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In the paper, differential quadrature method (DQM) is used to find numerical solutions of reaction-
diffusion equations with different boundary conditions. The DQM-method changes the reaction-
diffusion equation (ordinary differential equation) into a system of algebraic equations. The obtained
system is solved using built-in procedures of Maple®(Computer Algebra System-type program).
Calculations were performed with Maple®program. The test problems include reaction-diffusion
equation applied in heterogeneous catalysis. The method can be employed even in relatively hard tasks
(e.g. ill-conditioned, free boundary problems).
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1. INTRODUCTION

Shooting methods, finite difference methods and orthogonal collocation methods are usually employed
numerical approaches for solving chemical engineering boundary-value problems. The methods are well-
known and their descriptions and applicability in chemical engineering are widely reported in research
articles and textbooks, e.g. Davis (1984), Villadsen and Michelsen (1978). There are also available math-
ematical programs, both general mathematics software (Maple, Matlab, etc.) and simulating software
(Comsol, Ansys, etc.) that are useful for solving engineering problems. However, there are problems, in
which applicability of the mentioned methods/software is limited, inconvenient or both. The differential
quadrature method (DQM) is a new numerical method which can be applied to a widened scope of our
computation. Reaction-diffusion equation is a good illustration of potential problems to be solved. This
type of equation is relatively often presented in literature, but mostly without practical applications. Typical
illustrative examples for nonlinear problems are: (i) Meral and Tezer-Sezgin (2011) compared different
boundary only and domain discretization methods in terms of accuracy of solutions and computational
cost, (ii) Salah et al. (2014) looked for more efficient and more accurate solution methods by comparing
results with the available analytical ones and computing the computational time, (iii) Jiwari et al. (2017)
presented different types of patterns of nonlinear time dependent coupled reaction-diffusion models.

The aim of this work is to present advantages of DQM method as an alternative numerical method for the
resolution of transport phenomena problems encountered in chemical engineering field. Writing a code for
the method is rather a simple task. The DQM is precise and can be very helpful in relatively hard tasks.
The paper provides illustrative examples of the application of the method. The examples have a physical
meaning and appear in real processes relatively often.

* Corresponding author, e-mail: ichms @prz.edu.pl http://journals.pan.pl/cpe



www.czasopisma.pan.pl P N www.journals.pan.pl
N

M.K. Szukiewicz, Chem: FOCESS Eng., 2020, 41 (1), 3-11

The DQM is conceptually close to the orthogonal collocation - both methods allow to reduce boundary
value problem to a system of algebraic equations. So, we include a comparison of their performance.

2. PROBLEM FORMULATION

For one dimensional problems reaction diffusion equation is given by

d’c adc 2
- D = 1
2 Tdx fle)=0 (1

For heterogeneous catalysis Eq. (1) describes mass-balance inside a catalyst pellet. f(c) is a kinetic rate
equation, usually of the Langmuir-Hinshelwood type, power-law type etc.

For typical operating conditions, a solution usually must satisfy the following boundary conditions:
dc

dx x=0

c()y=1 (2b)

=0 (2a)

Commonly applied numerical methods (shooting methods, finite difference methods, volume methods
and orthogonal collocation methods) are efficient for diffusion-dominated systems, that is for small and
medium values of ®@. For systems with extremely fast reactions, strong diffusive effects, or both i.e. for
high Thiele modulus values, the problem becomes ill-conditioned and as a result nonphysical oscillations
in the solution or even lack of convergence can be observed.

If a dead zone in a pellet is formed, a solution must satisfy the following boundary conditions:
dc

- . =0 (3a)
c(xp) =0 (3b)
c(l) =1 (30)

If a dead zone in a pellet is present, the models: (i) Eq. (1) with boundary conditions (2a)—(2b) and
(ii) Eq. (1) with boundary conditions (3a)—(3c) are complementary. The first model is valid for ® < ©_
while the second one for ® > ®., where @, is critical Thiele modulus. For ® = @, singularities can be
observed (according to kinetic rate formula f(c)). In that case numerical estimation of ®. is a difficult
task.

Equation (1) with boundary conditions (3a)—(3c) is an example of free boundary problem. Finding a
solution of a free boundary problem is usually a difficult task. The presented dead zone problem in
heterogeneous catalysis is mathematically related to a nonlinear Stefan problem — it can be treated as its
stationary version. It is worth noting that the most popular mathematical programs, such as Matlab, Maple,
Mathematica and simulating programs (Comsol, Ansys) currently do not provide support of this type of
calculations. Nevertheless, these programs are very useful — many authors implement their own algorithms
(e.g. recently published Matlab’s procedures given by Campo and Lacoa (2014), Johansson et al. (2014),
Mitchell and Vynnycky (2014).

3. MATHEMATICAL METHOD

The differential quadrature method is a numerical technique for solving differential equations. It was
introduced by Bellman et al. (1972), but its improved version, useful for technical calculations, was
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introduced over 20 years later by Chen (1996). The differential quadrature method (DQM) will be applied
to approximate the solution of the mass-balance equation in a catalyst pellet, Eq. (1). Using this method,
we approximate the derivatives of a function at any location by a linear summation of all the functional
values at a finite number of grid points. First, we divide the domain into N grid points. The differential
quadrature discretization of the first and the second derivatives at a point x; is given by

N

cx (x;) = Z ajjc (xj) “4)
j=1
JN

Cxx (Xi) = Z bijC (Xj) (5)
i=1

a;j and b;; are the weighting coefficients. They can be calculated as follows (with the use of N th degree
polynomials):

N
M= [ =) ©
k=1
N
MDY (x;) = l—[ (xi — xx) (7
k=1
k#i
and further
MWD
a;j = () k=12...,N, i#] ®)
(i = x;) MO (x;)
N
aij = _Zaij; i=12.,N ©)
=1
j#i
1
bij = 2a;; (aii_x. x.)? i=12..,N, j=12,.,N, i#]j (10)
i~ Xj
N
)
i

The weighting coefficients of the higher order derivatives can be found in Chen (1996). When the DQM
approach is applied to the problem (1), one obtains

N
bije (x;) + % Daye () =@ f () =0:  i=L2..N, j=L2..N  (12)
=

s

j=1
The stability of the DQM depends on the distribution of grid points. Chen (1996) recommends Chebyshev-
Gauss-Lobatto grid point distribution:

L R (G 073 A VR
xi—z(l cos N1 ), i=12..,N (13)

However, for simplicity, in the present work a uniform grid point distribution was used:

—_— i_1-

X; = m, i= 1,2,...,N (14)

The tests show that in the considered case there were no significant differences in the results obtained.
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4. RESULTS

The DQM procedure was implemented by author in program Maple®. The resultant system of algebraic
equations was solved using a built-in procedure for non-linear sets of algebraic equations. Recommenda-
tions of DQM-method will be presented for two mentioned problems. Firstly, a solution of Eq. (1) with
boundary conditions (2a)—(2b) will be obtained. Let us assume a simple non-linear reaction rate

file)=¢? (15)

The problem is non-linear but it can easily be solved with the typical methods if the Thiele modulus is
sufficiently small. If not — the problem becomes ill-conditioned and it requires the use of special methods
of solution (e.g. orthogonal collocation method on finite element). Results are presented in Fig. 1.
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Fig. 1. Concentration vs. distance inside the pellet

The built-in Maple®procedure (mesh number = 8192) is able to solve Eq. (1) with a boundary condition
(2) up to @ =~ 21 (lack of convergence is reported by Maple for larger values of @), while the DQM-
method (17 grid points) makes calculations possible up to ® =~ 160. Additionally, calculations using
DQM-method were approx. 20 times faster. It follows that the DQM procedure is much better than the
built-in Maple® procedure. The results obtained reveal that the tested method is fast enough and can be
applied in a wide range of model parameter values. The number of grid points applied provided excellent
precision of computation in the test performed. The number of grid points can be reduced for most
practical applications. (They are usually characterized by a small or intermediate Thiele modulus value).
This technique accelerates computations, while still producing sufficiently accurate concentration profiles.

A comparison with the orthogonal collocation method shows that both methods are of the same precision —
the concentration profiles for Thiele moduli presented in Fig. 1 obtained by collocation method are almost
identical — the sum of squared differences of effectiveness factor values is about 2.5 - 1073, In the tests
performed, the DQM method generally was slightly faster than the orthogonal collocation method — an
average time of computation was about 20% shorter. For comparison purposes, the discrete Chebyshev—
Gauss—Lobatto orthogonal collocation method was used with the same number of grid points, i.e. 17.
Chebyshev differentiation matrices were calculated according to Trefethen (2000).
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In the next step, the solution of Eq. (1) with boundary conditions (4)—(6) will be discussed. It is the so-called
“dead zone” problem. If a kinetic function is given in the form

fale) =c" (16)

the “dead zone” appears if —1 < n < 1 and Thiele modulus is sufficiently large, i.e. for ® > ®., where ®.
is the critical value of Thiele modulus. For ® < ®,. the reactant concentration in the center of the pellet
is positive and a dead zone is absent; for ® = ®. the concentration in the pellet center drops to zero and
a dead zone is also absent (York et al., 2011). These two cases are out of our interest. For ® > @, the
reactant concentration is equal to O within the range (0, xo); this range is the “dead zone” that appears in
the pellet. xq is an unknown coordinate of the end of the dead zone. As mentioned above, it is an example
of a free boundary problem. Maple® currently do not provide support of this type of calculations and
usefulness of the DQM-method will be presented on the basis of analytically obtained relation presented,

e.g. by Andreev (2013).
2 1+n
o, = \/ ( + a) a7
1-n\l-n

If a kinetic equation is given by Eq. (16), the critical value of Thiele modulus is given by Eq. (20). The
results obtained are presented in Table 1.

Table 1. Comparison of a critical value of the Thiele modulus obtained numerically with exact solution

n | DepoM | Pean |6,%| n | Depom | Pean |0,% | n | Depom | Pean |6, %o

a=0 a=1 a=2

0.75]7.48331|7.48331 | 0.0| 0.75|8.00000 |8.00000| 0.0| 0.75]8.48528 |8.48528 | 0.0

0.50 | 3.4641 |3.4641 0.0| 0.50|4.00000 |4.00000| 0.0| 0.50|4.47214|4.47214| 0.0

0.25]2.10819|2.10819 | 0.0| 0.25|2.66667 |2.66667 | 0.0 0.25]3.12694 |3.12694| 0.0

0.00 | 1.41421|1.41421 | 0.0| 0.00|2.00000 |2.00000| 0.0| 0.00|2.44949 |2.44949| 0.0

—-0.25]0.98086 | 0.9798 | -0.1|-0.25|1.60800 | 1.60000 | —0.5 | —0.25| 2.04561 | 2.03961 | -0.3

—-0.50 | 0.66867 | 0.66667 | —0.3 | —0.50 | 1.33883 | 1.33333 | 0.4 | -0.50 | 1.77383 | 1.76383 | —0.6

—-0.7510.40706 | 0.40406 | —0.7 | —0.75| 1.14996 | 1.14286 | —0.6 | —0.75 | 1.57692 | 1.56492 | —0.7

For n > 0 calculations are errorless while for n < 0 the computed values of ®. pgm are not so accurate.
The errors are not large for a specified tolerance — they are less than 1%. Also these tests demonstrate high
accuracy of the applied quadrature method.

The last tests of the DQM method were made for real heterogeneous processes. Since the problems with
dead zone need much effort we will focus on them. Firstly, a critical value of the Thiele modulus was
computed. Methanol steam reforming over a commercial Cu/ZnO/Al, O3 catalyst will be considered as a
practical example. Hydrogen production from hydrocarbon steam reforming is a cost-effective method of
providing hydrogen; methanol steam reforming is a simple and efficient way of producing hydrogen on
a small scale:

CH3OH + HZO d C02 + 3H2 ; AH473K =57kJ (18)

The kinetic equation, catalyst data and process data were reported by Lee et al. (2004). Catalyst properties,
gas compositions and effective diffusivity of methanol and hydrogen are taken from that article. The authors
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propose the following kinetic equation at atmospheric pressure and in the temperature range between 433
and 533 K:

—103 [kJ/mol]
RT

mol

—rM:2.19><109-exp( 2 s

)-pﬁf“-(11.6[kPa]+pH>‘°-647; [ ] (19)

The concentration profiles of methanol and hydrogen inside a catalyst particle depend upon each other by
the following mutual relation:

De,M
De,H

YH — YHs = (Yms — YM) (20)

so that py can be removed from Eq. (19). As aresult, the methanol concentration profile and the effectiveness
factor can be determined from a single mass balance, Eq. (1), with boundary conditions (3a)—(3b). The
Thiele modulus @ is defined by
@2 = 2P @1
CMs * De,M
The results of calculations are presented in Table 2. They show that at higher temperature and for larger
catalyst pellets dead zones may appear more readily. It agrees with the theory of diffusion-reaction processes

because diffusion resistance grows within catalyst pellets.

Table 2. Critical Thiele modulus values for methanol steam reforming (the feed compositions are given by Lee et al.

(2004))

(8 T [K]
feed comp. 30M45W125N

6.2 528
yms = 15 mol%, ygs = 0; d = 0.3 mm
feed comp. 30M45W125N 6.1 513
yMms = 15 mol%, yys = 0; d = 0.425 mm '
feed . 30M60W100N10H
eed cothp 5.9 5315
yMs = 15 mol%, ygs = 5 mol%; d = 0.3 mm
feed . 30M60W 100N 10H
sed cotp 5.9 516.5
yms = 15 mol%, ygs = 5 mol%; d = 0.425 mm

feed comp. 30M6OW110H dead zone is not observed for examined

t t ; extrapolated val
ats = 15 mol%, v = 55 mol%e: d = 0.3 mm emperature range; extrapolated value

of critical ®,. = 5.3 at 5475 K

feed comp. 30M60W110H

5.2 531
YMs = 15 mol%, ygs = 55 mol%; d = 0.425 mm

The following observation is also of interest: values of the critical Thiele modulus are practically the
same for the same gas compositions. It follows that ®.-value is characteristic for the kinetic equation.
The presented observation confirms conclusions drawn on the basis of theoretical considerations by
Andreev (2013).

The last test was based on our own investigations. We examined a propene hydrogenation reaction carried
out in a tubular reactor on a commercial nickel catalyst. A detailed description of experiments made was
published by Szukiewicz et al. (2019). We determined the following kinetic equation:

—-26500

rp = 44400p0° exp( ) [mol/(m’s)] (22)
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The reaction was carried out in isothermal conditions. Mass transfer resistances were neglected. It is easily
to observe that under isothermal conditions the kinetic equation reduces to the form of Eq. (16) with n
equal to 1/2. Investigations were conducted for a slab catalyst (catalyst pellet prepared as a disc with the
diameter of 4.7 mm and thickness of 0.5 mm) and for a spherical catalyst pellet (catalyst pellet prepared
as a sphere with the diameter of 4.6 mm). As was presented in Table 1, the calculated critical values
of the Thiele modulus are equal to 3.4641 and 4.4721 for slab and sphere, respectively. Since the actual
Thiele moduli are larger than their critical values we determined the effectiveness factors using Eq. (1)
with boundary conditions (3). The selected results are presented in Table 3.

Table 3. Effectiveness factors and dead zone size for propene hydrogenation on nickel catalyst

No | pplPal | TIK] ® Nexp Neale 5 [9e] X0
slab
1 19200 403 7.99 0.135 0.138 -2.6 0.573
2 21600 393 6.86 0.158 0.163 -3.1 0.500
3 24000 413 8.35 0.132 0.133 0.0 0.591
sphere
1 12000 353 54.25 0.0599 0.0669 -11.6 0.932
2 14000 333 60.99 0.0582 0.0559 39 0.944
3 16000 353 50.78 0.0645 0.0627 2.8 0.937

For both types of catalyst pellets agreement between calculated and determined values of the effectiveness
factors is good despite the fact that the Thiele moduli varied in experiments in a very wide range. It confirms
benefits of the DQM method.

Concentration profile inside the slab pellet can be evaluated theoretically (York et al., 2011). Hence for
the operating conditions presented in Table 3, we can compare profiles calculated using the DQM method
with those obtained theoretically. Results are presented in Fig. 2. The agreement between calculated and
theoretical profiles is very good.

1.0
—— @=6.86, theor.

o @=6.86, calc.

- ®=7.99, theor.
o~ = $=7.99, calc.
s -~ ®=8.35, theor.
® 05 ©  ®=8.35, calc. i
E
(0]
[&]
C
o
(5]

T I

0.6 ' 0.8 ' 1.0
position, [-]

Fig. 2. Calculated and theoretical concentration profiles inside catalyst pellet
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5. CONCLUSIONS

The following conclusions can be drawn from the presented results:

* the DQM method is “flexible” and effective — it can be used to produce results of high precision in a
wide range of model parameter values, for free boundary problems and for real processes,

the DQM algorithm can be easily implemented in CAS-type programs, e.g. Maple,

* its application range is wider than that of commonly used built-in procedures (in commercial programs)

* in the tests performed the DQM algorithm was slightly faster than the orthogonal collocation method.

The financial support of the National Science Centre, Poland (Project 2015/17/B/ST8/03369) is gratefully

acknowledged.
SYMBOLS
c concentration, —
D, effective diffusivity, m?/s
f(c) kinetic rate equation, —
L radius of the catalyst particle, m
p partial pressure, Pa
Pp partial pressure of propylene, Pa
R gas constant, mol/(J K)
T temperature, K
X distance, —
y mole fraction, —
Greek symbols
a geometry factor, —
(@ = 0 for slab, @ = 1 for cylindrical and @ = 2 for spherical geometry)
1) relative error, %
(0] Thiele modulus, —
Subscripts
H hydrogen
M methanol
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