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1. Introduction

Mobile manipulators are robotic systems whose range of operat-
ing the non-holonomic platforms in the work space is, in fact, not
bounded. The holonomic manipulator, attached to the platform,
makes is possible to accomplish by the end-effector various ma-
nipulation tasks such as tracking of the desired (reference trajec-
tories) usually specified in work (Cartesian) space. For modern
systems of control of such mechanisms, a requirement is placed
on both high precision and stability of the task accomplishment.
Due to the fact that desired trajectories are most often given in
the Cartesian (task) coordinates of the work space, application
of known control techniques in joint coordinates requires first
solving the inverse kinematic problem (see e.g. [1]). The pro-
cess of kinematic inversion is, in general, time consuming and
becomes particularly complicated when the Cartesian trajectory
forces kinematic and/or algorithmic singularities [2–4]. Con-
sequently, a controller to be designed should accurately track
desired trajectory despite potential singularities appearing dur-
ing the mobile manipulator movement, uncertain dynamic equa-
tions and unknown external disturbing signals. Moreover, this
controller should generate at least absolutely continuous steer-
ing signals to avoid undesirable chattering effects. On account
of the challenges posed to modern controllers in a context of
their design, three main approaches can be distinguished in the
literature.

The first of them uses formulation of an extended (augmented)
task space (including also input-output linearisation techniques)
in the problem of inverse kinematics, analysed in works [5–9].
The proposed controllers in [5–9] require knowledge of the in-
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verse matrix to an extended Jacobian matrix, which may contain
algorithmic and/or kinematic singularities. The control algo-
rithms from works [5–7] require full knowledge of dynamic
equations. In turn, studies, [8, 9] utilize regression matrices
of dynamic equations as well as discontinuous terms in con-
trollers to compensate for both parametric uncertainties and
(unknown) bounded external disturbances. Furthermore, con-
trol laws from [5–9] are not also optimal in any sense.

The second approach to the control of mobile manipulators,
analysed in works [12–18], is based on the use of (general-
ized) pseudo-inverse of the Jacobian matrix. Although, control
algorithms derived from the pseudo-inverse of the Jacobian ma-
trix are attractive and further investigated, they also have some
shortcomings. Namely, generated steering signals are at most
sub-optimal. Works [12–14] assume full knowledge of dynamic
equations. In turn, studies [15–18] require the knowledge of re-
gression matrix whose numerical implementation seems to be
both time-consuming and complex. Moreover, generated torques
in [18] are only bounded functions, which in the limit become
discontinuous. Furthermore, control strategies based on (gener-
alized) pseudo-inverses are not, in general, repeatable (see e.g.
works [19, 20]).

The third approach, proposed in [21,22], is based on applica-
tion of a gradient of some potential functions. Nevertheless, the
algorithms from [21,22] provide discontinuous steering signals
and solve only point-to-point control problems in the task space.

The present work is a significant generalization of the results
recently published in [23–26]. Namely, works [23–26] solve
the problem of control in a finite time for only holonomic and
uncertain dynamic systems, in particular, for stationary robotic
manipulators. On the other hand, the present study introduces
a new class of stable finite time controllers for mobile manip-
ulators (with uncertain dynamics) whose platforms are subject
to non-holonomic constraints. In order to eliminate the afore-
mentioned shortcomings of the controllers known from the lit-
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erature, two kinds of non-singular terminal sliding mode (TSM)
manifolds, defined by non-linear integral equations both of the
second order with respect to the task errors and the first or-
der with respect to reduced mobile manipulator acceleration,
are introduced herein. The proposed controller has a two-stage
(hierarchical) structure consisting of two sub-controllers, which
utilize the introduced integral manifolds. The task of the first
sub-controller (utilizing only the kinematic equations) is to track
desired trajectory by the the-effector with simultaneous mini-
mization of some criterion function reflecting a given kinematic
characteristics. In turn, the task of the second sub-controller
(taking into account uncertain dynamics and unknown distur-
bances) is a dynamic compensation of the error between actual
value of reduced mobile manipulator acceleration and a ref-
erence acceleration provided by the first sub-controller. Both
sub-controllers use (also introduced in the paper) new dynamic
version of the classic (static) computed torque presented e.g. in
works [27,28]. By fulfilment of reasonable assumptions regard-
ing the ranks of both Jacobian matrix and the actuation one,
the proposed combined control scheme is shown to be finite-
time stable. In this context, controller analysed in our most re-
cent article [29] differs significantly from that proposed herein.
Namely, the structure of controller from [29] is more complex
as compared to that proposed herein. Furthermore, control law
from [29] requires the inverse of actuation matrix whereas our
second sub-controller needs only its transpose. Moreover, the
control law proposed herein generates at least absolutely contin-
uous mappings thus avoiding the undesirable chattering effect.
The remainder of the paper is organized as follows. Section 2
formulates the task of optimal tracking of desired trajectory,
prescribed in work (Cartesian) space. Section 3 sets up a class
of cooperating sub-controllers solving the problem of the opti-
mal trajectory tracking in a finite time. A computer example of
an optimal trajectory tracking by mobile manipulator operating
in a two dimensional work space is given in Section 4. Finally,
concluding remarks are drawn in Section 5. Throughout the
work, λmin(·), λmax(·) denote minimal and maximal eigenvalue
of matrix (·).

2. Problem formulation

Let us consider a mobile manipulator with non-holonomic plat-
form. Its location in global coordinate system OX1X2X3 is de-
scribed by vector of generalized coordinates x ∈ Rl (see the
platform posture in Fig. 1 given by variables x1,c, x2,c, x3,c, θ
and angles φ1, φ2 of driving wheels, where θ is the orientation
angle of the platform with respect to OX1X2X3; x1,c,x2,c denote
coordinates of the platform centre; x3,c stands for the height
of the platform; R is the radius of the wheel; (x1,c + acos(θ),
x2,c + asin(θ), x3,c + c)T denotes the point in coordinate sys-
tem OX1X2X3 at which the holonomic manipulator is fasten to
the platform; 2W stands for the platform width and 2L is its
length; y1,y2,y3 stand for joint angles of the holonomic ma-
nipulator; l1, l2, l3 are the lengths of the arm), where l ≥ 2
and the posture of holonomic manipulator attached to the plat-
form is defined by vector of joint (generalized) coordinates

Fig. 1. Kinematic scheme of the mobile manipulator and the trajectory
tracking task to be accomplished

y = (y1, . . . ,yn)
T ∈ Rn; n is the number of kinematic pairs of

the holonomic manipulator. The movement of the mobile plat-
form is subject to 1 ≤ k < l non-holonomic constraints usually
expressed in a Pfaffian form

A(x)ẋ = 0, (1)

where A(x) denotes the (k × l) matrix of full rank
(i.e., rank(A(x)) = k), which depends analytically on
x.

Non-holonomic constraints for the platform of (2,0) type
from Fig. 1 with no lateral and longitudinal slip of both wheels
can be described as follows

A(x)ẋ =




sin(θ) −cos(θ) 0 0 0

cos(θ) sin(θ) W −R 0

cos(θ) sin(θ) −W 0 −R


 ẋ = 0, (2)

where x = (x1,c,x2,c,θ ,φ1,φ2)
T ; l = 5; k = 3.

Let Ker(A(x)) be a null space generated by vector fields
a1(x), . . . ,al−k(x), respectively. Hence, differential constraint
(1) may be equivalently expressed as drift-less dynamic sys-
tem of the form

ẋ = N(x)α, (3)

where N(x) = [a1(x), . . . ,al−k(x)]; rank(N(x)) = l − k and α =
(α1, . . . ,αl−k)

T denotes vector of quasi-velocities (introduced
in work [31]). Let us note that

A(x)N(x) = 0. (4)

For the mobile manipulator depicted in Fig. 1, equation (3)
takes the following form:

ẋ = N(x)α =




cos(θ) cos(θ)

sin(θ) sin(θ)

1
W

− 1
W

2
R

0

0
2
R




α,
(5)

where α = (α1,α2)
T . Taking onto account the last two compo-

nents of (5), we have φ̇ = (φ̇1, φ̇2)
T =

2
R

α .
Let us note that the choice of coordinates x1,c, x2,c, x3,c leads

to simple forms of matrices A(x), and N(x), respectively (see
formulas (2) and (5)). Nevertheless, linearization of the mobile
platform kinematics is not possible for coordinates x1,c, x2,c, x3,c.
In order to avoid this inconvenience, we can introduce another
vector x describing the location of the platform from Fig. 1
(see e.g. [36]), which equals x = (x′1,c,x

′
2,c,θ ,φ1,φ2)

T , where
x′1,c = x1,c + acos(θ), x′2,c = x2,c + asin(θ). If this is the case,
matrices A(x) and N(x) take the following forms:

A(x) =




sin(θ) −cos(θ) a 0 0

cos(θ) sin(θ) W −R 0

cos(θ) sin(θ) −W 0 −R


 (6)

and

N(x) =




Y (W cos(θ)−asin(θ)) Y (W cos(θ)+asin(θ))

Y (W sin(θ)+acos(θ)) Y (W sin(θ)−acos(θ))

Y −Y

1 0

0 1



, (7)

where Y =
R

2W
, respectively. Let us observe that α = φ̇ in such

a case.
Location and orientation of the end-effector with respect to the

global coordinate system OX1X2X3 is described by the kinematic
equation of the mobile manipulator

pe = fe(q), (8)

where pe ∈ Rm denotes the coordinates of the end-effector;

q=
(

x
y

)
is mobile manipulator configuration; fe : Rl×Rn→Rm

represents m-dimensional (in general, non-linear with respect
to q) mapping and m is the dimension of the task (work) space.
Combining q̇, q̈ and (3), one obtains the following expressions:

q̇ =Cz, q̈ =Cż+Ċz, (9)

where C =

[
N(x) 0

0 In

]
; z =

(
α
ẏ

)
∈Rl+n−k is reduced mobile

manipulator velocity; In denotes the (n× n) identity matrix.

On account of the fact that mobile manipulator considered in
the work is a redundant mechanism with respect to a task to be
accomplished, the following inequality holds true l+n ≥ m+k.
Consequently, there exists a possibility to augment vector of the
end-effector coordinates, describing the classic (conventional)
trajectory tracking, by additional task coordinates (specified by
the user) of the following form:

pa = fa(q), (10)

where fa : Rl+n → Rl+n−m−k is at least triply continuously dif-
ferentiable mapping with respect to q. From the practical point of
view, it is particularly interesting to generate trajectory q = q(t)
in such a was as to minimize some objective function F (q),
which is assumed to be at least four times continuously differ-
entiable with respect to q. This function may represent some
measure of kinematic characteristics realized in such a way that
redundant degrees of freedom are utilized to fulfil additional
goals: collision avoidance, steering to a desired mobile manip-
ulator posture, singularity avoidance, etc. The general form of
fa, proposed e.g. in [2] for holonomic systems and generalized
in [7] for the non-holonomic ones, may be expressed as

fa = N (q)
∂F (q)

∂q
, (11)

where N denotes (l+n−m−k)× (l+n) orthogonal comple-
mentary matrix to

j(q) =




j1(q)
·

jm+k(q)


=




∂ fe(q)
∂q

A 0k×n


 ,

i.e., jN T = 0; 0k×n stands for the (k× n) zero matrix. Let us
note that j is an auxiliary Jacobian matrix related to necessary
condition of minimum of criterion function F , which is subject
to both holonomic constrains (8) and non-holonomic ones (1)

(see details in [7]). Consequently, equalities N (q)
∂F (q)

∂q
= 0

present l + n−m− k transversality conditions which together
with (8) and (1) lead to determining the optimal configuration
q corresponding to a current location pe of the end-effector.
Without loss of generality, the following criterion function F (q)
is assumed in further analysis:

F (q) =
cF

2
〈q−qrest , KF (q−qrest)〉, (12)

where 〈 , 〉 denotes scalar product of vectors; qrest is a preferred
mobile manipulator posture; cF stands for a positive constant;
KF is a positive definite diagonal weighting matrix. Let us note
that taking into account criterion function (12) into optimization
problem with equality constraints (1), (8) results in fulfilment
of sufficient condition for a local (in general) optimality of tra-
jectory q = q(t), t ≥ 0. If this is the case, the Hessian H for
F given by (12) and constraints fe(q)− pe = 0 and A(x)ẋ = 0
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ẋ = N(x)α =




cos(θ) cos(θ)

sin(θ) sin(θ)

1
W

− 1
W

2
R

0

0
2
R



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(5)

where α = (α1,α2)
T . Taking onto account the last two compo-

nents of (5), we have φ̇ = (φ̇1, φ̇2)
T =

2
R

α .
Let us note that the choice of coordinates x1,c, x2,c, x3,c leads
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formulas (2) and (5)). Nevertheless, linearization of the mobile
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

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
 (6)

and
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


Y (W cos(θ)−asin(θ)) Y (W cos(θ)+asin(θ))
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1 0
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

, (7)

where Y =
R

2W
, respectively. Let us observe that α = φ̇ in such
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Location and orientation of the end-effector with respect to the

global coordinate system OX1X2X3 is described by the kinematic
equation of the mobile manipulator

pe = fe(q), (8)

where pe ∈ Rm denotes the coordinates of the end-effector;

q=
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y

)
is mobile manipulator configuration; fe : Rl×Rn→Rm

represents m-dimensional (in general, non-linear with respect
to q) mapping and m is the dimension of the task (work) space.
Combining q̇, q̈ and (3), one obtains the following expressions:

q̇ =Cz, q̈ =Cż+Ċz, (9)

where C =
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0 In
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; z =
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ẏ

)
∈Rl+n−k is reduced mobile

manipulator velocity; In denotes the (n× n) identity matrix.

On account of the fact that mobile manipulator considered in
the work is a redundant mechanism with respect to a task to be
accomplished, the following inequality holds true l+n ≥ m+k.
Consequently, there exists a possibility to augment vector of the
end-effector coordinates, describing the classic (conventional)
trajectory tracking, by additional task coordinates (specified by
the user) of the following form:

pa = fa(q), (10)

where fa : Rl+n → Rl+n−m−k is at least triply continuously dif-
ferentiable mapping with respect to q. From the practical point of
view, it is particularly interesting to generate trajectory q = q(t)
in such a was as to minimize some objective function F (q),
which is assumed to be at least four times continuously differ-
entiable with respect to q. This function may represent some
measure of kinematic characteristics realized in such a way that
redundant degrees of freedom are utilized to fulfil additional
goals: collision avoidance, steering to a desired mobile manip-
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i.e., jN T = 0; 0k×n stands for the (k× n) zero matrix. Let us
note that j is an auxiliary Jacobian matrix related to necessary
condition of minimum of criterion function F , which is subject
to both holonomic constrains (8) and non-holonomic ones (1)

(see details in [7]). Consequently, equalities N (q)
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present l + n−m− k transversality conditions which together
with (8) and (1) lead to determining the optimal configuration
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Without loss of generality, the following criterion function F (q)
is assumed in further analysis:
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2
〈q−qrest , KF (q−qrest)〉, (12)

where 〈 , 〉 denotes scalar product of vectors; qrest is a preferred
mobile manipulator posture; cF stands for a positive constant;
KF is a positive definite diagonal weighting matrix. Let us note
that taking into account criterion function (12) into optimization
problem with equality constraints (1), (8) results in fulfilment
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equals

H = N




cF KF +

m+k

∑
i=1

li
∂ ji(q)

∂q
+

(
m+k

∑
i=1

li
∂ ji(q)

∂q

)T

2




N T ,

where li denote the Lagrange multipliers for regular (by as-
sumption) constrained optimization problem (1), (8) and (12),
i = 1, . . . ,m+ k. Matrix

m+k

∑
i=1

li
∂ ji(q)

∂q
+

(
m+k

∑
i=1

li
∂ ji(q)

∂q

)T

2

is symmetric and norm bounded. Let us note that for sufficiently
large values of elements of diagonal matrix cF KF , matrix

cF KF +

m+k

∑
i=1

li
∂ ji(q)

∂q
+

(
m+k

∑
i=1

li
∂ ji(q)

∂q

)T

2

becomes symmetric and positive definite. Consequently, taking
into account the assumed regularity of constraints fe(q)− pe =
0, A(x)ẋ = 0 (full rank of matrix j and hence full rank of N ),
we deduce that matrix H is symmetric and positive definite too,
what implies (local) optimality of trajectory q(t). Concatenating
fe(q) with fa(q), one obtains generalized kinematic-differential
mappings which relate q with augmented task coordinates

p =

(
pe

pa

)

p = f (q), ṗ = Jz, (13)

where f =

(
fe

fa

)
and J =

∂ f
∂q

C is the (l +n− k)× (l +n− k)

extended Jacobian matrix. The task, accomplished by the mo-
bile manipulator, is to track both desired end-effector trajectory
pe

d(t) ∈ Rm, t ∈ [0, ∞) and auxiliary (user specified) trajec-
tory pa

d(t) ∈ Rl+n−m−k, which for fa given by relation (11)
equals pa

d(t) = 0. Vector functions pe
d(·) and pa

d(·) are as-
sumed to be at least triply continuously differentiable with re-

spect to time. Introducing the task tracking error e =

(
ee

ea

)
=

f (q)− pd(t), where pd =

(
pe

d

pa
d

)
; ee = (ee

1, . . . ,e
e
m)

T = fe − pe
d ;

ea = (ea
1, . . . ,e

a
l+n−m−k)

T = fa− pa
d , the finite time control prob-

lem in the task space may be formally expressed by means of
the following equations:

lim
t→T

e(t) = 0, lim
t→T

ė(t) = 0, lim
t→T

ë(t) = 0, (14)

where 0 ≤ T denotes a finite time of convergence of f (q) to pd
and e(t) = ė(t) = ë(t) = 0 for t ≥ T . Let us note that the left-

sided equation of (14) presents for F given by (12) and t ≥ T
a necessary and sufficient condition of minimum. In further
analysis, J is assumed to be full rank in the operation region of
the end-effector, i.e.

rank(J(q)) = l +n− k. (15)

The dynamics of a mobile manipulator described in general-
ized coordinates q is given by the following equation [33]:

M′(q)q̈+P′(q, q̇)+G′(q)+D′+[A(x) 0k×n]
T λ = B′v, (16)

where M′(q) denotes the (n+ l)×(n+ l) positive definite inertia
matrix; P′(q, q̇) is the (n+l)-dimensional vector representing
centrifugal and Coriolis forces; q̇ denotes the mobile manipu-
lator velocity; G′(q) stands for the n+l-dimensional vector of
generalized gravity forces; D′ represents (l + n)-dimensional
external disturbing signal; 0k×n denotes the k× n zero matrix;
λ is the k-dimensional vector of Lagrange multipliers (reaction
forces acting on the platform) corresponding to non-holonomic

constraints (1); B′ =

[
B′′ 0
0 In

]
; B′′ stands for the l× (l−k) ma-

trix indicating which state variables of the platform are directly
driven by the actuators (its elements equal 1 for state variables
directly driven by the actuators and 0 otherwise); In denotes
the n× n identity matrix, Rn+l−k � v is the vector of controls
(torques/forces) and (qT , q̇T )T denotes the state vector of the
mobile manipulator. Let us note that state coordinates of dy-
namic equations (16) are subject to non-holonomic constraints
(1). Moreover, matrix B′ is both actuator deficient (dimension of
q equals l+n and the number of independent actuators is equal to
l+n− k) and not square. Furthermore, dynamic equations (16)
include an unknown vector of Lagrange multipliers λ . Conse-
quently, it is extremely hard in such a case to determine control
v accomplishing the robot task (14). The aim of introducing
auxiliary velocities α and consequently the vector of reduced
velocity z is both to eliminate reaction forces λ from dynamic
equations (16) and to reduce their dimensionality. Replacing q̇
and q̈ from (16) by reduced velocity z and acceleration ż (see
expressions (9)), we significantly simplify our control problem
(14). Premultiplying left-sided the dynamic equations (16) by
CT and then using the equalityCT [A(x) 0k×n]

T = 0 (see equality
(4)), we obtain dynamic equations of the mobile manipulator in
the following reduced form [14,15], which is convenient for our
control purposes:

M(q)ż+P(q, z)z+G(q)+D(t, q, z) = B(q)v, (17)

where M = CT M′C denotes the (l + n− k)× (l + n− k) pos-
itive definite symmetric inertia matrix; P = CT (M′Ċz + P′)
is the (l+n−k)-dimensional vector representing reduced cen-
trifugal and generalized Coriolis forces; G = CT G′ stands
for reduced gravity forces acting on the mobile manipulator;
D = CT D′ represents (l + n− k)-dimensional external disturb-
ing signal whose time derivative Ḋ is (by assumption) locally
bounded Lebesgue measurable mapping; B =CT B′ denotes the

(l + n− k)× (l + n− k) actuation matrix (describing the con-
figuration variables of the platform and holonomic manipulator
which are directly driven by the actuators). Let us note that λ is
eliminated from (17) and actuation matrix B is square.

In such a context, reduced state vector (qT ,zT )T corre-
sponding to dynamic equations (17) of the mobile manipulator
schematically shown in Fig. 1 equals

(x1,c,x2,c,θ ,φ1,φ2,y1,y2,y3,α1,α2, ẏ1, ẏ2, ẏ3)
T ∈ R13,

where

q =
(
x1,c,x2,c,θ ,φ1,φ2,y1,y2,y3

)T ∈ R8;

z =
(
α1,α2, ẏ1, ẏ2, ẏ3

)T ∈ R5

whereas state vector (qT , q̇T )T corresponding to dynamic equa-
tions (16) is equal to

(x1,c,x2,c,θ ,φ1,φ2,y1,y2,y3, ẋ1,c, ẋ2,c, θ̇ , φ̇1, φ̇2, ẏ1, ẏ2, ẏ3)∈R16.

Moreover, let us also note that for α ′ = (ϑ , θ̇)T , where ϑ is a
linear velocity and θ̇ denotes angular velocity of the platform,

vector ẋ = (ẋ1,c, ẋ2,c, θ̇ , φ̇1, φ̇2)
T is equal to ẋ = N′(x)

(
ϑ
θ̇

)
,

where N′ =




cos(θ) 0
sin(θ) 0

0 1

1
W
R

1 −W
R




. Hence, A(x)N′(x) �= 0. Conse-

quently, vector λ can not be eliminated from dynamic equations
(16) for α ′ = (ϑ , θ̇)T .

Without loss of generality of considerations, ‖D‖ and ‖Ḋ‖
are assumed to be upper bounded as follows

‖D‖ ≤ β 0(t, q, z), ‖Ḋ‖ ≤ β 1(t, q, z), (18)

where β 0(·), β 1(·) denote non-negative time and state dependent
functions, which are locally bounded and Lebesgue measurable.
Taking into account equations (9), (17), our aim is to determine
at least absolutely continuous vector function of controls v(·)
such that

q̈ =Cż+Ċz, (19)
Mż = Bv− (Pz+G+D) (20)

and trajectory q= q(t) corresponding to the solution of differen-
tial equations (19), (20), fulfils task constraints (14). In further
analysis, useful properties of kinematic equations (13) are given,
which will be used by designing our controller. For the revolute
kinematic pairs of the holonomic manipulator and function F
given by (12), the following inequalities are satisfied:

‖J‖F ,

∥∥∥∥
∂J
∂q

∥∥∥∥
F
,

∥∥∥∥
∂ 2J
∂q2

∥∥∥∥
F
≤ w1 +w2‖q−qrest‖, (21)

where ‖ · ‖F is the Frobenius (Euclidean) matrix norm; w1,
w2 denote positive coefficients (construction parameters of the
mobile manipulator dependent of configuration q). Moreover,
based on (15), we deduce that there exists a constant a > 0 such
that

0 < a ≤ λmin(JJT ). (22)

Our aim is to determine at least absolutely continuous controls v
for kinematic task (14). For this purpose, expressions (17), (19)
are once differentiated with respect to time, what results in the
following system of differential equations:

...q =Cz̈+2Ċż+C̈z, (23)

Mz̈ = Bv̇+ Ḃv− Ṁż− d
dt

(Pz+G+D) . (24)

Let us also differentiate task error equation e = f − pd once
with respect to time thus obtaining

ė =
∂ f
∂q

q̇− ṗd . (25)

From (9) and (13), it follows that

ė =
∂ f
∂q

Cz− ṗd = Jz− ṗd . (26)

By double differentiating equality (26) with respect to time, we
have ...e = Jz̈+ J̈z+2J̇ż−

...pd . (27)

Relations (23), (24), (27) and the Lyapunov stability theory
will be used in the next section to determine the solution of the
(locally) optimal control problem (14), (17).

3. Two-stage cascaded sliding controller of mobile
manipulator

The idea of the proposed control law utilizes two cooperating
systems. The first one is a kinematic controller of the second
order with respect to e whose task is to determine reduced ref-
erence acceleration vre f which fulfils relations (14). The task of
the second (dynamic) sub-controller is to compensate uncertain
dynamics as well as unknown disturbances in such a way as to
reduce the error between vre f and actual reduced acceleration ż
of the mobile manipulator to zero in a finite time.

3.1. Optimal kinematic controller. The controller to be pro-
posed uses reformulated equations (19), (23) and (27) to the fol-
lowing form (without taking into account dynamic equations):

q̈ =Cvre f +Ċz, (28)
...q =Cv̇re f +2Cvre f +C̈z, (29)
...e = Jv̇re f + J̈z+2J̇vre f −

...pd , (30)
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(l + n− k)× (l + n− k) actuation matrix (describing the con-
figuration variables of the platform and holonomic manipulator
which are directly driven by the actuators). Let us note that λ is
eliminated from (17) and actuation matrix B is square.

In such a context, reduced state vector (qT ,zT )T corre-
sponding to dynamic equations (17) of the mobile manipulator
schematically shown in Fig. 1 equals

(x1,c,x2,c,θ ,φ1,φ2,y1,y2,y3,α1,α2, ẏ1, ẏ2, ẏ3)
T ∈ R13,

where

q =
(
x1,c,x2,c,θ ,φ1,φ2,y1,y2,y3

)T ∈ R8;

z =
(
α1,α2, ẏ1, ẏ2, ẏ3

)T ∈ R5

whereas state vector (qT , q̇T )T corresponding to dynamic equa-
tions (16) is equal to

(x1,c,x2,c,θ ,φ1,φ2,y1,y2,y3, ẋ1,c, ẋ2,c, θ̇ , φ̇1, φ̇2, ẏ1, ẏ2, ẏ3)∈R16.

Moreover, let us also note that for α ′ = (ϑ , θ̇)T , where ϑ is a
linear velocity and θ̇ denotes angular velocity of the platform,

vector ẋ = (ẋ1,c, ẋ2,c, θ̇ , φ̇1, φ̇2)
T is equal to ẋ = N′(x)

(
ϑ
θ̇

)
,

where N′ =




cos(θ) 0
sin(θ) 0

0 1

1
W
R

1 −W
R




. Hence, A(x)N′(x) �= 0. Conse-

quently, vector λ can not be eliminated from dynamic equations
(16) for α ′ = (ϑ , θ̇)T .

Without loss of generality of considerations, ‖D‖ and ‖Ḋ‖
are assumed to be upper bounded as follows

‖D‖ ≤ β 0(t, q, z), ‖Ḋ‖ ≤ β 1(t, q, z), (18)

where β 0(·), β 1(·) denote non-negative time and state dependent
functions, which are locally bounded and Lebesgue measurable.
Taking into account equations (9), (17), our aim is to determine
at least absolutely continuous vector function of controls v(·)
such that

q̈ =Cż+Ċz, (19)
Mż = Bv− (Pz+G+D) (20)

and trajectory q= q(t) corresponding to the solution of differen-
tial equations (19), (20), fulfils task constraints (14). In further
analysis, useful properties of kinematic equations (13) are given,
which will be used by designing our controller. For the revolute
kinematic pairs of the holonomic manipulator and function F
given by (12), the following inequalities are satisfied:

‖J‖F ,

∥∥∥∥
∂J
∂q

∥∥∥∥
F
,

∥∥∥∥
∂ 2J
∂q2

∥∥∥∥
F
≤ w1 +w2‖q−qrest‖, (21)

where ‖ · ‖F is the Frobenius (Euclidean) matrix norm; w1,
w2 denote positive coefficients (construction parameters of the
mobile manipulator dependent of configuration q). Moreover,
based on (15), we deduce that there exists a constant a > 0 such
that

0 < a ≤ λmin(JJT ). (22)

Our aim is to determine at least absolutely continuous controls v
for kinematic task (14). For this purpose, expressions (17), (19)
are once differentiated with respect to time, what results in the
following system of differential equations:

...q =Cz̈+2Ċż+C̈z, (23)

Mz̈ = Bv̇+ Ḃv− Ṁż− d
dt

(Pz+G+D) . (24)

Let us also differentiate task error equation e = f − pd once
with respect to time thus obtaining

ė =
∂ f
∂q

q̇− ṗd . (25)

From (9) and (13), it follows that

ė =
∂ f
∂q

Cz− ṗd = Jz− ṗd . (26)

By double differentiating equality (26) with respect to time, we
have ...e = Jz̈+ J̈z+2J̇ż−

...pd . (27)

Relations (23), (24), (27) and the Lyapunov stability theory
will be used in the next section to determine the solution of the
(locally) optimal control problem (14), (17).

3. Two-stage cascaded sliding controller of mobile
manipulator

The idea of the proposed control law utilizes two cooperating
systems. The first one is a kinematic controller of the second
order with respect to e whose task is to determine reduced ref-
erence acceleration vre f which fulfils relations (14). The task of
the second (dynamic) sub-controller is to compensate uncertain
dynamics as well as unknown disturbances in such a way as to
reduce the error between vre f and actual reduced acceleration ż
of the mobile manipulator to zero in a finite time.

3.1. Optimal kinematic controller. The controller to be pro-
posed uses reformulated equations (19), (23) and (27) to the fol-
lowing form (without taking into account dynamic equations):

q̈ =Cvre f +Ċz, (28)
...q =Cv̇re f +2Cvre f +C̈z, (29)
...e = Jv̇re f + J̈z+2J̇vre f −

...pd , (30)
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where vre f = ż denotes reduced reference acceleration to be
determined, for which, relations (14) are fulfilled. In order to
find vre f , let s = (s1, . . . ,sl+n−k)

T ∈ Rl+n−k be a vector slid-
ing variable. The following non-singular TSM manifold Sk is
introduced:

Sk =
{
(s(t), ë(t), ë, ė, e) : s(t) = ë(t)

+

t∫

0

(
λ2ë3/5 +λ2λ 3/5

1 (ė9/7 +λ 9/7
0 e)1/3

)
dτ

}
,

(31)

where s(t), ë(t) ∈ Rn+l−k; ë ∈ AC
(
[0, ∞), Rn+l−k

)
; AC(·) de-

notes a class of absolutely continuous functions;
ė ∈C1

(
[0, ∞), Rn+l−k

)
; e ∈C2

(
[0, ∞), Rn+l−k

)
;

λ0 = diag(λ0,1, . . . ,λ0,l+n−k); λ1 = diag(λ1,1, . . . ,λ1,l+n−k);
λ2 = diag(λ2,1, . . . ,λ2,l+n−k); λi, j denote positive coefficients
(controller gains); i = 0 : 2; j = 1 : l + n− k. The potency of
both e, ė, ë and λ0, λ1, λ2 is defined component-wise. From the
definition of Sk in (31), it follows that dim(Sk) = ∞. Moreover,
codim(Sk) = n+l−k. Set Sk ⊂Rn+l−k×Rn+l−k×AC×C1×C2

is also called an embedded manifold in Rn+l−k×AC×C1×C2.
Let us note that equality

ë(t)+
t∫

0

(
λ2ë3/5 +λ2λ 3/5

1 (ė9/7 +λ 9/7
0 e)1/3

)
dτ = 0

is equivalent to a known homogeneous triple integral system

of negative degree equal to −2
9

whose finite-time stability was
proved in [34]. As was also shown in [34], the exponents in coef-
ficients λ0, λ1 and λ2 in (31) ensure the finite-time convergence
to the origin for s(t) = 0.

In what follows, we give a useful result [23–25].

Lemma 1. If s(t) = 0 for t ≥ Tk, where Tk < ∞ then task errors
(e, ė, ë) converge in a finite-time to the origin (e, ė, ë) =
(0, 0, 0).

Using the methodology of dynamically computed torque, in-
troduced in our works [23–26], we propose a sub-controller
which determines vre f from the following relation:

v̇re f = JT ure f , (32)

where ure f ∈ Rl+n−k is a new reference acceleration to be de-
termined. Substituting the right-hand side of (32) for v̇re f from
(30), task error dynamic equation dependent of ure f is obtained
as follows

...e = JJT ure f + J̈z+2J̇vre f −
...pd . (33)

In order to find ure f and consequently to satisfy equality con-
straints (14), the following kinematic control law is proposed:

ure f (t,q,z,vre f ,s) =




− c
a

s
‖s‖

(W + c0) for s �= 0,

0 otherwise,
(34)

where

W =
∥∥∥λ2ë3/5 +λ2λ 3/5

1 (ė9/7 +λ 9/7
0 e)1/3 −

...pd

∥∥∥
+(w1 +w2)‖q−qrest‖

(
wk

3‖vre f ‖‖z‖+wk
4‖z‖3

)
;

wk
3, wk

4 denote positive coefficients (construction parameters of
the mobile manipulator); c, c0 are controller gains to be specified
further on. Based on (32) and (34), we can determine vre f (in the
Filippov sense [32]) from the following differential equation:

v̇re f = JT ure f (t, q, z, vre f , s). (35)

Existence of the solution of (35) has been shown in work [26].
On account of the fact that the right-hand side of equation (35)
is not a Lipschitz mapping, the solution to (35) is assumed in
further analysis to be unique. Our aim is to give conditions on
controller gains λ0, λ1, λ2, c and c0, which guarantee fulfilment
of equalities (14). Applying the Lyapunov stability theory, we
propose the following result.

Theorem 1. If matrix J fulfils inequalities (22), λ0, λ1, λ2,
c0 > 0 and c ≥ 1 then control scheme (34), (35) results in a
finite time stable convergence of task errors (e, ė, ë) to the
origin (e, ė, ë) = (0, 0, 0). Moreover, control law (34), (35)
(locally) minimizes criterion function (12).

Proof. Consider the following Lyapunov function candidate:

V =
1
2
〈s, s〉. (36)

Differentiating (36) with respect to time and taking into account
definition (31) results in the following expression:

V̇ =
〈

s,
...e +λ2ë3/5 +λ2λ 3/5

1 (ė9/7 +λ 9/7
0 e)1/3

〉
. (37)

Based on (33), one obtains

V̇ = 〈s,JJT ure f 〉+
〈

s,2J̇vre f + J̈z

−
...pd +λ2ë3/5 +λ2λ 3/5

1 (ė9/7 +λ 9/7
0 e)1/3

〉
.

(38)

Inserting the right-hand side of (34) into (38) results in

V̇ =−
〈

s,JJT c
a

s
‖s‖

(W + c0)
〉
+
〈

s,2J̇vre f

+ J̈z−
...pd +λ2ë3/5 +λ2λ 3/5

1 (ė9/7 +λ 9/7
0 e)1/3

〉
.

(39)

On account of (22), we get

V̇ ≤−c‖s‖(W + c0)+
〈

s,2J̇vre f

+ J̈z−
...pd +λ2ë3/5 +λ2λ 3/5

1 (ė9/7 +λ 9/7
0 e)1/3

〉
.

(40)

Let us estimate the second scalar product in (40). Taking into
account inequalities (21), we have after simple calculations that

〈
s, 2J̇v+ J̈z−

...pd +λ2ë3/5 +λ2λ 3/5
1 (ė9/7+λ 9/7

0 e)1/3
〉

≤ ‖s‖W .
(41)

Consequently, based on the assumption c ≥ 1 from Theorem 1,
one easily obtains that

V̇ ≤−c‖s‖(W + c0)+‖s‖W ≤−cc0‖s‖. (42)

Since cc0 > 0, inequality (42) proves that TSM s= 0 is attainable

in a finite time less or equal to
√

2V (0)
cc0

. Consequently, from

Lemma 1, it follows that the origin (e, ė, ë) = (0, 0, 0) is
attainable in a finite time T .

If the control problem is only to track trajectory pe
d

(without taking into account objective function F ) then
mobile manipulator becomes strictly redundant mechanism
with l+n>m+k. In such a case, we define sliding variable se as

se(t)=ëe(t)+
∫ t

0

(
λ2,e(ëe)3/5+λ2,eλ 3/5

1,e ((ėe)9/7+λ 9/7
0,e ee)1/3

)
dτ ,

where λ0,e, λ1,e, λ2,e are positive controller gains. Applying se,
we propose the following simplified control law:

v̇e
re f = ( je)T ue

re f (t, q, z, ve
re f , ee, ėe, ëe,se), (43)

where je =
∂ fe

∂q
C and

ue
re f =




− ce

ae

se

‖se‖
(We + ce

0) for se �= 0

0, otherwise,
(44)

We =

∥∥∥∥λ2,e (ëe)3/5 +λ2,eλ 3/5
1,e

(
(ėe)9/7 +λ 9/7

0,e ee
)1/3

−
...pe

d

∥∥∥∥ +

(w1 +w2‖q−qrest‖)
(

wk
3‖ve

re f ‖‖z‖+wk
4‖z‖3

)
; ce > 1, ce

0 are
positive controller gains; ae fulfils inequality 0 < ae ≤
λmin( je( je)T ).

3.2. Dynamic sub-controller of the mobile manipulator. The
aim of dynamic controller is to compensate uncertain dynamics
and unknown (globally) unbounded external disturbances such
that the dynamic tracking error E and its time derivative Ė,
defined below

E = z−
t∫

0

vre f dτ,

Ė = ż− vre f ,

(45)

stably converge to the origin (E, Ė) = (0, 0) in a finite time.
Let us note that tracking errors E, Ė equal identically zero
when mobile manipulator dynamics is neglected (see relation

ż− vre f = 0 immediately after formula (30)). Moreover, taking
into account mobile manipulator dynamics implies non-zero
tracking errors (45). Our task is to find at least absolutely con-
tinuous control vector v reducing E and Ė to zero in a finite
time. For this purpose, (24) is expressed in the following com-
pact form:

z̈ = M−1Bv̇+R(t, q, z, v), (46)

where R = M−1
(

Ḃv− Ṁż− d
dt

(Pz+G+D)

)
. Partially in-

spired by the control methodology borrowed from the station-
ary robotic manipulators (see e.g. [25]), we propose to seek v as
follows

v̇ = BT u, (47)

where u ∈ Rl+n−k is a new control to be determined further
on. Replacing v̇ in (46) by the right side of (47), we obtain
expression dependent of u

z̈ = M−1BBT u+R. (48)

The aim is to find input signal u(t) and consequently control v

such that vector z(t) exactly tracks
∫ t

0
vre f dτ . Therefore, let us

differentiate twofold error equation E with respect to time thus
obtaining

Ë = z̈− v̇re f = z̈− JT ure f . (49)

Inserting the right-hand side of (48) into (49), we obtain error
dynamic equation which is dependent of u

Ë = M−1BBT u+R− JT ure f . (50)

Let S = (S1, . . . ,Sl+n−k)
T ∈Rl+n−k be a sliding vector variable.

In order to find control law which reduces E and Ė to zero in
a finite time subject to dynamic equations (20), the following
sliding vector mode manifold Sd is proposed:

Sd =

{
(S(t), Ė, E) : S(t) =

= Ė(t)+
t∫

0

(
Λ0 Eα1 +Λ1(Ė)α2

)
dτ

}
,

(51)

where S(t), Ė(t)∈Rn+l−k; Ė∈AC
(
[0, ∞), Rn+l−k

)
; α1=

n1

n2
;

n1, n2 are positive odd numbers which fulfil the fol-

lowing inequalities: n1 < n2 < 2n1; α2 =
2α1

1+α1
; Λ0 =

diag(Λ0,1, . . . ,Λ0,l+n−k); Λ1 = diag(Λ1,1, . . . ,Λ1,l+n−k); Λi, j are
positive gain coefficients and i = 0,1; j = 1,2, . . . , l + n− k.
In what follows, we give useful result [24].

Lemma 2. If S(t) = 0 for t ≥ Td , where 0 ≤ Td < ∞ then dy-
namic tracking errors (E, Ė) of (51) stably converge in finite
time to the origin (E, Ė) = (0,0).
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Let us estimate the second scalar product in (40). Taking into
account inequalities (21), we have after simple calculations that

〈
s, 2J̇v+ J̈z−

...pd +λ2ë3/5 +λ2λ 3/5
1 (ė9/7+λ 9/7

0 e)1/3
〉

≤ ‖s‖W .
(41)

Consequently, based on the assumption c ≥ 1 from Theorem 1,
one easily obtains that

V̇ ≤−c‖s‖(W + c0)+‖s‖W ≤−cc0‖s‖. (42)

Since cc0 > 0, inequality (42) proves that TSM s= 0 is attainable

in a finite time less or equal to
√

2V (0)
cc0

. Consequently, from

Lemma 1, it follows that the origin (e, ė, ë) = (0, 0, 0) is
attainable in a finite time T .

If the control problem is only to track trajectory pe
d

(without taking into account objective function F ) then
mobile manipulator becomes strictly redundant mechanism
with l+n>m+k. In such a case, we define sliding variable se as

se(t)=ëe(t)+
∫ t

0

(
λ2,e(ëe)3/5+λ2,eλ 3/5

1,e ((ėe)9/7+λ 9/7
0,e ee)1/3

)
dτ ,

where λ0,e, λ1,e, λ2,e are positive controller gains. Applying se,
we propose the following simplified control law:

v̇e
re f = ( je)T ue

re f (t, q, z, ve
re f , ee, ėe, ëe,se), (43)

where je =
∂ fe

∂q
C and

ue
re f =




− ce

ae

se

‖se‖
(We + ce

0) for se �= 0

0, otherwise,
(44)

We =

∥∥∥∥λ2,e (ëe)3/5 +λ2,eλ 3/5
1,e

(
(ėe)9/7 +λ 9/7

0,e ee
)1/3

−
...pe

d

∥∥∥∥ +

(w1 +w2‖q−qrest‖)
(

wk
3‖ve

re f ‖‖z‖+wk
4‖z‖3

)
; ce > 1, ce

0 are
positive controller gains; ae fulfils inequality 0 < ae ≤
λmin( je( je)T ).

3.2. Dynamic sub-controller of the mobile manipulator. The
aim of dynamic controller is to compensate uncertain dynamics
and unknown (globally) unbounded external disturbances such
that the dynamic tracking error E and its time derivative Ė,
defined below

E = z−
t∫

0

vre f dτ,

Ė = ż− vre f ,

(45)

stably converge to the origin (E, Ė) = (0, 0) in a finite time.
Let us note that tracking errors E, Ė equal identically zero
when mobile manipulator dynamics is neglected (see relation

ż− vre f = 0 immediately after formula (30)). Moreover, taking
into account mobile manipulator dynamics implies non-zero
tracking errors (45). Our task is to find at least absolutely con-
tinuous control vector v reducing E and Ė to zero in a finite
time. For this purpose, (24) is expressed in the following com-
pact form:

z̈ = M−1Bv̇+R(t, q, z, v), (46)

where R = M−1
(

Ḃv− Ṁż− d
dt

(Pz+G+D)

)
. Partially in-

spired by the control methodology borrowed from the station-
ary robotic manipulators (see e.g. [25]), we propose to seek v as
follows

v̇ = BT u, (47)

where u ∈ Rl+n−k is a new control to be determined further
on. Replacing v̇ in (46) by the right side of (47), we obtain
expression dependent of u

z̈ = M−1BBT u+R. (48)

The aim is to find input signal u(t) and consequently control v

such that vector z(t) exactly tracks
∫ t

0
vre f dτ . Therefore, let us

differentiate twofold error equation E with respect to time thus
obtaining

Ë = z̈− v̇re f = z̈− JT ure f . (49)

Inserting the right-hand side of (48) into (49), we obtain error
dynamic equation which is dependent of u

Ë = M−1BBT u+R− JT ure f . (50)

Let S = (S1, . . . ,Sl+n−k)
T ∈Rl+n−k be a sliding vector variable.

In order to find control law which reduces E and Ė to zero in
a finite time subject to dynamic equations (20), the following
sliding vector mode manifold Sd is proposed:

Sd =

{
(S(t), Ė, E) : S(t) =

= Ė(t)+
t∫

0

(
Λ0 Eα1 +Λ1(Ė)α2

)
dτ

}
,

(51)

where S(t), Ė(t)∈Rn+l−k; Ė∈AC
(
[0, ∞), Rn+l−k

)
; α1=

n1

n2
;

n1, n2 are positive odd numbers which fulfil the fol-

lowing inequalities: n1 < n2 < 2n1; α2 =
2α1

1+α1
; Λ0 =

diag(Λ0,1, . . . ,Λ0,l+n−k); Λ1 = diag(Λ1,1, . . . ,Λ1,l+n−k); Λi, j are
positive gain coefficients and i = 0,1; j = 1,2, . . . , l + n− k.
In what follows, we give useful result [24].

Lemma 2. If S(t) = 0 for t ≥ Td , where 0 ≤ Td < ∞ then dy-
namic tracking errors (E, Ė) of (51) stably converge in finite
time to the origin (E, Ė) = (0,0).
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Differentiating S in (51) and then replacing Ë by the right-
hand side of (50), one obtains expression

Ṡ = M−1BBT u+U (q, z, v, t, E, Ė), (52)

where U = R − JT ure f + Λ0 Eα1 + Λ1 (Ė)α2 . In further
analysis, we upper estimate the Euclidean norm of expression
MU + ṀS

2 obtaining the following inequality:

∥∥∥∥MU +
ṀS
2

∥∥∥∥≤ χ(t, q, z, v, E, Ė), (53)

where χ = w3‖v‖‖z‖+ w4‖z‖3 + w5(‖z‖+ ‖z‖β0) + w6β1 +
w7‖Λ0 Eα1 + Λ1 (Ė)α2 − JT ure f ‖+ w8‖z‖‖S‖+ w9‖z‖‖ż‖;
w3,..., w9 are known positive coefficients (construction parame-
ters dependent of configuration q). Moreover, actuation matrix
B is assumed in further analysis to have full rank. Hence, there
exists a positive number A such that

0 < A ≤ λmin(BBT ). (54)

In order to fulfil equalities (E, Ė) = (0,0) in a finite time, the
following dynamic sub-controller is proposed:

u(t, q, z, v, E, Ė, S) =




−C
A

S
‖S‖

(χ+C0) for S �= 0

0 otherwise,
(55)

where C, C0 denote positive controller gains to be specified
further on. Based on (55) and (47), we can find absolutely con-
tinuous control vector v by solving (in the Filippov sense [32])
the following differential equation:

v̇ = BT u(t, q, z, v, E, Ė, s). (56)

The aim of the further considerations is to give conditions on
controller gains Λ0, Λ1, C and C0, which guarantee fulfilment of
equality (E, Ė) = (0,0). Applying the Lyapunov stability theory,
we offer the following result.

Theorem 2. If actuation matrix B fulfils (54) and Λ0, Λ1,
C0 > 0 as well as C ≥ 1 then control scheme (55), (56) allows
convergence of dynamic tracking errors (E, Ė) to the origin
(E, Ė) = (0,0) in a finite time.

Proof. Consider a Lyapunov function candidate

V =
1
2
〈S, MS〉. (57)

The time-derivative of (57) equals

V̇ = 〈S, MṠ〉+
〈

S,
ṀS
2

〉
. (58)

Let us note that M is positive definite and symmetric matrix.
Replacing Ṡ in (58) by the right-hand side of (52), one obtains

the expression

V̇ =
〈
S, BBT u

〉
+

〈
S, MU +

1
2

ṀS
〉
. (59)

Inserting the right-hand side of (55) into (59) results in

V̇ =

〈
S, −BBT C

A
S

‖S‖
(χ +C0)

〉
+

〈
S, MU +

1
2

ṀS
〉
. (60)

Based on (54), we obtain

V̇ ≤−‖S‖C(χ +C0)+

〈
S, MU +

1
2

ṀS
〉
. (61)

In the next step, we upper estimate scalar product〈
S, MU +

1
2

ṀS
〉

. On account of (53), we get

〈
S, MU +

1
2

ṀS
〉
≤ ‖S‖ χ. (62)

Hence, utilizing the assumption C ≥ 1 from Theorem 2, we can
easily obtain that

V̇ ≤−C‖S‖(χ+C0)+‖S‖χ ≤−C‖S‖(χ+C0)+C‖S‖χ

≤−C C0‖S‖.
(63)

Let us observe that C C0 > 0. Hence, inequality (63) proves

that S = 0 is attainable in finite time less or equal to
√

2V (0)
C C0

.

Finally, from Lemma 2, it follows that the origin (E, Ė) = (0, 0)
may be attained in a finite time.

Theorems 1 and 2 imply the following main result.

Theorem 3. By the fulfilment of assumptions from Theorems 1
and 2, control schemes (34)–(35) and (55), (56) result in stable
convergence in a finite time of the task errors (e, ė, ë) to the
origin (e, ė, ë) = (0, 0, 0).

Proof. Application of sub-controller (55), (56) implies fulfil-
ment of equality E(t) = Ė(t) = 0 after a finite time 0 ≤ Td < ∞.
As a result, for t ≥ Td , control law (34), (35), according to The-
orem 1, is realized, which implies stable convergence in a finite
time 0 ≤ Tk < ∞ of task tracking errors (e, ė, ë) to the ori-
gin. Consequently, stable convergence of task errors (e, ė, ë)
to the origin may be realized in a finite time less or equal to
0 ≤ Tk +Td < ∞.

Let us note that for the non-holonomic platforms of type
(2, 0), actuation matrix B becomes diagonal with positive com-
ponents. Consequently, there exists B−1. On account of the fact
that M is positive definite and symmetric matrix, there exists A′

such that
0 < A′ ≤ λmin(M−1). (64)

If this is the case, we can propose the following control law:

v̇ = B−1 u(t, q, z, v, E, Ė, s). (65)

where

u(t, q, z, v, E, Ė, S) =





−C
A′

S
‖S‖

(χ ′+C0) for S �= 0,

0 otherwise,
(66)

χ ′ = χ|w7=1, w8=0. We are now in position to give the following
theorem.

Theorem 4. If the assumptions of Theorem 2 regarding Λ0, Λ1,
C and C0 are satisfied then control scheme (65), (66) enables the
dynamic tracking errors (E, Ė) to stably converge to the origin
(E, Ė) = (0, 0) in a finite time.

Proof. The proof of Theorem 4 is a small modification of the
proof of Theorem 2 with Lyapunov function candidate V ′ =
1
2
〈S, S〉. Therefore, it is omitted.

It is worth to emphasize the fact that finite-time controllers
utilizing the Jacobian transpose matrix were also analysed in
our most recent work [29]. However, there are significant differ-
ences between control law from [29] and that proposed herein.
First, the structure of controller from [29] is more complex as
compared to that proposed herein. Namely, centralized control
law from [29] requires the inverse of actuation matrix B multi-
plied right sided by JT whereas our sub-controllers (34), (35),
(55), (56) need only transpose of J and B, respectively. The re-
quirement of computing B−1 in [29] is a restrictive assumption
for many non-holonomic mechanisms which are (by their na-
ture) underactuated dynamic systems with B being not square
and/or even singular. Second, the proof of finite-time stability
in [29] is based on the assumption of the full rank of actuation
matrix B. However, sub-controller (55), (56) does not require the
strong assumption of invertibility of B. If B = B(q) is singular
at q′ = q(t ′) for some time instant t ′ and

0 �= S(t ′) /∈ ker(BT (q′)) (67)

then for sufficiently large C, expression −C〈BT S, BT S〉χ +C0

A‖S‖
in equation (60) can take arbitrarily large negative values
thus implying the negative value of V̇ . Hence, controller (55),
(56) makes it possible to generate trajectory q = q(t) passing
through singular manifold {q : det(BBT ) = 0} at configuration
q′ = q(t ′). Let us observe that, condition (67) is weaker than that
of the full rank of B given in [29]. Consequently, matrix B may
contain singularities and control laws (34), (35), (55), (56) still
result in finite time stability. Moreover, transposed both Jaco-
bian and actuation matrix sub-controllers (34), (35), (55), (56)
provide (local) optimal solution by applying the sliding mode
approach. In such a context, there exist several papers [8–11],
which use sliding variables in control algorithms. Nevertheless,
control laws proposed in [8–11] are not optimal in any sense
and provide (in most cases) discontinuous steering signals.

Due to real-time nature of the sub-controllers (34), (35), (55),
(56), we shall try to estimate the number of arithmetic oper-
ations required to implement the control algorithms presented
in this section. Operations required for the computation of sin,
cos and pe

d functions are not taken into account. Furthermore,
matrices J(q) and B(q) are assumed to be given. Moreover, es-
timations are carried out at any time instant of the robot task
accomplishment. From (34) and (55), it follows that terms ure f ,
u require O(l + n− k) operations. Computation of the right-
hand side of eqn (56) equals O((l+n−k)2). Let us note that for
the (2, 0) platform, matrix B is diagonal. Hence, computation
of BT u requires O(l + n− k) operations. Finally, the computa-
tional complexity of the whole mobile manipulator controller
(34), (35), (55), (56) is of the order O((l +n− k)2).

4. Numerical example

Based on an exemplary task to be accomplished by the mo-
bile manipulator, this section demonstrates the performance of
the proposed cooperating controllers (34), (35) and (55), (56).
For this purpose, the mobile manipulator operating in a three-
dimensional work space and shown in Fig. 1, has been utilized.
Kinematic and dynamic data correspond to KUKA youBot mo-
bile platform and holonomic manipulator. However, in the com-
putations carried out herein, the platform is assumed to be of
the non-holonomic (2, 0) type and the holonomic manipulator
has only three revolute kinematic pairs (n = 3) (the last three
links of the original KUKA holonomic arm form the single link
of the manipulator utilized in the computations). Consequently,
kinematic equations of the mobile manipulator from Fig. 1 take
the form

fe(q) =




acθ + l1cθ1 +
l2
2

cθ12 +
l3
2

cθ123 + x1,c

asθ − l1sθ1 −
l2
2

sθ12 −
l3
2

sθ123 + x2,c

c− l2sy2 − l3sy23 + x3,c



, (68)

where cθ1 = cos(−θ +y1), cθ12 = cos(−θ +y1+y2)+cos(θ −
y1+y2), cθ123 = cos(−θ +y1+y2+y3)+cos(θ −y1+y2+y3),
sθ1 = sin(−θ +y1), sθ12 = sin(−θ +y1+y2)−sin(θ −y1+y2),
sθ123 = sin(−θ +y1+y2+y3)− sin(θ −y1+y2+y3). Vector q
equals q = (x1,c, x2,c, θ , φ1, φ2, y1, y2, y3)

T . In the computer
simulation, SI units are used. Taking into account the above
assumptions and the KUKA youBot documentation [35], the
kinematic parameters of the mobile manipulator from Fig. 1 take
the following numeric values: (a,0,c)T = (0.167, 0, 0.161)T ,
x3,c = 0.084, l1 = 0.033, l2 = 0.155, l3 = 0.342, W = 0.158 and
R = 0.05, respectively. Matrix C is equal to

C =

[
N(x) 0

0 I3

]
, (69)

where N(x) is given by formula (5). The task is to track the end-
effector desired trajectory pe

d = (2+ cos(t), 3+ sin(t), 0.35)T ,
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If this is the case, we can propose the following control law:

v̇ = B−1 u(t, q, z, v, E, Ė, s). (65)

where

u(t, q, z, v, E, Ė, S) =





−C
A′

S
‖S‖

(χ ′+C0) for S �= 0,

0 otherwise,
(66)

χ ′ = χ|w7=1, w8=0. We are now in position to give the following
theorem.

Theorem 4. If the assumptions of Theorem 2 regarding Λ0, Λ1,
C and C0 are satisfied then control scheme (65), (66) enables the
dynamic tracking errors (E, Ė) to stably converge to the origin
(E, Ė) = (0, 0) in a finite time.

Proof. The proof of Theorem 4 is a small modification of the
proof of Theorem 2 with Lyapunov function candidate V ′ =
1
2
〈S, S〉. Therefore, it is omitted.

It is worth to emphasize the fact that finite-time controllers
utilizing the Jacobian transpose matrix were also analysed in
our most recent work [29]. However, there are significant differ-
ences between control law from [29] and that proposed herein.
First, the structure of controller from [29] is more complex as
compared to that proposed herein. Namely, centralized control
law from [29] requires the inverse of actuation matrix B multi-
plied right sided by JT whereas our sub-controllers (34), (35),
(55), (56) need only transpose of J and B, respectively. The re-
quirement of computing B−1 in [29] is a restrictive assumption
for many non-holonomic mechanisms which are (by their na-
ture) underactuated dynamic systems with B being not square
and/or even singular. Second, the proof of finite-time stability
in [29] is based on the assumption of the full rank of actuation
matrix B. However, sub-controller (55), (56) does not require the
strong assumption of invertibility of B. If B = B(q) is singular
at q′ = q(t ′) for some time instant t ′ and

0 �= S(t ′) /∈ ker(BT (q′)) (67)

then for sufficiently large C, expression −C〈BT S, BT S〉χ +C0

A‖S‖
in equation (60) can take arbitrarily large negative values
thus implying the negative value of V̇ . Hence, controller (55),
(56) makes it possible to generate trajectory q = q(t) passing
through singular manifold {q : det(BBT ) = 0} at configuration
q′ = q(t ′). Let us observe that, condition (67) is weaker than that
of the full rank of B given in [29]. Consequently, matrix B may
contain singularities and control laws (34), (35), (55), (56) still
result in finite time stability. Moreover, transposed both Jaco-
bian and actuation matrix sub-controllers (34), (35), (55), (56)
provide (local) optimal solution by applying the sliding mode
approach. In such a context, there exist several papers [8–11],
which use sliding variables in control algorithms. Nevertheless,
control laws proposed in [8–11] are not optimal in any sense
and provide (in most cases) discontinuous steering signals.

Due to real-time nature of the sub-controllers (34), (35), (55),
(56), we shall try to estimate the number of arithmetic oper-
ations required to implement the control algorithms presented
in this section. Operations required for the computation of sin,
cos and pe

d functions are not taken into account. Furthermore,
matrices J(q) and B(q) are assumed to be given. Moreover, es-
timations are carried out at any time instant of the robot task
accomplishment. From (34) and (55), it follows that terms ure f ,
u require O(l + n− k) operations. Computation of the right-
hand side of eqn (56) equals O((l+n−k)2). Let us note that for
the (2, 0) platform, matrix B is diagonal. Hence, computation
of BT u requires O(l + n− k) operations. Finally, the computa-
tional complexity of the whole mobile manipulator controller
(34), (35), (55), (56) is of the order O((l +n− k)2).

4. Numerical example

Based on an exemplary task to be accomplished by the mo-
bile manipulator, this section demonstrates the performance of
the proposed cooperating controllers (34), (35) and (55), (56).
For this purpose, the mobile manipulator operating in a three-
dimensional work space and shown in Fig. 1, has been utilized.
Kinematic and dynamic data correspond to KUKA youBot mo-
bile platform and holonomic manipulator. However, in the com-
putations carried out herein, the platform is assumed to be of
the non-holonomic (2, 0) type and the holonomic manipulator
has only three revolute kinematic pairs (n = 3) (the last three
links of the original KUKA holonomic arm form the single link
of the manipulator utilized in the computations). Consequently,
kinematic equations of the mobile manipulator from Fig. 1 take
the form

fe(q) =




acθ + l1cθ1 +
l2
2

cθ12 +
l3
2

cθ123 + x1,c

asθ − l1sθ1 −
l2
2

sθ12 −
l3
2

sθ123 + x2,c

c− l2sy2 − l3sy23 + x3,c



, (68)

where cθ1 = cos(−θ +y1), cθ12 = cos(−θ +y1+y2)+cos(θ −
y1+y2), cθ123 = cos(−θ +y1+y2+y3)+cos(θ −y1+y2+y3),
sθ1 = sin(−θ +y1), sθ12 = sin(−θ +y1+y2)−sin(θ −y1+y2),
sθ123 = sin(−θ +y1+y2+y3)− sin(θ −y1+y2+y3). Vector q
equals q = (x1,c, x2,c, θ , φ1, φ2, y1, y2, y3)

T . In the computer
simulation, SI units are used. Taking into account the above
assumptions and the KUKA youBot documentation [35], the
kinematic parameters of the mobile manipulator from Fig. 1 take
the following numeric values: (a,0,c)T = (0.167, 0, 0.161)T ,
x3,c = 0.084, l1 = 0.033, l2 = 0.155, l3 = 0.342, W = 0.158 and
R = 0.05, respectively. Matrix C is equal to

C =

[
N(x) 0

0 I3

]
, (69)

where N(x) is given by formula (5). The task is to track the end-
effector desired trajectory pe

d = (2+ cos(t), 3+ sin(t), 0.35)T ,
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t ≥ T (m = 3). Hence, auxiliary matrix j(q) equals

j =




1 0 j13 0 0 j14 j15 j16

0 1 j23 0 0 j24 j25 j26

0 0 0 0 0 0 j35 j36

−sθ cθ 0 0 0 0 0 0

cθ sθ W −R 0 0 0 0

cθ sθ −W 0 −R 0 0 0




, (70)

where

j13 =−asθ + l1sθ1 +
l2
2

sθ12 +
l3
2

sθ123;

j14 =−l1sθ1 −
l2
2

sθ12 −
l3
2

sθ123;

j15 =
l2
2
(−sin(−θ + y1 + y2)− sin(θ − y1 + y2))

+
l3
2
(−sin(−θ + y1 + y2 + y3)− sin(θ − y1 + y2 + y3));

j16 =
l3
2
(−sin(−θ + y1 + y2 + y3)− sin(θ − y1 + y2 + y3));

j23 = acθ + l1cθ1 +
l2
2

cθ12 +
l3
2

cθ123;

j24 =−l1sθ1 −
l2
2

cθ12 −
l3
2

cθ123;

j25 =− l2
2
(cos(−θ + y1 + y2)− cos(θ − y1 + y2))

− l3
2
(cos(−θ + y1 + y2 + y3)− cos(θ − y1 + y2 + y3));

j26 =
l3
2
(cos(−θ + y1 + y2 + y3)− cos(θ − y1 + y2 + y3));

j35 =−l2cy2 − l3cy23; j36 =−l3cy23.

The components of the nominal dynamic equations are equal
to: platform mass mp = 19.803; wheel mass mw = 1.4; masses of
the holonomic manipulator links equal m1 = 1.39, m2 = 1.318
and m3 = 2.496, respectively. The remaining dynamic param-
eters of the robot are taken from KUKA youBot documenta-
tion [35]. In order to simplify the computations, D is assumed
to be equal to zero, i.e., D = 0. Hence, β0 = β1 = 0 and conse-
quently w6 = 0. The methodology of estimations of other con-
stants, i.e., w1, . . . ,w5, w7, . . . ,w9, which depend only on config-
uration q, has been given in our work [29]. Nevertheless, in order
to simplify the computations, rough values for wi, i = 1, . . . ,9,
a and A have been assumed. Consequently, these constants
are chosen as follows a = A = 0.2; w1 = 1.5; w2 = 0.001;
w3 = 3; wk

3 = 2; w4 = 9; wk
4 = 3; w5 = 12; w6 = 0; w7 = 6,

w8 = 0.011, w9 = 6. Initial reduced velocity, control and config-
uration equal z(0) = (0, 0, 0, 0, 0)T , v(0) = (0, 0, 0, 0, 0)T ,

q(0) =
(
−0.4,0,0,0,0,0,− π

18
,

π
9

)T
, respectively. Moreover,

qrest = q(0). Actuation matrix B takes the following form:

B =




2
R

0 0 0 0

0
2
R

0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




. (71)

In order to attain the accuracy of the task errors e less or
equal to 10−4, the following numerical values are assumed
for the controller gains: c = C = 2; c0 = C0 = 1; λ0 = 1;

λ1 = 11; λ2 = 6; Λ0 = 11; Λ1 = 6; α1 =
3
5

; cF = 1 and
KF = diag(0.001,0.001,0.001,0.05,0.05,0.0001,0.05,0.05),
respectively. The results for this simulation are given in Figs 2–
4, which indicate a good tracking performance of optimal sub-
controllers (34), (35) and (55), (56) (see Figs 2, 3). Let us ob-
serve (Figs 2, 3) that for t > 5 mobile manipulator accomplishes
(locally) optimal movement. The corresponding torques v are
depicted in Fig. 4. As is seen from Fig. 4, control laws (34), (35)
and (55), (56) generate absolutely continuous steering signals
(torques).

Fig. 2. Euclidean norm of task errors ee for optimal sub-controllers
(34), (35) and (55), (56)

Fig. 3. Euclidean norm of auxiliary (user specified) errors ea for optimal
sub-controllers (34), (35) and (55), (56)

Fig. 4. Torques v for optimal sub-controllers (34), (35) and (55), (56)

5. Conclusions

A class of optimal hierarchical controllers designed to track
desired trajectories expressed in Cartesian space, has been pre-
sented. The main advantage of the proposed control algorithm
is the elimination of the inverse (or pseudo-inverse) of both ex-
tended Jacobian and actuation matrices. Moreover, the offered
control scheme generates at least absolutely continuous steer-
ing signals. Based on the Lyapunov stability theory, the control
strategies (34)–(35) and (55)–(56) are shown to be both finite
time stable and (locally) optimal by fulfilment of reasonable
assumptions regarding the matrices J and B. Let us note that
presented control algorithms (34)–(35), (55)–(56) require some
information extracted from both kinematic and dynamic equa-
tions. Namely, they only need upper norm estimates of some
components of dynamic equations (and not the dynamic com-
ponents directly) of the mobile manipulators. Nevertheless, the
presented approach is able to handle both uncertainty in dynam-
ics and external disturbances in the non-holonomic systems. Due
to decentralized nature of our sub-controllers, it is also possible
to extend the presented results to the case when only estimates
of Jacobian matrix J(q) and actuation one B(q) are known with
a given accuracy of estimation with respect to unknown J and B,
respectively. This will be the subject of the future research. The
proposed methodology to optimal trajectory tracking control
problem may be directly applicable to many mobile manipula-
tors operating in a six dimensional task space.
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Fig. 4. Torques v for optimal sub-controllers (34), (35) and (55), (56)

5. Conclusions

A class of optimal hierarchical controllers designed to track
desired trajectories expressed in Cartesian space, has been pre-
sented. The main advantage of the proposed control algorithm
is the elimination of the inverse (or pseudo-inverse) of both ex-
tended Jacobian and actuation matrices. Moreover, the offered
control scheme generates at least absolutely continuous steer-
ing signals. Based on the Lyapunov stability theory, the control
strategies (34)–(35) and (55)–(56) are shown to be both finite
time stable and (locally) optimal by fulfilment of reasonable
assumptions regarding the matrices J and B. Let us note that
presented control algorithms (34)–(35), (55)–(56) require some
information extracted from both kinematic and dynamic equa-
tions. Namely, they only need upper norm estimates of some
components of dynamic equations (and not the dynamic com-
ponents directly) of the mobile manipulators. Nevertheless, the
presented approach is able to handle both uncertainty in dynam-
ics and external disturbances in the non-holonomic systems. Due
to decentralized nature of our sub-controllers, it is also possible
to extend the presented results to the case when only estimates
of Jacobian matrix J(q) and actuation one B(q) are known with
a given accuracy of estimation with respect to unknown J and B,
respectively. This will be the subject of the future research. The
proposed methodology to optimal trajectory tracking control
problem may be directly applicable to many mobile manipula-
tors operating in a six dimensional task space.
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