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Global rational stabilization of a class
of nonlinear time-delay systems

NADHEM ECHI and BOULBABA GHANMI

The present paper is mainly aimed at introducing a novel notion of stability of nonlinear
time-delay systems called Rational Stability. According to the Lyapunov-type, various sufficient
conditions for rational stability are reached. Under delay dependent conditions, we suggest a
nonlinear time-delay observer to estimate the system states, a state feedback controller and the
observer-based controller rational stability is provided. Moreover, global rational stability using
output feedback is given. Finally, the study presents simulation findings to show the feasibility
of the suggested strategy.
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1. Introduction

Time-Delay Systems (TDSs) is also known as call systems with aftereffect or
dead-time, hereditary systems, equations with deviating argument, or differential-
difference equations. They are part of the class of functional differential equa-
tions which are infinite-dimensional, as opposed to ordinary differential equations
(ODEs). Time-delay has a number of characteristics. It appears in several control
systems, including aircraft, chemical [19], biological systems [17], engineering,
electrical [1], economic model [5,11], or process control systems, and communi-
cation networks, either in the state, the control input, or the measurements [2,20].
There, we can find transported, communication, or measurement delays. It is
noticeable that time delay can cause different problems, such as instability, diver-
gence behavior, and oscillation of dynamic systems. A considerable amount of
studies have analyzed the stability of dynamic systems with a delay. Therefore,
the stability of systems with time delay has been investigated extensively over the
past decades. It is a well known fact that stability of nonlinear time-delay systems
in Lyapunov sense plays a major role in control theory, and becomes a challeng-
ing problem both in theory and applications. The stability analysis of time delay
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systems has been recently studied in many areas. There are two crucial kinds of
stability of dynamical systems. These include asymptotic stability and exponen-
tial stability. In the case of asymptotic stability, for more details, the reader is
referred to [3,6,9, 10,12,26,28] and references therein. [24] addressed the prob-
lem of asymptotic stability for Markovian jump that generalized neural networks
with interval time-varying delay systems. Based on the Lyapunov method, it is
suggested that asymptotic stability can be used to solve linear matrix inequality
with triple integral terms a delay. For exponential stability, it is requires that all
solutions starting near an equilibrium point not only stay nearby, but tend to the
equilibrium point very fast with exponential decay rate; see [4,22,23,27].

A new notion of stability known as rational stability for systems without
time delays is introduced in [14]. The study demonstrates the characteristics of
rational stability. It can be characterized by means of Lyapunov functions. This
notion did not know any intense progress like other tools of the stability theory.
For free-delay system, [13] studied the issue of rational stability of continuous
autonomous systems, followed by several examples of control systems. Under a
Hamilton-Jacobi-Belleman approach, some sufficient conditions are developed
by [29] to achieve the rational stability of optimal control for every dynamical
control systems.

The questions which are worth being raised here are can we speak about
rational stability for time-delay systems? What is the advantage of this stability?
The aim of the current study is to present a new term of stability for nonlinear time-
delay systems. This term is called rational stability. Sometimes the decay of the
energy or the Lyapunov function is not exponential, but it can be polynomial. For
rational stability and especially when the Jacobean matrix is no longer Hurwitz
and the transcendental characteristic polynomial, the solutions do not decrease
exponentially. However, in some cases, the solutions decrease like t™, r > 0
with r is called the rate decay of the solution. The real r measures the velocity
of convergence of the solution which is crucial in several practical engineering
such as satellite systems, unicycle systems, underwater, transport equation, string
networks, etc.

The current paper introduces a novel notion of stability of nonlinear time-
delay systems called rational stability. Motivated by [13] and [29], Lyapunov-
Krasovskii functional is used for the purpose of obtaining to establish globally
rational stability of the closed loop systems. It also investigates the problem of
output feedback stabilization of a class of nonlinear time delay system written in
triangular form, with constant delay. We impose a generalized condition on the
nonlinearity to cover the time-delay systems is considered by [12]. We design
a nonlinear observer to estimate the system states. Then, it is used to obtain a
new state and input delay-dependent criterion that ensures the rational stability
of the closed-loop system with a state feedback controller. The global rational
stability using output feedback is also presented. As an application, we can
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stabilize rationally a special class of network-based systems, mechanical systems
and the chained form systems, when they are subjected to input time delays.
Many mechanical systems including mobile robots can be reduced to such a form
by an appropriate change of variables. In this regard, these type of systems are
usually linked via delay induced wireless communication channels, which may
compromise the performance and the stability of the controlled system.

The rest of this paper is organized as follows. The next section presents the
definition of rational stability and an auxiliary result concerning a functional
should satisfy for guaranteeing the rational stability. In section 3, it also shows
the system description. The main results are stated in section 4, it is concluded that
parameter dependent linear state and output feedback controllers are synthesized
to ensure global rational stability of the nonlinear time delay system. In section 5,
we establish the problem of global rational stability using output feedback. Finally,
an illustrative example, of network-based control systems (NBCSs), is discussed
to demonstrate the effectiveness of the obtained results.

2. Definitions and auxiliary results

Consider time delay system of the form:

{)'c(l) = f(x(@), x(t — 1)),
x(0) = ¢(0),

where 7 > 0 denotes the time delay. The knowledge of x at time ¢t = 0 does not
allow to deduce x at time ¢. Thus, the initial condition is specified as a continuous
function ¢ € C, where C denotes the Banach space of continuous functions
mapping the interval [-7, 0] — R" equipped with the supremum-norm:

)

o = max )|,
llell ee[_no]llw( )i

|| || being the Euclidean-norm. The map f : R" X R" — R" is a locally Lipschitz
function, and satisfies f(0,0) = 0.

The function segment x, is defined by x,(6) = x(¢+60),0 € [-71,0]. Forp € C,
we denote by x(z, ¢) or shortly x(¢) the solution of (1) that satisfies xo = ¢. The
segment of this solution is denoted by x;(¢) or shortly x;.

Inspired from [13] and [14], we introduce some definition of rational stability
for the time-delay systems.

Definition 1 The zero solution of (1) is called

e Stable, if for any € > O there exists 6 > 0 such that

lello <6 =[xl <& Yr>0.
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® Rationally stable, if it is stable and there exist positive numbers M, k, o,
e < 1 such that if

Mllells

Il <0 = @l € ———=,
(1+ llglln

vt > 0. (2)

® Globally rationally stable, if it is stable and 6 can be chosen arbitrarily
large for sufficiently large &, and (2) is satisfied for all o > 0.

Sufficient conditions for rotational stability of a functional differential equa-
tion are provided by [13], a generalization of time delay system given by following
theorem. For a locally Lipschitz functional V : C — R, the derivative of V along
the solutions of (1) is defined as

1
V= lm —(V(xin) = Vxo).

Remark 1 It is easy to see that rational stability is satisfied then asymptotic
stability is satisfied, but the converse is not true.

Theorem 1 Assume that there exist positive numbers A1, A3, A3, r1, 12, k and a
continuous differentiable functional V : C — Ry such that:

UllxOI" < V(x) < Aallx g, 3)
Vix) + 43V () <0, )
then, the zero solution of (1) is globally rationally stable.

Proof. Using (4), we have for V # 0,

d &
—V- > ks .
157 (o) 3
Integrating between 0 and ¢, one obtains

1 t

d
f@v k(xg)d9>fk/13d0

0 0
equivalently, for all > 0

1

VE(x) < .
) S T V()
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Now, it follows Theorem 1, condition (3) that

1
L\n 1
Il < (7) 1 —.
V(RIS + Aske)

Corollary 1 Assume that there exist positive numbers A1, Ao, A3, 11, 12, 13,
ry < r3 and a continuous differentiable functional V : C — R, such that:

AlxOI" < V(x) < s,
V() < =Aslxlls, &)

then, the zero solution of (1) is globally rationally stable.

Proof. The conditions (3) and (5) imply that zero solution of (1) is stable.
By combining the assertions (3) and (5), we obtain

A3
3

r
4,

V() < —22V7 (x,) ©)

equivalent to

. A
V(Xt) < __riVH—k (xt),
17

r3 —r
where k = .

P
Hence, from leleorem 1, the zero solution of (1) is globally rationally stable. O

Let us recall here that a function @ : R, — R, is of class K if it is continuous,
increasing and a(0) = 0, of class K., if it is of class K and it is unbounded. The
following theorem provides sufficient Lyapunov-Krasovskii conditions for global
rationally stability of the zero solution of system (1).

Theorem 2 Assume that there exist positive numbers A1, Ao, 11, 2, k, @ a function
of class K and a continuous differentiable functional V : C — R such that:

@ UllxOI" < V(x) < llxllS,
(i) V(x) < —a(V(x),

1 ()]
(iii) }I_{%Ik% =1 €]0, +o0].

Then the zero solution of (1) is globally rationally stable.
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Proof. Firstcase: 0 < [ < +oo. The conditions (i) and (ii) imply that zero
solution of system (1) is stable and attractive, then asymptotically stable and
tlim Vixy) =0.

—+00

Therefore, by using limit definition, there exists o > 0 such that for every
l
0 <t < tg, we have a(r) > Etk”. Since, lim V(x;) = 0, for this ¢y > 0, there
t—+0o0
exists 7, > 0 such that for every ¢ > ¢, one gets 0 < V(x;) < t¢p and

@V > SV ).
Using (ii), we obtain
0> V(x,)+aV(x) > V(x)+ éV(xt)k”.
Thus, we have

. l
V(x) < 5V(x,>k“.

Then, using the Theorem 1, we can conclude that the zero solution of (1) is
globally rationally stable.

Second case: [ = +co. As in the proof of first case, there exists 7o > 0 such that
for every 0 < ¢ < ¢, we have

a(t) > " and V(x,) < V(x)*H.
O
Remark 2 The Theorem 1, Theorem 2 and Corollary 1 generalize the results
given by [13] for the case of free-delay system.
3. System description
Consider the nonlinear time-delay system:

{ x(t) = Ax(t) + Bu(t) + f(x(2), x(t—1),u(?)), 7

y() = Cx(1),

where x € R” is the state vector, u € R is the input of the system, y € R is the
measured output and 7 is a positive known scalar that denotes the time delay
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affecting the state variables. The matrices A, B and C are given by

010--0 0
0010 0
A=|:::- | B=|:|, C=[10--00],
000 -1 0
000 -0 1

and the perturbed term is

J1(x1(0), x1(t = 7),u(r))

Fe(@) x(t = Ty, u(0)) = J2(x1 (@), x2(1), x1(t.— ), X2t — 7), u(t))

Falx (), x(t = 7),ut))

The mappings f; : R x R x R = R, i = 1,...,n, are smooth and satisfy the
following assumption:
We suppose that f satisfies the following assumption:

Assumption 1 The nonlinearity f(y, z,u) is smooth, globally Lipschitz with re-
spect to y and z, uniformly with respect to u and well-defined for all y,z € R"
with f(0,0,u) = 0.

We suppose also that,

Assumption 2 For all t > 0, the delay 7 is known and constant.

Notation 1 Throughout the paper, the time argument is omitted and the delayed
state vector x(t — T) is noted by x7. AT means the transpose of A. Amax(A) and
Amin(A) denote the maximal and minimal eigenvalue of a matrix A respectively.
I is an appropriately dimensioned identity matrix, diag|- - -] denotes a block-
diagonal matrix.

Remark 3 This paper focuses on state observer design for a class of system given
by (7). It specifically shows that the general high-gain observer design framework
established in [8] and [15] for free delay systems can be properly extended to
this class of time-delay systems.

4. Separation principle

4.1. Observer design

The observer synthesis for triangular nonlinear system design problems along
with time-delay systems have become the focal focus of various studies [3, 7]
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and [11] and references therein. Under the global Lipschitz condition, an observer
for a class of time-delay nonlinear systems in the strictly lower triangular form
was proposed by [11]. In [3] a nonlinear observer is used to investigate the
output feedback controller problem for a class of nonlinear delay systems for the
purpose of calculating the system states. Based on time-varying delays known
and bounded, [7] propose a nonlinear observer for a class of time-delay nonlinear
systems. In this section we devote to the design of the observer-based controller.

%(t) = A% + Bu(t) + f(X, 2%, u) + L(6)(C% — y), (8)

where L(0) = [0, .. .,1,0"" with @ > 0 and where L = [I},...,1,]" is selected
such that A; := A+ LC is Hurwitz, x(s) = qg(s), -7 < 5 < 0 with ¢§ [-7,0] -
R" being any known continuous function. Let P be the symmetric positive definite
solution of the Lyapunov equation

ATP+PAL=-1. 9)

Theorem 3 Suppose that Assumption 1, 2 are satisfied and there exists positive
constant 0 such that

(7] Ind

= = IPl[=— = 3k|[P|| > O,

2 2T

G (10
- - k|| P|| > O.

Then, (8) is globally rationally observer for system (7).

Proof. Denote ¢ = £ — x the observation error. We have

e=(A+L(O)C)e+ f(X,X,u)— f(x,x",u). (11)
. 1 1 . .
For 6 > 0, let Ay = diag [1, IRARE W] One can easily check the following

identities: AgAA,' = A, CA;' = C. Let us now introduce 7 = Age, then we get
n=0Arn+Ag (f(X,2u) — f(x,x",u)) . (12)
Let us choose a Lyapunov-Krasovskii functional candidate as follows

V() = Vi@ +Va(n) (13)

with
Vi(n) =n" Pn
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and
1
0 - s 2
Va(m) = 507 67 |ln(s)lI=ds.
-7
Since P is symmetric positive definite then for all n € R",
Amin(P) 171> < 1" Py < Amax(P) 1711, (14)

This implies that on the one hand,

V(1) > Amin(P)In 0|17,
and on the other hand,

0
0 n
n’ Py + 3 f 0 |ln(u+ 1) du

-7

0
6 2
= n'Pn+3 f 0% lIn ()11 dp

-7

V()

0
0 a
A (P IIP + f 0% I 1% d i

-7

ot
< (/lmax(P) + 7) ||77z||§o

N

Thus condition (i) of Theorem 2 is satisfied with
ot

A1 = Amin(P), A2 = Amax(P) + 7, ry=ry=2.

The time derivative of Vi (1;) along the trajectories of system (11) is
Vitn) = 0" (ALP+ PAL) n+ 20" P (f(%£7,0) = f(x,xTw)) . (15)

The time derivative of V;(1;) along the trajectories of system (11) is
In6

. 6 Vo .
Va(n) = Ennn2 -l 1> - = V2010). (16)

Next, the time derivative of (13) along the trajectories of system (11) and making
use of (9),(14), (15) and (16), we have

. 0
V) < =il + 2linllIP1Ag (f (£, £u) = f(x, xTw)|

Vo , In@
1?2 = —V5(n,).
> llm "l 7 2(11)

(17)
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Using (14) we obtain
. In@ 0 In6 ’
\% —_— <=—9=-—-||P||l—
() + o V(n) {2 1Pl o } 7]l
8 T T \/5 T
+ 2[InlIPIIA(f (X, X%, u) — f(x, x"u))|l - TIIU 2.

The following inequality hold globally thanks to Assumption 1 (as in [7, 11])

18g(f (£, 27, 1) = f(x, X))l < killAg(£ = 0|l + kallAg(XT — )|l (18)

< klinll + klin®ll, (19)
where k1, ky is a Lipschitz constant in (18) and &k = max(ky, k3).
So, we get
. In6@ 0 In 6
V) + V@) < —{= = IPll— + 2k|IPll ¢ lInl?
2T 2 2T

N
+2mwmmmmw2—34mw?

Using the fact that
20l < Nl + 1713,

we deduce that

. Iné 0 Ing
V(i) + ==V () < =3 = = [IPll= = 3kIIPll § lInll?
2T 2 2T
(20)
Vo .

—{g—mwnnnw.

Let \/_

0 Iné 0

a(@) = = — |Pll=— - 3klIPIl,  b(0) = — —k||P].
2 2T 2

Using (10) we have a(6) > 0 and b(6) > 0.
Now, the objective is to prove the rational convergence of the observer (11).
Inequality (20) becomes

In

0
\% .
27 (m1)

Finally, using the stability Theorem 2, we can conclude that the error dynamics
(11) is globally rationally stable if (10) hold. O

V(n) <
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4.2. Global rational stabilization by state feedback

In this subsection, we establish a delay-dependent condition for the ratio-
nal state feedback stabilization of the nonlinear system (7). The state feedback
controller is given by

u=K(@)x, (21)

where K(0) = [k16", ..., k,0] and K = [k, ..., k,] is selected such that
Ak = A+ BK is Hurwitz. Let S be the symmetric positive definite solution of
the Lyapunov equation

ALS + SAg = —1. (22)

Theorem 4 Suppose that Assumption 1, 2 are satisfied and there exists positive
constant 0 such that

0 Iné
5~ ||S||2— = 3k|IS]| > 0,
T
NG (23)
5 klIS|| > 0,

then, the closed loop time-delay system (7)—(21) is globally rationally stable.

Proof. The closed loop system is given by
x=(A+BK@)x+ f(x,x",u). (24)
Let y = Agx. Using the fact that AyBK () = 6BKAy we get
X = 0Ag x + Agf (x, x",u). (25)
Let us choose a Lyapunov-Krasovskii functional candidate as follows

W(x:) = Wilxo) + Wa(xo), (26)

with
Wilx:) = x"Sx

and
t

0 - s
Walx:) = 5927 f02f||)((s)||2ds.
-7

As in the proof of Theorem 3, we have

0
Anin )OI < W(xo) < (ﬂmaxw) + {) il
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Thus condition (i) of Theorem 2 is satisfied with
07’

A1 = Apin(S), A2 = Amax(S) + — ry=ry=2.
The time derivative of (26) along the trajectories of system (25) is given by
. . Vo Iné
Wxo =2x"Sx + Sl = LTI = S Walxo)
T T 2 Vo
=20x" SAk x+2x" SAp f(x,x* u)+ lxll”— II)( [& __W2(Xt)
6 . Vo Iné

< —EII)(II + 2[ X INISTIAg f (x, x7, w) ]| = II)( I” - 2—W2(Xt)

Since f(0,0,u) = 0, (19) implies that
1Ag f (x, xT, )]l < Kl xll + klLx "Il 27)

So
. Iné 6 Ing
W(x) + =—W(x) <=3z —IISIl== = 2klISIl ¢ I xII?
2T 2 2T

Vo .
+ 2k SN = =l 112 (28)
Using the fact that
20 XTI < el + LTIl

We deduce that
W(xo) + l;l—fWu,) <- {g - ||S||1§—f - 3k||S||} Il x1I?
- {? - k||S||} XTI (29)
Let 0 Iné
c(®) = 5 = ISll5 = 3KIIS,
d(9) = ? — kIS

Using (23), we have c(6) > 0 and d(8) > 0 which implies that

. Iné
Wi(x:) < —Z—W(Xz)-
T

By Theorem 2, we conclude that the origin of the closed loop system (24) is
globally rationally stable. m|
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4.3. Observer-based control stabilization

In this subsection, we implement the control law with estimate states. The
observer-based controller is given by:

u=K(0)x, (30)
where X is provided by the observer (8).

Theorem S Suppose that Assumptions 1, 2 are satisfied, such that conditions
(10) and (23) hold. Then the origin of the closed loop time-delay system (7)—(30)
is globally rationally stable.

Proof. The closed loop system in the (x, 7) coordinates can be written as follows:
X = 0Agx +0BKn + Ao f (x, x7, u), a1
n=Arn+Ag(f(X, 27, u) — f(x,x",u)).

Let
U, xo) = aV(n) + Wixo),
where V and W are given by (13) and (26) respectively. Using the above results,
we get

Iné
7U(m, x1) < —aa@nll* = Ol xI* + 201SIK N nll xII.

Now using the fact that for all £ > 0,

U(Ut’ Xi) +

1
2l xllinll < el xI* + gllnllz,

c(6)
and select e = ——————, we get
201SIK
. In6 c(0) 26?2
U x1) + =—U x1) < —aa@ |l = ==l xII* + = ISIIK 711>
27 2 c(6)
Finally we select a such that
26?2
0) — —IISI*IK|I? > 0,
aa(0) @ ISI=IK |

to deduce that the origin of system (31) is globally rationally stable. O

Remark 4 It is easy to see that, a(0), b(0), c(0) and d(0) tend to oo as 6 tends
to oo. This implies that there exists 0y > 1 such that for all 6 > 6y conditions (10)
and (23) are fulfilled.
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5. Global rational stabilization by output feedback
In this subsection, we propose the following system:
X(t) = A% + Bu(t) + L(6)(C — y). (32)
The output feedback controller is given by
u=K(0)3. (33)

Under Assumption 1, 2, we give now required conditions to ensure that the
origin of system (7) is rendered globally rationally stable by the dynamic output
feedback control (32), (33).

Theorem 6 Consider the time-delay system (7) under Assumptions 1, 2. Suppose
that there exists 6 > 0 such that condition (23) holds and

7] Ing
E—IISII?—%IISII >0 (34)

then the closed-loop time-delay system (7)—(33) is globally rationally stable.

Proof. Defining e = x — % the observation error. We have

e= (A+ L(O)C)e + f(x,x",u). 35)
1 — —
For 6 > 0, let Ay = diag [1, g gl | Let 1 = Age, then we get
7= 0ALT + Agf (x, X7, u0). (36)

Let us choose a Lyapunov-Krasovskii functional candidate as follows
t
~ ~T y~ 0 =t S~ 2
V) =17 P+ 567 | 0 [lns)]["ds. (37)
-7

As in the proof of Theorem 3, we have thus condition (i) of Theorem 2 is

satisfied with
ot
A1 = Amin(P), /12:/lmax(P)+7a ry=ry=2.

Following the proof of Theorem 2, inequality (17) becomes

o 0, —~
V) < =5 linll + 2l P Ag f (x, x5 u)l|
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t
\/5 flnb —t S
—7||ff||2— 35707 fezfnn(s)n%s.

t—7
Using (14) and (27) we obtain

0

. Ing_ _ Ing)  _ -
V(@) + =V @) <=3 = = IIPll= ¢ I711* + 2k PNl
2T 2 2T

L NE,
+ 2k P11 x "l —TIIU 12

Using the fact that
207l < 171 + Ll

and
20771 < 170 + XTI

we deduce that

. o Ine 0 Ing —
V(i) + =V @) < =3 = = IIPll=— = 2k||PIl ¢ I711*> + kIl PNl x II*
2T 2 2T
N
+ k|| P XTI - -l 2. (38)

Let
U xi) = aV(g) + W(xo),

where W is given by (26). Using (28) and (38), we get
o _
2

—{c(8) — aklIPI} L xNI* = {d(8) — ak|IPII} | x"II*.

In

. 7] ~
UG x0) + =2 UG x0) < —a {

In6g ~2
P||— - 2k||P
o Il Pl 7 [ II} Il

Finally, we select a such that

c(@  d®) )

@ < min R
(akIIPII ak|| Pl
to get
In

. 4] ~
Uy, xi) + 27 U, xi) < 0.

Therefore, the closed-loop system is globally rationally stable. m|
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Remark 5 The given controller in Theorem 3 depends on the nonlinearity f and
the time delay T, but the controller (32), (33) is independent of f.

Remark 6 It is worth mentioning that exponential stability including both pas-
sivity and dissipativity of generalized neural networks with mixed time-varying
delays are developed in [25] by using the Lyapunov Krasovskii approach in com-
bination with linear matrix inequalities. These conditions rely on the bounds of
the activation functions. In this paper, we utilize parameter-dependent control
laws. We assume that there exists a linear feedback that asserts global rational
stability of the linear part. Hence, we select the 6-parameter in order to establish
global rational stability of the nonlinear system under the same controller.

Remark 7 [16, 18] show the sufficient conditions which guarantee that the
calculation error converges asymptotically towards zero in terms of a linear
matrix inequality. As compared to [16, 18], our results are less conservative and
more convenient to use and it seems natural and attractive to improve feedbacks
and to get solutions decreasing to zero faster.

Remark 8 It is worth noting that the obtained findings can be used in multiple
time-delays nonlinear systems in the upper-triangular form.

6. Simulation results

This section presents experimental results, in the case of constant delay as an
example of practical application of the time-delay method in actual network-based
control systems. The dynamics of the network-based system are represented by:

X1 =xp(t) +x3cosxy +x1(t —7T)cosu,
1 = x2(f) + xy 1+ x1( ) (39)

X2 =,

where x(#) is the augmented state vector containing the plant state vector and 7
indicates the sensor-to-controller delay in the continuous-time case, is supposed
to be constant. The difference between x(¢) and x(¢) is formulated as an error
of the network-based system. The system nonlinearities are globally Lipschitz.
Following the notation used throughout the paper, let f1(x, x",u) = xjcos x| +
x1(t=7) cosu, f>(x, x",u) = 0.Now, select L = [—14 —28] TandK = [-30-30],
Ap and Ak are Hurwitz. Using Matlab, the solutions of the Lyapunov equations
(9) and (22) are given respectively by

_ [ 0.0377 0.0278 _ | 0.5172 -0.5000
0.0278 1.0675 |’ ~ | -0.5000 0.5167 |°
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So, ||P|| = 1.0682 and ||S|| = 1.0169. For our numerical
choose constant delay 7 = 1, and the initial conditions for
x(0) = [-20 —10]7, for the observer £(0) = [10 10]” and
sponding numerical simulation results are shown in Figures 1, 2.

simulation, we
the system are
6 = 8. Corre-
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Figure 1: Trajectories of x; and its estimate £
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Figure 2: Trajectories of x, and its estimate X,
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7. Conclusion

In this paper, rational stability and stabilization are investigated for nonlinear
time-delay systems. We gave a rigorous construction of the rational stability of
nonlinear time delay systems, followed by example of control systems. Based on
this study, we reached a novel result in global rational stability and stabilization of
a class nonlinear time-delay systems. This class of systems deals with the systems
that have a triangular structure. Based on the result, it was found that the Lyapunov
approach was used to perform sufficient conditions for rational stability. The novel
design plays a crucial role in getting a rational stability condition and rendering
our approach application to a general class of systems, namely the class of non-
linear time-delay systems in a lower triangular form. The numerical result of an
example is provided to show the effectiveness of the proposed approach. More-
over, simulation results show that the proposed observer-based control scheme
gave good results. As a perspective, It is well known that delay-dependent con-
ditions reveal less conservative than delay-dependent ones, it can be developed
in future research by considering other Lyapunov-Krasovskii functional to derive
delay dependent conditions.
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