears to be out of limits, and other reactive power optimization methods can ensure
that the voltage is within the constraint range.
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Fig. 4. Voltage distribution curve of 33 nodes with different optimization strategies
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Fig. 5. Voltage distribution curve of IGWO algorithm under different reactive
power optimization modes (69 nodes)

Table 4 shows that when QDG.max = 1400 kvar, the DG reactive power is less than the
maximum value, and there is no out of bounds; when QDG.max = 800 kvar, the DG reactive
power is close to the upper limit, and when QDG.max = 600 kvar, the DG reactive power appears
to be out of bounds. From the voltage amplitude of the DG access node, it can be seen that as
QDG.max gradually decreases, the voltage amplitude of the DG access node value is also gradually
decreasing, indicating that the DG reactive support is reduced. As can be seen from Fig. 6, as
QDG.max decreases, the node voltage level of the entire system is decreasing.
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Table 4. Reactive power optimization results when DG reactive power QDG.max is different

QDG/kvar DG active kW/no use kvar
output (maximum) System network loss/kW DG access node voltage

amplitude/pu (6/26/68)
1400 1401.5/1056.3 43.218 (0.9800/0.9517/0.9811)

800 1281.3/798.6 59.694 (0.9773/0.9486/0.9778)

600 959.3/600 71.226 (0.9591/0.9412/0.9600)
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Fig. 6. Node voltage distribution when DG reactive power QDG.max is different

It can be seen from the Fig. 7 that the objective function does not suddenly oscillate. The
lower stationary convergence to the optimal solution proves the reliability of the proposed method.
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Also, the IGWO has fewer iterations than the original GWO, because the IGWO uses an improved
exploration-development balance to accelerate the convergence of the algorithm.

Table 5 shows that in the IEEE33 node system, the running time of the IGWO is 17.54%
faster than that of the GWO, while in the IEEE69 node system, the running time of the IGWO is
22.28% faster than that of the GWO, which shows that the IGWO can be applied to a large node
system.

Table 5. The running time of algorithms for different node systems (/h)

Algorithm IEEE33 node system IEEE69 node system

GWO 33.23 51.4

IGWO 27.4 40

In summary, it can be seen from the experimental results that the stability of an IGWO
algorithm is better than that of the traditional GWO algorithm, and when running on the same
node system, the IGWO converges faster and has fewer iterations. In addition, the running time
of the IGWO algorithm is obviously faster than that of the GWO algorithm on large-node system.
Therefore, the IGWO algorithm proposed in this paper has better performance in the reactive
power optimization of an ADN.

6. Conclusions

In this paper, the Gray Wolf Optimization algorithm is improved, then the improved GWO
algorithm and the Statistical Online Computational Resource (SOCR) is applied to solve the
ADN reactive power optimization model established in the previous paper. The advantages of a
weighted distance strategy have been used in an IGWO algorithm to create the balancing between
the exploration and exploitation process. Finally, the simulation results verify the effectiveness of
the proposed method.

At the moment, there are some limitations of the proposed IGWO algorithm. For example,
the efficiency and robustness of the algorithm in solving other optimization problems have not
been verified and its running speed needs to be further improved. In the future, the parallelization
method can be used to improve the running speed of the algorithm. Then the improved method
could be applied to power optimization problems with larger data and faster operation speed.
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