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Tracking control for a cascade perturbed control system
using the active disturbance rejection paradigm

RADOSŁAW PATELSKI and DARIUSZ PAZDERSKI

In this paper the stability of a closed-loop cascade control system in the trajectory track-
ing task is addressed. The considered plant consists of underlying second-order fully actuated
perturbed dynamics and the first order system which describes dynamics of the input. The main
theoretical result establishes the conditions for Lyapunov stability formulated for the perturbed
cascade control structure taking advantage of the active rejection disturbance approach. In par-
ticular, limitations imposed on a feasible set of an observer bandwidth are discussed. In order
to illustrate characteristics of the closed-loop control system simulation results are presented.
Furthermore, the particular implementation of the cascade control algorithm is verified exper-
imentally using a two-axis telescope mount. The obtained results confirm that the considered
control strategy can be efficiently applied for a class of mechanical systems when a high position
tracking precision is required.

Key words: active disturbance rejection, cascade control systems, stability of perturbed
systems, high-precision tracking control, control of astronomical mounts

1. Introduction

Set-point regulation and trajectory tracking constitute elementary tasks in
control theory. It is well known that a fundamental method of stabilisation by
means of a smooth static state feedback has significant limitations which come,
among others, from the inability to measure the state as well as the occurrence
of parametric and structural model uncertainties. Thus, for these reasons, various
adaptive and robust control techniques are required to improve the performance of
the closed-loop system. In particular, algorithms used for the state and disturbance
estimation are of great importance here.

The use of high gain observers (HGOs) is well motivated in the theory of
linear dynamic systems, where it is commonly assumed that state estimation
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dynamics are negligible with respect to the dominant dynamics of the closed-
loop system. A similar approach can be employed successfully for a certain class
of nonlinear systems where establishing a fast convergence of estimation errors
may be sufficient to ensure the stability, [15]. In a natural way, the HGO observer
is a basic tool to support a control feedback when a plant model is roughly known.
Here one can mention the free-model control paradigm introduced by Fliess and
others, [7,8] as well as the active disturbance rejection control (ADRC) proposed
by Han and Gao, [11–14].

It turns out that the above-mentioned control methodology can be highly
competitive with respect to the classic PID technique in many industrial appli-
cations, [6, 19, 20, 22, 24, 26]. Furthermore, it can be regarded as an alternative
control approach in comparison to the sliding control technique proposed by Utkin
and others, [3, 25], where bounded matched disturbances are rejected due to fast
switching discontinuous controls. Thus, it is possible to stabilise the closed-loop
control system, in the sense of Filippov, on a prescribed, possibly time-varying,
sliding surface, [4,21]. Currently, also second and higher-order sliding techniques
for control and state estimations are being explored, [2,5,17,18]. It is noteworthy
to recall a recent control algorithm based on higher-order sliding modes to solve
the tracking problem in a finite time for a class of uncertain mechanical systems
in robotics, [9, 10].

From a theoretical point of view, some questions arise regarding conditions of
application of control techniques based on a disturbance observer, with particular
emphasis on maintaining the stability of the closed-loop system. Recently, new
results concerning this issue have been reported for ADRC controllers, [1, 23].
In this paper we further study the ADRC methodology taking into account a
particular structure of perturbed plant. Basically, we deal with a cascade control
system which is composed of two parts. The first component is represented by
second-order dynamics which constitute an essential part of the plant. It is as-
sumed that the system is fully actuated and subject to matched-type disturbances
with bounded partial derivatives. The second component is defined by an ele-
mentary first-order linear system which describes input dynamics of the entire
plant. Simultaneously, it is supposed that the state and control input of the second
order dynamics are not fully available.

It can be seen that the considered plant well corresponds to a class of me-
chanical systems equipped with a local feedback applied at the level of actuators.
As a result of additional dynamics, real control forces are not accessible directly
which may deteriorate the stability of the closed-loop system.

In order to analyse the closed-loop system we take advantage of Lyapunov
tools. Basically, we investigate how an extended state observer (ESO) affects the
stability when additional input dynamics are considered. Further we formulate
stability conditions and estimate bounds of errors. In particular, we show that the
observer gains cannot be made arbitrarily large as it is commonly recommended
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in the ADRC paradigm. Such an obstruction is a result of the occurrence of
input dynamics which is not explicitly taken into account in the feedback design
procedure.

According to the best authors’ knowledge, the Lyapunov stability analysis for
the considered control structure taking advantage of the ADRC approach has not
been addressed in the literature so far.

Theoretical results are: active disturbance rejection, cascade control systems,
stability of perturbed systems, high-precision tracking control, control of astro-
nomical mounts – illustrated by numerical simulations and experiments. The
experimental validation are conducted on a real two-axis telescope mount driven
by synchronous gearless motors, [16]. Here we show that the considered methods
provide high tracking accuracy which is required in such an application. Addi-
tionally, we compare the efficiency of compensation terms, computed based on
the reference trajectory and on-line estimates in order to improve the tracking
performance.

The paper is organised as follows. In Section 2 the model of a cascade control
process is introduced. Then a preliminary feedback is designed and a corre-
sponding extended state observer is proposed. The stability of the closed-loop
system is studied using Lyapunov tools and stability conditions with respect to
the considered control structure are formulated. Simulation results are presented
in Section 3 in order to illustrate the performance of the controller. In Section 4
extensive experimental results are discussed. Section 5 concludes the paper.

2. Controller and observer design

2.1. Dynamics of a perturbed cascaded system

Consider a second order fully actuated control system defined as follows{
ẋ1 = x2,

ẋ2 = Bu + h(x1, x2) + q(x1, x2, u, t),
(1)

where x1, x2 ∈ Rn are state variables, B ∈ Rn×n is a non-singular input matrix
while u ∈ Rn stands for an input. Functions h : R2n → Rn and q : R3n×R0 → Rn

denote known and unknown components of the dynamics, respectively. Next, it
is assumed that input u in (1) is not directly accessible for a control purpose,
however, it is governed by the following first order dynamics

u̇ = T−1 (−u + v) , (2)

where v ∈ Rn is regarded as a real input and T ∈ Rn×n is a diagonal matrix
of positive time constants. In fact, both dynamics constitute a cascaded third
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order plant, for which the underlying component is represented by (1), while (2)
corresponds to stable input dynamics.

2.2. Control system design

The control task investigated in this paper deals with tracking of a reference
trajectory specified for an output of system (1), (2) which is determined by
y := x1. Simultaneously, it is assumed that variables x2 and u are unavailable for
measurement and the only information is provided by the output.

To be more precise, we define at least C3 continuous reference trajectory
xd (t) : Rn → Rn and consider output tracking error ỹ := xd − x1. Additionally,
to quantify a difference between u and v, we introduce error ũ := v − u. Since v
is viewed as an alternative input of (1), one can rewrite (1) as{

ẋ1 = x2 ,

ẋ2 = Bv − Bũ + h + q.
(3)

For control design purposes, the tracking error will be considered with respect to
the state of system (3). Consequently, one defines

e =
[
e1
e2

]
:=

[
ỹ
e2

]
=

[
xd − x1
ẋd − x2

]
∈ R2n. (4)

Accordingly, taking time derivative of e, one can obtain the following open-loop
error dynamics {

ė1 = e2 ,

ė2 = ẍd − Bv + Bũ − h − q.
(5)

In order to stabilise system (5) in a vicinity of zero, the following preliminary
control law is proposed

v := B−1
(
Kp (xd − x̂1) + Kd ( ẋd − x̂2) − hu + ẍd − wc

)
, (6)

where Kp, Kd ∈ Rn×n are diagonal matrices of constant positive gains, x̂1 ∈ Rn,
x̂2 ∈ Rn and wc ∈ Rn denote estimates of states and a disturbance, respectively.
These estimates are computed by an observer that is not yet defined. Term hu :
R4n → Rn is a compensation function, designed in attempt to attenuate influence
of h on the closed system dynamics, and is defined using available signals as
follows

hu := h1 ( x̂1, x̂2) + h2 (xd, ẋd) , (7)

while h1 and h2 satisfy

h1(x1, x2) + h2(x1, x2) = h. (8)
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Next, in order to simplify design of an observer we rewrite dynamics (1). Firstly,
we consider a new form which does not introduce any change to the system
dynamics and is as follows{

ẋ1 = x2
ẋ2 = Bu + hu + h − hu + q.

(9)

Secondly, according to the active disturbance rejection methodology, it is assumed
that

z3 := q + h − hu (10)

describes an augmented state which can be regarded as a total disturbance. Cor-
respondingly, one can introduce extended state z =

[
zT
1 zT

2 zT
3

]T ∈ R3n, where
z1 := x1 and z2 := x2. As a result, the following extended form of dynamics (9)
can be established 

ż1 = z2 ,

ż2 = Bu + hu + z3 ,

ż3 = q̇ + ḣ − ḣu .

(11)

Now, in order to estimate state z we define the following Luenberger-like observer


˙̂z1 = K1 (z1 − ẑ1) + ẑ2 ,
˙̂z2 = K2 (z1 − ẑ1) + ẑ3 + hu + Bv,
˙̂z3 = K3 (z1 − ẑ1) ,

(12)

where ẑ =
[
ẑT
1 ẑT

2 ẑT
3

]T ∈ R3n denotes estimate of z and K1, K2, K3 ∈ Rn×n are
diagonal matrices of positive gains of the observer which are chosen based on
linear stability criteria. Since estimates ẑ are expected to converge to real values
of z, let observation errors be expressed as z̃ := z − ẑ. Taking time derivative of
z̃, using (12), (11) and recalling (3) one obtains the following dynamics

˙̃z = Ho z̃ + C0Bũ + C1 ż3 (13)

where

Ho =


−K1 I 0
−K2 0 I
−K3 0 0

 ∈ R
3n×3n, (14)

C0 =
[
0 −I 0

]T
, C1 =

[
0 0 I

]T ∈ R3n,

while I stands for the identity matrix of size n × n. Here, it is required that Ho is
Hurwitz, what can be guaranteed by a proper choice of observer gains. Next, we
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recall tracking dynamics (5) and feedback (6). It is proposed that compensating
term in (6), which partially rejects unknown disturbances, is defined by an estimate
provided by observer (12), namely wc := ẑ3. Consequently, by substituting (6)
into (5) the following is obtained

ė = Hce +W1 z̃ + C2Bũ, (15)
where

Hc =

[
0 I
−Kp −Kd

]
, W1 =

[
0 0 0
−Kp −Kd −I

]
, C2 =

[
0
I

]
∈ R2n×n (16)

and Hc is Hurwitz for Kp ≻ 0 and Kd ≻ 0.
Further, in order to facilitate the design and analysis of the closed-loop system,

we take advantage of a scaling operator defined by

∆m(α) := diag
{
αm−1I, αm−2I, . . . , I

}
∈ Rmn×mn, (17)

where α > 0 is a positive scalar. Then we define the following scaled tracking
and observation errors

e :=(κω)−1
∆2(κω)e, (18)

z :=ω−2
∆3(ω) z̃, (19)

where ω ∈ R+ is a scaling parameter which modifies the bandwidth of the the
observer, while κ ∈ R+ denotes a relative bandwidth of the feedback determined
with respect toω. Embracing this notation one can introduce the following scaled
gains

Kc := (κω)−1Kc∆
−1
2 (κω), Ko := ω−3

∆3(ω)
[
KT

1 KT
2 KT

3

]T
, (20)

where Kc :=
[
Kp Kd

]
∈ Rn×2n. Additionally, exploring relationships (48) out-

lined in the Appendix, one can rewrite dynamics (15) and (13) as follows

ė =κωHce + κ−1ωW1∆3(κ)z + (κω)−1C2Bũ, (21)

ż =ωHoz + ω−1C0Bũ + ω−2C1 ż3, (22)

with Hc and Ho being Hurwitz matrices of forms (16) and (14) defined in
terms of scaled gains Kc and Ko, respectively. Similarly, W1 corresponds to W1
parameterised by new gains. Since Hc and Ho are Hurwitz, one can state that the
following Lyapunov equations are satisfied

PcH
T
c + HcPc = −Qc PoH

T
o + HoPo = −Qo (23)

for some symmetric, positive defined matrices Qc, Pc ∈ R2n×2n and Qo, Po ∈
R3n×3n.
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2.3. Stability analysis of the closed-loop cascaded control system

Lyapunov stability of the closed-loop is to be considered now. For this purpose,
a state which consists of tracking, observation and input errors is defined as

ζ =
[
eT zT ũT

]T ∈ R6n. (24)

A positive definite function is proposed as follows

V (ζ ) =
1
2

eT Pce +
1
2

zT Poz +
1
2

ũT ũ. (25)

Its derivative takes form of

V̇ (ζ ) = − 1
2
κωeTQce − 1

2
ωzTQoz + κ−1ωeT PcW1∆3(κ)z

+ (κω)−1eT PcC2Bũ + ω−1zT PoCoBũ

+ ω−2zT PoC1 ż3 − ũTT−1ũ + ũT v̇.

(26)

Derivative of control law v defined by (6) can be expressed in terms of ζ as (the
details are outlined in the Appendix)

v̇ = B−1
(
ω3

(
κ3KcHce +

(
κKcW1∆3(κ) +W2∆3(κ)Ho

)
z
)
− ḣu +

...x d
)
, (27)

where Kc :=
[
K p Kd

]
∈ Rn×2n and W2 :=

[
Kc I

]
∈ Rn×3n. Substituting (27)

and ż3 into (26) leads to

V̇ (ζ ) = − 1
2
κωeTQce − 1

2
ωzTQoz + κ−1ωeT PcW1∆3(κ)z

+ (κω)−1eT PcC2Bũ + ω−1zT PoCoBũ + (κω)3ũT B−1KcHce

+ ω3ũT B−1
(
κKcW1∆3(κ) +W2∆3(κ)Ho

)
z

− ũTT−1ũ + ũT B−1...x d + ũT B−1 ḣu + ω
−2zT PoC1

(
ḣ − ḣu

)
+ ω−2zT PoC1q̇(z1, z2, u, t).

(28)

In order to simplify the stability analysis, derivative V̇ will be decomposed into
four terms defined as follows

Y1 := − 1
2
κωeTQce − 1

2
ωzTQoz + κ−1ωeT PcW1∆3(κ)z

+ (κω)−1eT PcC2Bũ + ω−1zT PoCoBũ + (κω)3ũT B−1KcHce

+ ω3ũT B−1
(
κKcW1∆3(κ) +W2∆3(κ)Ho

)
z − ũTT−1ũ,

Y2 := ũT B−1...x d , Y3 := ũT B−1 ḣu + ω
−2zT PoC1

(
ḣ − ḣu

)
,

Y4 := ω−2zT PoC1q̇(z1, z2, u, t).

(29)
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Each term of V̇ will be now considered separately. Firstly, Y1 which represents
mainly the influence of input dynamics on the nominal system will be looked upon.
Negative definiteness of this term will be a starting point for further analysis of
the closed-loop stability. Let it be rewritten using the matrix notation as

Y1 = −
1
2
ωζ

T
QY1ζ, (30)

where

QY1 =


κQc −κ−1PcW1∆3(κ) QY113

−κ−1
(
PcW1∆3(κ)

)T
Qo QY123

QT
Y113

QT
Y123

2ω−1T−1


∈ R6n×6n

while

QY113 = − κ−1ω−2PcC2B − κ3ω2
(
B−1KcHc

)T
,

QY123 = − ω−2PoCoB − ω2
(
B−1

(
κKcW1∆3(κ) +W2∆3(κ)Ho

))T
.

(31)

It can be showed, that there may exist sets Ωv,Kv ⊂ R+, such, that for every
ω ∈ Ωv and κ ∈ Kv matrix QY1 remains positive definite. Domains of both
Ωv and Kv strongly depend on inertia matrix T and input matrix B of nominal
system. In the absence of other disturbances the closed-loop system would remain
asymptotically stable for such a choice of both ω and κ parameters. Influence of
other elements of V̇ (ζ ) will be considered in terms of upper bounds which can
be imposed on them.

Assumption 1 Let desired trajectory xd be chosen such, that norms of
xd, ẋd, ẍd,

...x d are bounded by, respectively, constant positive scalar values
xb0, xb1, xb2, xb3 ∈ R+.
Establishing upper bound for norm of Y2 is straightforward by using Cauchy-
Schwartz inequality.

Y2 = −ũT B−1...x d,

∥Y2∥ ¬ ũ · B−1...x d


¬ ζ B−1 xb3. (32)

Now, Y3 is to be considered. This term comes from imperfect compensation of
known dynamics in the nominal (unperturbed) system and it can be further split
into the following

Y31 := ω−2zT PoC1
(
ḣ − ḣu

)
, Y32 := ũT B−1 ḣu. (33)
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Assumption 2 Let functions h1(a, b) and h2(a, b) be defined such, that norms of

partial derivatives
∂

∂a
h1(a, b),

∂

∂b
h1(a, b),

∂

∂a
h2(a, b),

∂

∂b
h2(a, b) are bounded

for every a, b ∈ Rn by h1a, h1b,h2a,h2b ∈ R+ respectively.

By applying chain rule to calculate derivatives of each function and substitut-
ing errors e, z and the desired trajectory for state variables, term Y31 can be
expressed as

Y31 = ω
−2zT PoC1

(
Wh1

[
ẋd
ẍd

]
−Wh2

(
κωHce + κ−1ωW1∆3(κ)z

+ (κω)−1C2Bũ
)
+Wh3

(
ωHoz + ω−1C0Bũ

))
,

(34)

where

Wh1 =

[(
∂h1
∂z1
+
∂h2
∂z1
− ∂h2
∂xd
− ∂h1
∂ ẑ1

) (
∂h1
∂z2
+
∂h2
∂z2
− ∂h2
∂ ẋd
− ∂h1
∂ ẑ2

)]
,

Wh2 =

[(
∂h1
∂z1
+
∂h2
∂z1
− ∂h1
∂ ẑ1

)
κω

(
∂h1
∂z2
+
∂h2
∂z2
− ∂h1
∂ ẑ2

)]
,

Wh3 =

[
∂h1
∂ ẑ1

ω
∂h1
∂ ẑ2

0
]
.

This term can be said to be bounded by

∥Y31∥ ¬ ω−2 ζ ∥PoC1∥
(
(2h1a + 2h2a) xb1 + (2h1b + 2h2b) xb2

)
+

ζ2∥PoC1∥
(
ω−1κ∥Wh2b∥

(Hc
 + W1

) + ω−3κ−1∥Wh2b∥ ∥C2B∥
)

+
ζ2∥PoC1∥

(
ω−1 ∥Wh3b∥ Ho

 + ω−2 ∥B∥ h1b
)
. (35)

where Wh2b =
[
2h1a + h2a κω (2h1b + h2b)

]
and Wh3b =

[
h1a ωh1b 0

]
. Having

established upper bound ofY31, we can perform similar analysis with respect toY32.
Let Y32 be rewritten as

Y32 = ũT B−1
(
Wh4

[
ẋd
ẍd

]
−Wh5

(
κωHce + κ−1ωW1∆3(κ)z + (κω)−1C2Bũ

)
−Wh6

(
ωHoz + ω−1C0Bũ

))
,

(36)

where

Wh4 =

[(
∂h2
∂xd
+
∂h1
∂ ẑ1

) (
∂h2
∂ ẋd
+
∂h1
∂ ẑ2

)]
,
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Wh5 =

[
∂h1
∂ ẑ1

κω
∂h1
∂ ẑ2

]
,

Wh6 = Wh3.

An upper bound of norm of Y32 can be expressed by the following inequality

∥Y32∥ ¬ ω−2 ζ PoC1
 (

qz1xb1 + qz2xb2 + ∥B∥ qz2 +
T−1 qu +

PoC1
 qt

)
+ κω−1 ζ2 PoC1

 Wq2
 (Hc

 + W1
) (37)

where Wh5b =
[
h1a κωh1b

]
and naturally Wh6b = Wh3b. A remark can be made

now about the structure of Wh2, Wh3, Wh4 and Wh5. It may be recognized, that
elements of these matrices can be divided into groups of derivatives calculated
with respect to the first and the second argument. Former of these are not scaled
by either observer or regulator bandwidth, while the latter is scaled by either κω
orω factor. As will be shown later in the analysis, this difference has a significant
influence on the system stability and affects the ability of the controller to reduce
tracking errors.

Lastly, some upper bound need to be defined for Y4 to complete the stability
analysis. This final term comes from nominal disturbance q(z1, z2, u, y) alone. By
the chain rule it can be shown that

Y4 = ω
−2zT PoC1

(
Wq1

[
ẋd
ẍd

]
+ κωWq2Hce + κ−1ωWq2W1∆3(κ)z

+ (κω)−1Wq2C2Bũ − ∂q
∂u

T−1ũ +
∂q
∂t

)
,

(38)

where Wq1 =

[
∂q
∂z1

∂q
∂z2

]
and Wq2 =

[
∂q
∂z1

κω
∂q
∂z2

]
.

Assumption 3 Let partial derivatives
∂

∂z1
q(z1, z2, u, t),

∂

∂z2
q(z1, z2, u, t),

∂

∂u
q(z1, z2, u, t),

∂

∂t
q(z1, z2, u, t) be defined in the whole domain and let their

norms be bounded by constants qz1, qz2, qu and qt ∈ R+, respectively.

Under Assumption 3 the norm of Y4 is bounded by

∥Y4∥ ¬ ω−2 ζ PC (
qz1xb1 + qz2xb2

)
+ ω−1 ζ2 PCW5b

 (H + ω−2 CB)
+ ω−2 ζ2 PC (T−1 qu + qt

)
.

(39)
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With some general bounds for each of V̇ (ζ ) terms established, conclusions con-
cerning system stability can be finally drawn. For the sake of convenience, let
some auxiliary measure of Lyapunov function derivative negative definiteness
ΛV and Lyapunov function derivative perturbation ΓV be defined as

ΛV :=
1
2
ωλmin(QY1) − κω B−1 ∥Wh5b∥

(Hc
 + W1

)
− ω B−1 ∥Wh6b∥ Ho

 − 2h1b − ω−1 ∥Wh3b∥ Ho


− κω−1 ∥PoC1∥
(
∥Wh2b∥ + Wq2

) (Hc
 + W1

)
− ω−2 ∥B∥ h1b − ω−3κ−1 ∥Wh2b∥ ∥C2B∥ , (40)

ΓV := B−1 ∥(h2a + h1a) xb1 + (h2b + h1b) xb2∥

ω−2 PoC1
 (

qz1xb1 + qz2xb2 + ∥B∥ qz2 +
T−1 qu +

PoC1
 qt

)
, (41)

where λmin(Q) stands for the smallest eigenvalue of matrix Q, then upper bound
of V̇ζ (ζ ) can be expressed as

V̇ζ ¬ −ΛV
ζ2

+ ΓV
ζ . (42)

Now, following conditions can be declared

C1 ω ∈ Ωv, κ ∈ Kv ,

C2 ΓV  0,

and succeeding theorem concludes presented analysis.

Proposition 1 Perturbed cascade system (1), (2) satisfying Assumptions 1–3,
controlled by feedback (6) which is supported by extended state observer (12),
remains practically stable if there exist symmetric, positive defined matrices Qo
and Qc such, that conditions 2.3 and 2.3 can be simultaneously satisfied. Scaled
tracking errors ζ are then bounded as follows

lim
t→∞

ζ (t) ¬ ΓV

ΛV
. (43)

Remark 1 Foregoing proposition remains valid only if Assumptions 1-3 are sat-
isfied. While Assumption 1 considers the desired trajectory only and can be easily
fulfilled for any system with state x1 defined on Rn, a closer look at the remaining
assumptions ought to be taken now. Similar in their nature, both concern im-
perfectly known parts of the system dynamics, with the difference being whether
an attempt to implicitly compensate these dynamics is taken or not. As a known
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dynamic term satisfying Assumption 2 can also be treated as an unknown dis-
turbance, without a loss of generality, only Assumption 3 has to be commented
here. It can be noted, that for many commonly considered systems this assumption
cannot be satisfied. A mechanical system equipped with revolute kinematic pairs
can be an example of such system, which dynamics, due to Coriolis and centrifu-
gal forces, have neither bounded time derivative nor bounded partial derivative
calculated with respect to the second state variable. Engineering practice shows
nonetheless that for systems, in which cross-coupling is insignificant enough due
to a proper mass distribution, this assumption can be approximately satisfied,
at least in a bounded set of the state-space, and the stability analysis holds.
The requirement that partial derivatives of any disturbance in the system should
be bounded is restrictive one, yet less conservative than commonly used in the
ADRC analysis expectation of time derivative boundedness. In this sense, the
presented analysis is more liberal than ones considered in the literature and it
can be expected that enforced assumptions can be better justified.

3. Numerical simulations

In attempt to further research behaviour of the system in the presence of
unmodelled dynamics governing the input signal numerical simulations have
been conducted. Model of the system has been implemented in Matlab-Simulink
environment. The second order, single degree of freedom system and the first
order dynamics of the input have been modelled according to the following
equations {

ẋ1 = x2 ,
ẋ2 = u, (44)

where
u̇ =

1
T

(−u + v) (45)

and v is a controllable input of the system. Parameters T and ω of the controller
were modified in simulations to investigate how they affect the closed-loop system
stability and the tracking accuracy. Chosen parameters of the system are presented
in the table 1. Desired trajectory xd was selected as a sine wave with unitary
amplitude and frequency of

10
2π

Hz.

Table 1: Auxiliary gains of the observer and controller

K1 K2 K3 K p Kd κ

3 3 1 1 2 0.01
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Selected results of simulations are presented in Figs. 1–4. Tracking errors
of the state variables are presented on the plots. Error of x1 is presented with
solid line, while e2 has been plotted with dashed lines on each figure. Integrals
of squared errors e1 (ISE criterion) and integral of squared control signals v (ISC
criterion) have been calculated for each simulation and are presented above the
plots to quantify obtained tracking results. Tests were performed for different
values of T and ω, as well as for compensation term wc = ẑ3 enabled or disabled,
cf. (6). It can be clearly seen that the existence of some upper bound of Ω is
confirmed by simulation results as proposed by Eq. (30). As expected, value
of this bound decreases with an increase of time constant T . In the conducted
simulations it was not possible to observe and confirm an existence of any lower
bound imposed onΩ and for an arbitrarily smallω the stability of the closed-loop
system was being maintained. Secondly, an influence of disturbance rejection term
ẑ3 is clearly visible and is twofold. Forω chosen to satisfy stability condition 2.3,
it can be observed, that the presence of the disturbance estimate allows significant
decreasing of tracking errors e2 caused by the input dynamics which were not
modelled during the controller synthesis. Basically, a residual value of error e2
becomes smaller for a higher value of bandwidth ω. Output error e1 is also
slightly modified, however, this effect is irrelevant according to ISE criterion.
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Figure 1: T = 0.1 s, ẑ3 enabled
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Figure 2: T = 0.1 s, ẑ3 disabled
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Nonetheless, usage of the disturbance estimate leads to a significant shrink of Ω
subset. It is plainly visible, that removal of ẑ3 estimate may lead to recovering of
the system stability, cf. Fig. 3 b and Fig. 4 b.
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Figure 3: T = 1 s, ẑ3 enabled

0 2 4 6 8 10

time [s]

-2

0

2

4

e
rr

o
r

101 ISE = 8183.31, ISC = 4.85e+04

(a) ω = 0.1

0 2 4 6 8 10

time [s]

-2

0

2

4
e

rr
o

r
101 ISE = 66.36, ISC = 5.38e+04

(b) ω = 1

0 2 4 6 8 10

time [s]

-4

-2

0

2

e
rr

o
r

102 ISE = 2.71e+03, ISC = 2.89e+06

(c) ω = 4

Figure 4: T = 1 s, ẑ3 disabled

4. Experimental results

Practical experiments have been undertaken in order to further investigate the
considered control problem. All experiments have been carried out using robotic
telescope mount developed at Institute of Automatic Control and Robotic of Poz-
nan University of Technology, [16]. The plant consists of a robotic mount and an
astronomic telescope with a mirror of diameter 0.5 m. The robotic mount alone
includes two axes driven independently by 24 V permanent magnet synchronous
motors (PMSM) with high-precision ring encoders producing absolute position
measurement with 32-bit resolution. Control algorithms have been implemented
in C++ using Texas Instruments AM4379 Sitara processor with ARM Cortex-A9
core clocked at 600 MHz. Controller itself is implemented in a cascade form
which consists of independent current and position loops. Both loops work si-
multaneously with frequency of 10 kHz. The current loop employs Park-Clark
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transformation to express motor dynamics in q-d coordinates. Both q and d auxil-
iary currents are controlled by independent PI regulators with a static feedforward
term and anti-windup correction which are defined as follows

v̇ = ki
(̃
i − ks

(
k p̃i + v + ur − sat

(
k p̃i + v + ur

)))
,

u = sat
(
k p̃i + v + ur,Um

)
,

(46)

where ĩ stands for the current tracking error, v denotes integrator input, u is
regulator input, ur expresses feedforward term, kp, ki and ks are positive gains,
and finally sat(u∗,Um) the saturation function of signal u∗ up to a value of Um.
Output voltage u is generated using PWM technique. Current in d axis is stabilised
at zero, while current of q axis tracks the desired current of the axis. For simplicity,
a linear relationship between the desired torque and the desired current in q axis is
assumed. The corresponding motor constant has been identified experimentally
and equals 2.45

Nm
A

. The desired torque is computed in the position loop by
the active disturbance rejection based controller designed for the second order
mechanical system modelled as follows{

ẋ1 = x2
ẋ2 = Bτ + fc · tanh( f t · x2)︸               ︷︷               ︸

h(x2)

,
(47)

where x1 ∈ R2 and x2 ∈ R2 are position and velocities of axes, B is input
matrix with diagonal coefficients equal B1,1 =

1
5

, B2,2 =
1
30

, fc is the constant
positive Coulomb friction coefficient while f t = 103 expresses scaling term
which defines steepness of friction model. Velocity of the axis is approximated in
the experiments using either observer estimate ẑ2 or desired trajectory derivative
ẋd . The assumed model of the friction force is strongly local, in the sense that
different values of fc are required for different accelerations in a time instant when
the sign of velocity changes. This locality was overcame during the experiments
by manual changes of fc coefficient. While torque generated by the motor is
treated as an input signal of the mechanical system, there exist residual dynamics
represented by the current loop which is not modelled in the position loop. Here,
we assume that these dynamics can be approximated by (2) and thus we can infer
about the stability according to mathematical analysis considered in Section 2.
Other disturbances come chiefly from flexibility of the mount, ignored cross-
coupling reactions between joints and torque ripples generated by synchronous
motors. Though some of these disturbances globally do not satisfy assumptions
accepted for theoretical analysis of the system stability, in the considered scenario
an influence of these dynamics is insignificant. Due to small desired velocities
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chosen in the experiment, these assumptions can be approximately satisfied here.
All gains of the controllers chosen for experiments are collected in Table 2.

Table 2: Gains of the controllers and observers

Horizontal axis Vertical axis
K1 1.2 · 103 2.4 · 102

K2 5.7 · 105 2.28 · 104

K3 108 0.8 · 106

Kp 225 225
Kd 24 24

Here we present selected results of the experiments. In the investigated experi-
mental scenarios both axes were at move simultaneously and the desired trajectory
was designed as a sine wave with period of 30 s and maximum velocity of 50vs,

in the first experiment, and 500vs, in the second, where vs = 7.268 · 10−5 rad
s

stands for the nominal velocity of stars on the night sky.
During the system operation significant changes of friction forces are clearly

visible and the influence of compensation term can be easily noticed. Since
friction terms vary significantly around zero velocity the tracking accuracy is
decreased. In such a case the process of the disturbance estimation is not per-
formed fast enough. Furthermore, in the considered application one cannot select
larger gains of the observer due to additional dynamics imposed by an actua-
tor and delays in the control loop. Here, one can recall relationship (43) which
clearly states that the tracking precision is dependent on the bound of ΓV , cf. (41).
Thus, one can expect that the tracking accuracy increases in operating conditions
when disturbances become slow-time varying. Such a property is observed in
experiments where friction terms change in a wide range.

Each experiment presents results obtained with different approaches to hu
term design. Once again integral squared error was calculated for each of the
presented plots to ease evaluation of the obtained results.

Series of conclusions can be drawn from the presented results. Due to inher-
ently more disturbed dynamics of horizontal axis, any improvement using friction
compensation for slow trajectories is hardly achieved. Meanwhile, the compen-
sation term based on the desired trajectory, effectively decreases tracking error
bound for all other experiments. As may be expected, compensation function
based on estimates of state variables is unable to provide any acceptable tracking
quality due to inherent noise in the signal and the existence of input dynamics. It
can be noted, that in the first experiment the friction compensation term allows
one to decrease the bound of tracking error while overall quality expressed by



TRACKING CONTROL FOR A CASCADE PERTURBED CONTROL SYSTEM
USING THE ACTIVE DISTURBANCE REJECTION PARADIGM 403

0 10 20 30 40 50

time [s]

-2

0

2

e
rr

o
r 

[a
s
e

c
]

ISE = 4.09

(a) hu = 0 (no compensation)

0 10 20 30 40 50

time [s]

-2

0

2

e
rr

o
r 

[a
s
e

c
]

ISE = 2.73

(b) hu = 0.5 · tanh( ẋd · 103)
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Figure 5: Horizontal axis, first experiment
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Figure 6: Vertical axis, first experiment
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Figure 7: Horizontal axis, second experi-
ment
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Figure 8: Vertical axis, second experiment

ISE criterion is worse in comparison to this obtained in the experiment without
the corresponding term in the feedback. This behaviour is not seen in the second
experiment, in which significant improvement was obtained for both axes in terms
of error boundary as well as ISE criterion.
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5. Conclusions

This paper is focused on the application of ADRC controller to a class of sec-
ond order systems subject to differentiable disturbances. In particular, the system
is analysed taking into account the presence of the first order input dynamics and
unmodelled terms which may include cross-coupling effects between the state
variables. By the means of Lyapunov analysis, general conditions of practical
stability are discussed. It is proved that, even in the presence of additional in-
put dynamics, boundedness of partial derivatives of total disturbance can be a
sufficient requirement to guarantee stability of the closed-loop system.

Using numerical simulations the considered controller is compared against a
simple PD-based regulator. The obtained results confirm that in the case of input
dynamics, the bandwidth of an extended observer is limited which restricts the
effectiveness of the ADRC approach. Lastly, practical results of employing ADRC
regulator in the task of trajectory tracking for a robotised astronomical telescope
mount are presented. In this application, it is assumed that friction effects are
modelled inaccurately and a local drive control-loop is treated as unknown input
dynamics. The obtained results illustrate that the considered control algorithm
can provide a high tracking accuracy.

Further research in this topic may include attempts to explore in more details
conditions for the feasible selection of the observer parameters in order to guar-
antee the stability of the closed-loop system. Other forms of input dynamics and
observer models can also be considered in the future works.

A. Appendix

A.1. Selected properties of scaled dynamics

Assuming that errors and gains are scaled according to (18), (19) and (20) the
following relationships are satisfied:

∆2(κω)Hc∆
−1
2 (κω) = κωHc , ∆3(ω)Ho∆

−1
3 (ω) = ωHo ,

∆2(κω)W1 = W1 , W1∆
−1
3 (ω) = W1∆3(κ), W2 = ∆3(κω)W2.

(48)

A.2. Computation of v̇

Taking advantage of estimate z and assuming that wc := ẑ3 one can rewrite
(6) as follows

v = B−1
(
Kce + Kc

[
z̃T
1 z̃T

2

]T − hu + ẍd − ẑ3

)
, (49)
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where Kc :=
[
Kp Kd

]
. Equivalently, one has

v = B−1 (
Kce −W2 z̃ − hu + ẍd − z3

)
. (50)

Consequently, time derivative of v satisfies

v̇ = B−1
(
Kc ė +W2 ˙̃z − ḣu +

...x d − ż3
)

(15), (13)
= B−1 (

KcHce + KcW1 z̃ + KcC2Bũ +W2Ho z̃

+W2CoBũ +W2C1 ż3 − ż3 − ḣu +
...x d

)
= B−1

(
KcHce + KcW1 z̃ +W2Ho z̃ − ḣu +

...x d
)
.

(51)

A.3. Computations of Y3 and Y4

By chain rule it can be shown that

ḣ1(z1, z2) =
[
∂h1
∂z1

∂h1
∂z2

] [
ẋd
ẍd

]
−

[
∂h1
∂z1

κω
∂h1
∂z2

]
ė,

ḣ2(z1, z2) =
[
∂h2
∂z1

∂h2
∂z2

] [
ẋd
ẍd

]
−

[
∂h2
∂z1

κω
∂h2
∂z2

]
ė,

(52)

ḣ1( ẑ1, ẑ2) =
[
∂h1
∂ ẑ1

∂h1
∂ ẑ2

] [
ẋd
ẍd

]
−

[
∂h1
∂ ẑ1

κω
∂h1
∂ ẑ2

]
ė −

[
∂h1
∂ ẑ1

ω
∂h1
∂ ẑ2

0
]

ż,

ḣ2(xd, ẋd) =
[
∂h2
∂xd

∂h2
∂ ẋd

] [
ẋd
ẍd

]
.

(53)

From here, following are true

ḣ − ḣu = Wh1

[
ẋd
ẍd

]
−Wh2ė +Wh3 ż, ḣu = Wh4

[
ẋd
ẍd

]
−Wh5ė −Wh6 ż, (54)

what leads to solution of Y3 by means of basic substitution.
Now, the computation of term Y4 will be taken into account. Disturbance term

q(z1, z2, u, t) can be expressed in form of

q̇(z1, z2, u, t) =
∂q
∂z1

( ẋd − ė1) +
∂q
∂z2

( ẍd − ė2) +
∂q
∂u

T−1 (−u + v) +
∂q
∂t

= Wq1

[
ẋd
ẍd

]
+Wq2ė − ∂q

∂u
T−1ũ +

∂q
∂t

= Wq1

[
ẋd
ẍd

]
+Wq2

(
κωHce + κ−1ωW1D(κ)z + (κω)−1C2Bũ

)
− ∂q
∂u

T−1ũ +
∂q
∂t
.

(55)
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P. Laszczyk: Flexible function block for industrial applications of ac-
tive disturbance rejection controller. Archives of Control Sciences, 28(3),
(2018), 379–400.

[23] S. Shao and Z. Gao: On the conditions of exponential stability in ac-
tive disturbance rejection control based on singular perturbation analysis.
International Journal of Control, 90(10), (2017), 2085–2097.



408 R. PATELSKI, D. PAZDERSKI

[24] B. Sun and Z. Gao: A dsp-based active disturbance rejection control design
for a 1-kw h-bridge dc-dc power converter. IEEE Transactions on Industrial
Electronics, 52(5), (2005), 1271–1277.

[25] V. Utkin: Variable structure systems with sliding modes. IEEE Trans. on
Automatic Control, 22 (1977), 212–222.

[26] D. Wu, K. Chen, and X. Wang: Tracking control and active disturbance
rejection with application to noncircular machining. International Journal
of Machine Tools and Manufacture, 47(15), (2007), 2207–2217.


