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Abstract. This paper presents control method for multiple two-wheeled mobile robots moving in formation. Trajectory tracking algorithm from 
[7] is extended by collision avoidance, and is applied to the different type of formation task: each robot in the formation mimics motion of the 
virtual leader with a certain displacement. Each robot avoids collisions with other robots and circular shaped, static obstacles existing in the 
environment. Artificial potential functions are used to generate repulsive component of the control. Stability analysis of the closed-loop system 
is based on Lyapunov-like function. Effectiveness of the proposed algorithm is illustrated by simulation results.
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kinematic model of the mobile platforms [8, 19], and the ones 
considering their dynamic properties [3, 18]. Many algorithms 
for multi-robot systems based on the navigation function (NF) 
have been also proposed [11‒15]. NF approach removes the 
problem of local minima [16, 17], however, its computational 
complexity causes that it is not often used in practice.

This paper presents control algorithms for a group of dif-
ferentially driven mobile robots moving in formation. They 
execute trajectory tracking task. The algorithm is based on the 
paper [7]; it is extended with collision avoidance, and applied 
to the different type of task. Section 2 presents formulation of 
the problem. Section 3 describes control algorithm for the for-
mation of non-holonomic mobile robots. In Section 4 stability 
analysis is given. Simulation results are presented in Section 5. 
In the last Section concluding remarks are given.

2.	 Problem description

The task of the formation is to follow virtual leader that moves 
with desired linear and angular velocities [vl, ω l]T. The kine-
matic model of the i-th differentially-driven mobile robot Ri 
(i = 1 … N, N – number of robots) is given by the following 
equation:

	 q ̇ i = 

	cosθ i	 0

	sinθ i	 0

	 0	 1

ui� (1)

where vector qi = [xi yi θ i]
> denotes the pose and xi, yi, θ i are 

position coordinates and orientation of the robot with respect 
to a global, fixed coordinate frame. Vector ui = [vi ωi]

> is the 
control vector with vi denoting linear velocity control and ω i 
denoting angular velocity control of the platform.

The robots are expected to imitate the motion of the vir-
tual leader. They should have the same velocities as the virtual 

1.	 Introduction

First works concerning the problem of collision avoidance in 
multiagent system were published by Laitmann and Skowron-
ski in 1977 [1] and 1980 [2]. They investigated control of two 
agents avoiding collisions with each other. In 1986 Khatib pro-
posed new control algorithm [4] in which he combined attract-
ing (to the goal) and repelling (from the obstacles) interactions. 
The novelty was the use of artificial potential functions (APF), 
similar to models of intermolecular interactions. The control 
is based on the gradient of combined attracting APF and one 
or more (depending on the number of obstacles present in the 
neighbourhood of the robot) repelling APFs. This method was 
computationally effective and even in the 1980s could provide 
real-time response. This property resulted in great popularity 
of this concept. Currently it is widely used in the control of 
multi-robot systems.

Alternative approach is method based on game theory. 
Authors of [20] propose two-step methodology for the group 
of unicycle robot. In the first step, exploiting a differential game 
formulation, collision-free trajectories are generated for virtual 
agents. At this stage robots are modelled as single integrator. In 
second step the previous step is used to construct dynamic feed-
back strategies for the wheeled mobile robots which guarantee 
that the robots reach their targets avoiding collisions. Game 
theoretic concept combined with fuzzy-logic controller is pro-
posed in [21] to solve collision free target tracking problem of 
multi-agent robot system. In paper [22] game theory approach 
is adopted to minimize the time needed by the two robots to 
deploy sensor nodes in an area containing obstacles.

In recent years a lot of articles in dealing with the subject of 
multiple mobile robot control have been published, based on the 
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leader. The position coordinates [xl yl]
T of the virtual leader 

are used as a reference position for the individual robots but 
each of them have different spatial displacement with respect 
to the leader:

	
xid = xl + dix

yid = yl + diy ,
� (2)

where vector [dix diy]
T is desired displacement of the i-th robot. 

As the robots position converge to the desired values their ori-
entations θ i converge to the orientation of the virtual leader 
θ l. Figure 1 presents formation of four robots tracking desired 
trajectory without error.

frozen (x ̇ id = 0, y ̇ id = 0). If the robot leaves the avoidance area 
its desired coordinates are immediately updated. As long as the 
robot remains in the avoidance region its desired coordinates 
are periodically updated at certain discrete instants of time. 
The time period tu of this update process is relatively large in 
comparison to the main control loop sample time.

Assumption 1 comes down to the statement that desired 
paths of individual robots are planned in such a way that is 
steady state all robots are outside of the collision avoidance 
regions of other robots/obstacles.

Assumption 2 means that tracking process is temporarily 
suspended because collision avoidance has a higher priority. 
Once the robot is outside the collision detection region, it 
updates the reference to the new values. In addition when the 
robot is in the collision avoidance region its reference is peri-
odically updated. This low-frequency process supports leaving 
the unstable equilibrium points that occur, e.g. when one robot 
is located exactly between the other robots and its goal.

The system error expressed with respect to the coordinate 
frame fixed to the robot is described below:

	

eix

eiy

eiθ

 =  

	cosθ i	 sinθ i	 0

	–sinθ i	 cosθ i	 0

	 0	 0	 1

pix

piy

piθ

. � (4)

Using the above equations and non-holonomic constraint 
y ̇ i cos(θ i) ¡ x ̇ i sin(θ i) = 0 the error dynamics between the leader 
and the follower are as follows:

	

	e ̇ ix	=	 eiyω i ¡ vi + vl coseiθ

	e ̇ iy	=	 – eiyω i + vl sineiθ

	e ̇ iθ	=	ω l ¡ ω i .
� (5)

Collision avoidance behaviour is based on the artificial 
potential functions (APF). This concept originally was proposed 
in [4]. All robots are surrounded by APFs that raise to infinity 
near objects border rj ( j – number of the robot/obstacle) and 
decreases to zero at some distance Rj, Rj > rj.

One can introduce the following function [9]:

	 Baij(lij) =  

	 0	 for	 lij < rj

	e
lij ¡ rj

lij ¡ Rj 	 for	 rj ∙ lij < Rj

	 0	 for	 lij ¸ Rj

,� (6)

that gives output Baij(lij) 2 h0,1). Distance between the 
i-th and the j-th robot is defined as the Euclidean length 
lij = k[xj yj]

> ¡ [xi yi]
>k.

Fig. 1. Formation of four robots tracking desired trajectory without 
error. Arrows pointing from the virtual leader to the robots represent 

displacements [dix diy]
T

3.	 Control algorithm

The goal of the control is to drive the formation along the 
desired trajectory avoiding collisions between agents and other 
obstacles. Achieving control goals is equivalent to bringing the 
following quantities to zero:

	

	pix	=	 xid ¡ xi

	piy	=	 yid ¡ yi

	piθ	=	 θl ¡ θi .

� (3)

Assumption 1. 8{i, j}, i  6= j, k[xid yid]T ¡ [xjd yjd]Tk > Rj.

Assumption 2. If robot i gets into avoidance region of any 
other robot/obstacle j, j  6= i its desired trajectory is temporarily 
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Scaling the function given by Equation (6) within the range 
h0, 1) can be given as follows:

	 Vaij(lij) = 
Baij(lij)

1 ¡ Baij(lij)
,� (7)

that is used later to avoid collisions.
In further description terms ‘collision area’ or ‘collision 

region’ is used for locations fulfilling conditions lij < rj. The 
range rj < lij < Rj is called ‘collision avoidance area’ or ‘col-
lision avoidance region’.

One can introduce the position correction variables that con-
sist of position error and collision avoidance terms:

	
Pix = pix ¡ w ̂ ix
Piy = piy ¡ w ̂ iy ,

� (8)

where

w ̂ ix = 
j = 1, j  6= i

N + M

∑ w ̂ ijx,  w ̂ iy = 
j = 1, j  6= i

N + M

∑ w ̂ ijy

are components of the consolidated collision avoidance vector 
w ̂ i = [w ̂ ix w ̂ iy]T, and

w ̂ ijx = 
∂Vaij

∂xi
,  w ̂ ijy = 

∂Vaij

∂yi

are components of the j-th obstacle APF’s gradient w ̂ ij =
= [w ̂ ijx w ̂ ijy]T with respect to the global coordinate frame com-
puted in the location of the i-th robot (Fig. 2), M – number of 
static obstacles. Vaij depends on xi and yi according to Equa-
tion 7. It is assumed that robots avoid collisions with each other 
and other obstacles present in the taskspace (only circle-shaped 
can occur). The correction variables are transformed to the local 
coordinate frame fixed in the mass centre of the robot:

	

Eix

Eiy

eiθ

 = 

	cosθ i	 sinθ i	 0

	–sinθ i	 cosθ i	 0

	 0	 0	 1

pix

piy

piθ

. � (9)

Differentiating first two equations of (3) with respect to the pix 
and piy respectively one obtains:

	

∂xi

∂pix
 = –1

∂yi

∂piy
 = –1.

� (10)

Using (10) one can write:

	

∂Vaij

∂pix
 = 

∂Vaij

∂xi

∂xi

∂pix
 ¡ 

∂Vaij

∂xi

∂Vaij

∂piy
 = 

∂Vaij

∂yi

∂yi

∂piy
 ¡ 

∂Vaij

∂xy
.
� (11)

Taking into account Equations 8 and 9 gradient of the APF can 
be expressed with respect to the local coordinate frame fixed 
to the i-th robot:

	

∂Vaij

∂eix

∂Vaij

∂eiy

 =  
	cosθ i	 sinθ i

	–sinθ i	 cosθ i

∂Vaij

∂pix

∂Vaij

∂piy

. � (12)

Equation 12 can be verified easily taking into account inverse 
transformation of the first two equations of (4) and by tak-
ing partial derivatives of Vaij(dix ¡ pix, diy ¡ piy) = Vaij(dix ¡  
¡ pix(eix, eiy), diy ¡ piy(eix, eiy)).

Fig. 3. APF as a function of distance to the centre of the robot (indexes 
omitted for simplicity)
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Fig. 2. Robot in the environment with obstacle (details expressed in 
the global coordinate frame)
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Using (11) above equation can be written as follows:

	

∂Vaij

∂eix

∂Vaij

∂eiy

 = 
	–cosθ i	 –sinθ i

	 sinθ i	 –cosθ i

∂Vaij

∂xi

∂Vaij

∂yi

. � (13)

Equation 9 using (8) and (13) can be transformed to the fol-
lowing form:

	

	Eix	=	 pix cos(θ i) + piy sin(θ i) + wix

	Eiy	=	 – pix sin(θ i) + piy cos(θ i) + wix

	eiθ	=	 piθ

� (14)

where

	 wix = 
j = 1, j  6= i

N + M

∑ wijx ,  wiy = 
j = 1, j  6= i

N + M

∑ wijy � (15)

are components of the consolidated collision avoidance vector 
wi = [wix wiy]T, and

	 wijx =  
∂Vaij

∂eix
,  wijy =  

∂Vaij

∂eiy
� (16)

are components of the j-th obstacle APF’s gradient wij =
= [wijx wijy]T with respect to the local coordinate frame (fixed 
to the robot) computed in the location of the i-th robot.

Each derivative of the APF is transformed from the global 
coordinate frame to the local coordinate frame fixed to the 
robot. Finally, correction variables expressed with respect to 
the local coordinate frame are as follows:

	
Eix = eix + wix

Eiy = eiy + wiy .
� (17)

Note the similarity of the structure of Equations 8 (updated 
by Equation 11 and 17).

Figure 4 presents schematic diagram of the MIMO control 
system. It shows the general concept of the system’s operation 
and the flow of the information between the subsystems. The 
following signals are marked:

[x y]T = [x1 … xN y1 … yN]T     

θ = [θ1 … θN]T     

that represent aggregated vectors of robot’s coordinates; vector 
of aggregated desired coordinates:

[xd yd]T = [x1d … xNd y1d … yNd]T

vector of aggregated controls:

[v ω ]T = [v1 … vN ω1 … ωN]T

Fig. 4. Schematic diagram of the MIMO control system

Fig. 5. Robot in the environment with obstacle
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vectors of aggregated position errors expressed in global and 
local coordinate frame:

[ px py]
T = [ p1x … pNx p1y … pNy ]

T 

[ex ey]
T = [e1x … eNx e1y … eNy ]

T 

and vector of aggregated correction variables:

[Ex Ey]
T = [E1x … ENx E1y … ENy ]

T.

Control algorithm from [7] for N robots extended by the 
collision avoidance is as follows:

	
	 vi	= vl + c2Eix

	ω i	= ω l + h(t, Eiy) + c1eiθ
� (18)

where h(t, Eiy) is bounded, depends linearly on Eiy, and con-
tinuously differentiable function. It must be properly chosen to 
ensure persistent excitation of the reference angular velocity 
[6]. Positive constants c1 and c2 are design parameters.

Assumption 3. If the value of the linear control signal vi is less 
then considered threshold value jvij < vt (vt – positive constant),  
it is replaced by a new value ṽi = S(vi)vt, where

	 S(vi) =  
	–1	 for	 vi < 0

	 1	 for	 vi ¸ 0
.� (19)

By partial substitution of (18) into (5) one can express error 
dynamics as follows:

	

	e ̇ ix	=	 eiyω i ¡ c2 Eix + vl(cos eiθ ¡ 1)

	e ̇ iy	=	 – eixω i + vl sin eiθ

	e ̇ iθ	=	 – hi(t, Eiy) ¡ c1eiθ .
� (20)

The above formula will be used in the stability analysis (Sec-
tion 4).

Transforming (20) using (18) and taking into account 
Assumption 2 (when robot gets into collision avoidance region, 
velocities vl and ω l are replaced with 0 value) error dynamics 
can be expressed in the following form:

	

	e ̇ ix	=	 hi(t, Eiy)eiy + c1eiy eiθ ¡ c2 Eix

	e ̇ iy	=	 – hi(t, Eiy)eix ¡ c1eiθ eix

	e ̇ iθ	=	 – hi(t, Eiy) ¡ c1eiθ .
� (21)

4.	 Stability of the system

In this section stability analysis of the closed-loop system will 
be presented. When robots are outside of collision avoidance 
regions of other robots/obstacles (APF takes the value zero) 
the analysis given in [7] is actual and will be no repeated here. 

Further the analysis for the situation in which the i-th robot is 
in the collision region of other robot is presented.

Consider the following Lyapunov-like function:

	 V = 
i = 1

N

∑ 1
2
(e2

ix + e2
iy + e2

iθ) + 
j = 1, j  6= i

N + M

∑ Vaij .� (22)

If robots are in the collision avoidance regions of other 
robots, time derivative of the Lyapunov-like function is calcu-
lated as follows:

	

dV
dt

 = 
i = 1

N

∑ eix e ̇ ix + eiy e ̇ iy + eiθ e ̇ iθ + 

 + 
j = 1, j  6= i

N + M

∑
Ã
∂Vaij

∂eix
e ̇ ix +  

∂Vaij

∂eiy
e ̇ iy

!
 =

 = 
i = 1

N

∑ eix e ̇ ix + eiy e ̇ iy + eiθ e ̇ iθ +

 + 
j = 1, j  6= i

N + M

∑ (wijx e ̇ ix + wijy e ̇ iy) .

� (23)

Taking into account Equations 17 the above formula can be 
transformed to the following form:

	 dV
dt

 = 
i = 1

N

∑
£
Eix e ̇ ix + Eiy e ̇ iy + eiθ e ̇ iθ

¤
.� (24)

Next, using Equation 21 one obtains:

V ̇  = 
i = 1

N

∑
£
c1Eixeiyeiθ ¡ c1Eiyeixeiθ ¡ Eiyeixh(t, Eiy) +

V ̇  + Eixeiy h(t, Eiy) ¡ eiθ h(t, Eiy) ¡ c1e2
iθ ¡ c2E2

ix
¤

� (25)

For further analysis a new variable is introduced:

	 θ iE = Atan2(–Eiy, –Eix),� (26)

the auxiliary orientation variable; function Atan2(•, •) is a ver-
sion of the Atan(•) covering all four quarters of the Euclidean 
plane.

Substituting Eix = Di cosθiE and Eiy = Di sinθiE, Di =  
=  E2

ix + E2
iy  in the above equation one obtains:

	

V ̇  = 
i = 1

N

∑
£
c1Di cosθiE eiy eiθ ¡ c1Di sinθiE eix eiθ 

V ̇  ¡ Di sinθiE eix h(t, Eiy) + Di cosθiE eiy h(t, Eiy)

V ̇  ¡ eiθ h(t, Eiy) ¡ c1e2
iθ ¡ c2Di

2 cos2θiE
¤
.

� (27)
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The above equation can be rewritten as follows:

	

Example of article

the analysis given in [7] is actual and will be no repeated here.
Further the analysis for the situation in which the i-th robot is
in the collision region of other robot is presented.

Consider the following Lyapunov-like function:

V =
N

∑
i=1

[
1
2
(e2

ix + e2
iy + e2

iθ )+
N+M

∑
j=1, j �=i

Vai j

]
. (22)

If robots are in the collision avoidance regions of other
robots, time derivative of the Lyapunov-like function is cal-
culated as follows:

dV
dt

=
N

∑
i=1

[eixėix + eiyėiy + eiθ ėiθ

+
N+M

∑
j=1, j �=i

(
∂Vai j

∂eix
ėix +

∂Vai j

∂eiy
ėiy

)]
(23)

=
N

∑
i=1

[
eixėix + eiyėiy + eiθ ėiθ +

N+M

∑
j=1, j �=i

(wi jxėix +wi jyėiy)

]
.

Taking into account Eqs. (17) the above formula can be trans-
formed to the following form:

dV
dt

=
N

∑
i=1

[Eixėix +Eiyėiy + eiθ ėiθ ] . (24)

Next, using Eq. (21) one obtains:

V̇ =
N

∑
i=1

[c1Eixeiyeiθ − c1Eiyeixeiθ −Eiyeixh(t,Eiy)

+Eixeiyh(t,Eiy)− eiθ h(t,Eiy)− c1e2
iθ − c2E2

ix]. (25)

For further analysis a new variable is introduced:

θiE = Atan2(−Eiy,−Eix), (26)

the auxiliary orientation variable; function Atan2(•,•) is a ver-
sion of the Atan(•) covering all four quarters of the Euclidean
plane.

Substituting Eix = Di cosθiE and Eiy = Di sinθiE , Di =√
E2

ix +E2
iy in the above equation one obtains:

V̇ =
N

∑
i=1

[c1Di cosθiEeiyeiθ − c1Di sinθiEeixeiθ

−Di sinθiEeixh(t,Eiy)+Di cosθiEeiyh(t,Eiy)

− eiθ h(t,Eiy)− c1e2
iθ − c2D2

i cos2 θiE ]. (27)

The above equation can be rewritten as follows:

V̇ =
N

∑
i=1

[
−c1

(
eiθ√

2
+

1√
2

Di sinθiEeix

)2

− c1

(
eiθ√

2
− 1√

2
Di cosθiEeiy

)2

− c2D2
i cos2 θiE

+

(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
. (28)

The first three terms in square brackets on the right hand side
of Eq. (28) are always less or equal to zero. In the next steps
remaining terms will be analysed. One can write their sum as
follows:

V̇r =
N

∑
i=1

[(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

(29)

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
.

Eq. (29) can be transformed to the following form:

V̇r =
N

∑
i=1

[
D2

i
c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy (30)

− Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)] .

The condition V̇r ≤ 0 is fulfilled if for all i the following
inequalities hold true:

D2
i

c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy

≤
∣∣−Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)

∣∣
≤ Di|sinθEi||eix||h(t,Eiy)|+Di|cosθEi||eiy||h(t,Eiy)|
+ |eiθ ||h(t,Eiy)|
≤ Di|eix||h(t,Eiy)|+Di|eiy||h(t,Eiy)|+ |eiθ ||h(t,Eiy)| (31)

that can be rewritten in the compact form as follows:

Di||e∗i |||h(t,Eiy)|+ |eiθ ||h(t,Eiy)|

≥ D2
i

c1

2
(sin2 θEie2

ix + cos2 θEie2
iy) (32)

where e∗i = [eix eiy]
T .

Reduction of the parameter c1 increases the chances of satis-
fying inequality (32) that supports stability of the closed-loop
system (V̇ ≤ 0). Notice, however, that satisfying V̇r ≤ 0 may
not always be possible. In such case stability of the system can
be achieved by increasing the value of parameter c2 (refer to
Eq. (28)). Note that the procedure described in Assumption 3
pushes the robot away from the state where auxiliary orienta-
tion variable θiE ∼= π

2 +πd. In result term cos2 θiE in Eq. (28)
cannot be arbitrarily close to zero.
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Example of article

the analysis given in [7] is actual and will be no repeated here.
Further the analysis for the situation in which the i-th robot is
in the collision region of other robot is presented.

Consider the following Lyapunov-like function:

V =
N

∑
i=1

[
1
2
(e2

ix + e2
iy + e2

iθ )+
N+M

∑
j=1, j �=i

Vai j

]
. (22)

If robots are in the collision avoidance regions of other
robots, time derivative of the Lyapunov-like function is cal-
culated as follows:

dV
dt

=
N

∑
i=1

[eixėix + eiyėiy + eiθ ėiθ

+
N+M

∑
j=1, j �=i

(
∂Vai j

∂eix
ėix +

∂Vai j

∂eiy
ėiy

)]
(23)

=
N

∑
i=1

[
eixėix + eiyėiy + eiθ ėiθ +

N+M

∑
j=1, j �=i

(wi jxėix +wi jyėiy)

]
.

Taking into account Eqs. (17) the above formula can be trans-
formed to the following form:

dV
dt

=
N

∑
i=1

[Eixėix +Eiyėiy + eiθ ėiθ ] . (24)

Next, using Eq. (21) one obtains:

V̇ =
N

∑
i=1

[c1Eixeiyeiθ − c1Eiyeixeiθ −Eiyeixh(t,Eiy)

+Eixeiyh(t,Eiy)− eiθ h(t,Eiy)− c1e2
iθ − c2E2

ix]. (25)

For further analysis a new variable is introduced:

θiE = Atan2(−Eiy,−Eix), (26)

the auxiliary orientation variable; function Atan2(•,•) is a ver-
sion of the Atan(•) covering all four quarters of the Euclidean
plane.

Substituting Eix = Di cosθiE and Eiy = Di sinθiE , Di =√
E2

ix +E2
iy in the above equation one obtains:

V̇ =
N

∑
i=1

[c1Di cosθiEeiyeiθ − c1Di sinθiEeixeiθ

−Di sinθiEeixh(t,Eiy)+Di cosθiEeiyh(t,Eiy)

− eiθ h(t,Eiy)− c1e2
iθ − c2D2

i cos2 θiE ]. (27)

The above equation can be rewritten as follows:

V̇ =
N

∑
i=1

[
−c1

(
eiθ√

2
+

1√
2

Di sinθiEeix

)2

− c1

(
eiθ√

2
− 1√

2
Di cosθiEeiy

)2

− c2D2
i cos2 θiE

+

(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
. (28)

The first three terms in square brackets on the right hand side
of Eq. (28) are always less or equal to zero. In the next steps
remaining terms will be analysed. One can write their sum as
follows:

V̇r =
N

∑
i=1

[(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

(29)

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
.

Eq. (29) can be transformed to the following form:

V̇r =
N

∑
i=1

[
D2

i
c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy (30)

− Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)] .

The condition V̇r ≤ 0 is fulfilled if for all i the following
inequalities hold true:

D2
i

c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy

≤
∣∣−Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)

∣∣
≤ Di|sinθEi||eix||h(t,Eiy)|+Di|cosθEi||eiy||h(t,Eiy)|
+ |eiθ ||h(t,Eiy)|
≤ Di|eix||h(t,Eiy)|+Di|eiy||h(t,Eiy)|+ |eiθ ||h(t,Eiy)| (31)

that can be rewritten in the compact form as follows:

Di||e∗i |||h(t,Eiy)|+ |eiθ ||h(t,Eiy)|

≥ D2
i

c1

2
(sin2 θEie2

ix + cos2 θEie2
iy) (32)

where e∗i = [eix eiy]
T .

Reduction of the parameter c1 increases the chances of satis-
fying inequality (32) that supports stability of the closed-loop
system (V̇ ≤ 0). Notice, however, that satisfying V̇r ≤ 0 may
not always be possible. In such case stability of the system can
be achieved by increasing the value of parameter c2 (refer to
Eq. (28)). Note that the procedure described in Assumption 3
pushes the robot away from the state where auxiliary orienta-
tion variable θiE ∼= π

2 +πd. In result term cos2 θiE in Eq. (28)
cannot be arbitrarily close to zero.
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Example of article

the analysis given in [7] is actual and will be no repeated here.
Further the analysis for the situation in which the i-th robot is
in the collision region of other robot is presented.

Consider the following Lyapunov-like function:

V =
N

∑
i=1

[
1
2
(e2

ix + e2
iy + e2

iθ )+
N+M

∑
j=1, j �=i

Vai j

]
. (22)

If robots are in the collision avoidance regions of other
robots, time derivative of the Lyapunov-like function is cal-
culated as follows:

dV
dt

=
N

∑
i=1

[eixėix + eiyėiy + eiθ ėiθ

+
N+M

∑
j=1, j �=i

(
∂Vai j

∂eix
ėix +

∂Vai j

∂eiy
ėiy

)]
(23)

=
N

∑
i=1

[
eixėix + eiyėiy + eiθ ėiθ +

N+M

∑
j=1, j �=i

(wi jxėix +wi jyėiy)

]
.

Taking into account Eqs. (17) the above formula can be trans-
formed to the following form:

dV
dt

=
N

∑
i=1

[Eixėix +Eiyėiy + eiθ ėiθ ] . (24)

Next, using Eq. (21) one obtains:

V̇ =
N

∑
i=1

[c1Eixeiyeiθ − c1Eiyeixeiθ −Eiyeixh(t,Eiy)

+Eixeiyh(t,Eiy)− eiθ h(t,Eiy)− c1e2
iθ − c2E2

ix]. (25)

For further analysis a new variable is introduced:

θiE = Atan2(−Eiy,−Eix), (26)

the auxiliary orientation variable; function Atan2(•,•) is a ver-
sion of the Atan(•) covering all four quarters of the Euclidean
plane.

Substituting Eix = Di cosθiE and Eiy = Di sinθiE , Di =√
E2

ix +E2
iy in the above equation one obtains:

V̇ =
N

∑
i=1

[c1Di cosθiEeiyeiθ − c1Di sinθiEeixeiθ

−Di sinθiEeixh(t,Eiy)+Di cosθiEeiyh(t,Eiy)

− eiθ h(t,Eiy)− c1e2
iθ − c2D2

i cos2 θiE ]. (27)

The above equation can be rewritten as follows:

V̇ =
N

∑
i=1

[
−c1

(
eiθ√

2
+

1√
2

Di sinθiEeix

)2

− c1

(
eiθ√

2
− 1√

2
Di cosθiEeiy

)2

− c2D2
i cos2 θiE

+

(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
. (28)

The first three terms in square brackets on the right hand side
of Eq. (28) are always less or equal to zero. In the next steps
remaining terms will be analysed. One can write their sum as
follows:

V̇r =
N

∑
i=1

[(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

(29)

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
.

Eq. (29) can be transformed to the following form:

V̇r =
N

∑
i=1

[
D2

i
c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy (30)

− Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)] .

The condition V̇r ≤ 0 is fulfilled if for all i the following
inequalities hold true:

D2
i

c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy

≤
∣∣−Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)

∣∣
≤ Di|sinθEi||eix||h(t,Eiy)|+Di|cosθEi||eiy||h(t,Eiy)|
+ |eiθ ||h(t,Eiy)|
≤ Di|eix||h(t,Eiy)|+Di|eiy||h(t,Eiy)|+ |eiθ ||h(t,Eiy)| (31)

that can be rewritten in the compact form as follows:

Di||e∗i |||h(t,Eiy)|+ |eiθ ||h(t,Eiy)|

≥ D2
i

c1

2
(sin2 θEie2

ix + cos2 θEie2
iy) (32)

where e∗i = [eix eiy]
T .

Reduction of the parameter c1 increases the chances of satis-
fying inequality (32) that supports stability of the closed-loop
system (V̇ ≤ 0). Notice, however, that satisfying V̇r ≤ 0 may
not always be possible. In such case stability of the system can
be achieved by increasing the value of parameter c2 (refer to
Eq. (28)). Note that the procedure described in Assumption 3
pushes the robot away from the state where auxiliary orienta-
tion variable θiE ∼= π

2 +πd. In result term cos2 θiE in Eq. (28)
cannot be arbitrarily close to zero.
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Example of article

the analysis given in [7] is actual and will be no repeated here.
Further the analysis for the situation in which the i-th robot is
in the collision region of other robot is presented.

Consider the following Lyapunov-like function:

V =
N

∑
i=1

[
1
2
(e2

ix + e2
iy + e2

iθ )+
N+M

∑
j=1, j �=i

Vai j

]
. (22)

If robots are in the collision avoidance regions of other
robots, time derivative of the Lyapunov-like function is cal-
culated as follows:

dV
dt

=
N

∑
i=1

[eixėix + eiyėiy + eiθ ėiθ

+
N+M

∑
j=1, j �=i

(
∂Vai j

∂eix
ėix +

∂Vai j

∂eiy
ėiy

)]
(23)

=
N

∑
i=1

[
eixėix + eiyėiy + eiθ ėiθ +

N+M

∑
j=1, j �=i

(wi jxėix +wi jyėiy)

]
.

Taking into account Eqs. (17) the above formula can be trans-
formed to the following form:

dV
dt

=
N

∑
i=1

[Eixėix +Eiyėiy + eiθ ėiθ ] . (24)

Next, using Eq. (21) one obtains:

V̇ =
N

∑
i=1

[c1Eixeiyeiθ − c1Eiyeixeiθ −Eiyeixh(t,Eiy)

+Eixeiyh(t,Eiy)− eiθ h(t,Eiy)− c1e2
iθ − c2E2

ix]. (25)

For further analysis a new variable is introduced:

θiE = Atan2(−Eiy,−Eix), (26)

the auxiliary orientation variable; function Atan2(•,•) is a ver-
sion of the Atan(•) covering all four quarters of the Euclidean
plane.

Substituting Eix = Di cosθiE and Eiy = Di sinθiE , Di =√
E2

ix +E2
iy in the above equation one obtains:

V̇ =
N

∑
i=1

[c1Di cosθiEeiyeiθ − c1Di sinθiEeixeiθ

−Di sinθiEeixh(t,Eiy)+Di cosθiEeiyh(t,Eiy)

− eiθ h(t,Eiy)− c1e2
iθ − c2D2

i cos2 θiE ]. (27)

The above equation can be rewritten as follows:

V̇ =
N

∑
i=1

[
−c1

(
eiθ√

2
+

1√
2

Di sinθiEeix

)2

− c1

(
eiθ√

2
− 1√

2
Di cosθiEeiy

)2

− c2D2
i cos2 θiE

+

(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
. (28)

The first three terms in square brackets on the right hand side
of Eq. (28) are always less or equal to zero. In the next steps
remaining terms will be analysed. One can write their sum as
follows:

V̇r =
N

∑
i=1

[(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

(29)

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
.

Eq. (29) can be transformed to the following form:

V̇r =
N

∑
i=1

[
D2

i
c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy (30)

− Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)] .

The condition V̇r ≤ 0 is fulfilled if for all i the following
inequalities hold true:

D2
i

c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy

≤
∣∣−Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)

∣∣
≤ Di|sinθEi||eix||h(t,Eiy)|+Di|cosθEi||eiy||h(t,Eiy)|
+ |eiθ ||h(t,Eiy)|
≤ Di|eix||h(t,Eiy)|+Di|eiy||h(t,Eiy)|+ |eiθ ||h(t,Eiy)| (31)

that can be rewritten in the compact form as follows:

Di||e∗i |||h(t,Eiy)|+ |eiθ ||h(t,Eiy)|

≥ D2
i

c1

2
(sin2 θEie2

ix + cos2 θEie2
iy) (32)

where e∗i = [eix eiy]
T .

Reduction of the parameter c1 increases the chances of satis-
fying inequality (32) that supports stability of the closed-loop
system (V̇ ≤ 0). Notice, however, that satisfying V̇r ≤ 0 may
not always be possible. In such case stability of the system can
be achieved by increasing the value of parameter c2 (refer to
Eq. (28)). Note that the procedure described in Assumption 3
pushes the robot away from the state where auxiliary orienta-
tion variable θiE ∼= π

2 +πd. In result term cos2 θiE in Eq. (28)
cannot be arbitrarily close to zero.
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Example of article

the analysis given in [7] is actual and will be no repeated here.
Further the analysis for the situation in which the i-th robot is
in the collision region of other robot is presented.

Consider the following Lyapunov-like function:

V =
N

∑
i=1

[
1
2
(e2

ix + e2
iy + e2

iθ )+
N+M

∑
j=1, j �=i

Vai j

]
. (22)

If robots are in the collision avoidance regions of other
robots, time derivative of the Lyapunov-like function is cal-
culated as follows:

dV
dt

=
N

∑
i=1

[eixėix + eiyėiy + eiθ ėiθ

+
N+M

∑
j=1, j �=i

(
∂Vai j

∂eix
ėix +

∂Vai j

∂eiy
ėiy

)]
(23)

=
N

∑
i=1

[
eixėix + eiyėiy + eiθ ėiθ +

N+M

∑
j=1, j �=i

(wi jxėix +wi jyėiy)

]
.

Taking into account Eqs. (17) the above formula can be trans-
formed to the following form:

dV
dt

=
N

∑
i=1

[Eixėix +Eiyėiy + eiθ ėiθ ] . (24)

Next, using Eq. (21) one obtains:

V̇ =
N

∑
i=1

[c1Eixeiyeiθ − c1Eiyeixeiθ −Eiyeixh(t,Eiy)

+Eixeiyh(t,Eiy)− eiθ h(t,Eiy)− c1e2
iθ − c2E2

ix]. (25)

For further analysis a new variable is introduced:

θiE = Atan2(−Eiy,−Eix), (26)

the auxiliary orientation variable; function Atan2(•,•) is a ver-
sion of the Atan(•) covering all four quarters of the Euclidean
plane.

Substituting Eix = Di cosθiE and Eiy = Di sinθiE , Di =√
E2

ix +E2
iy in the above equation one obtains:

V̇ =
N

∑
i=1

[c1Di cosθiEeiyeiθ − c1Di sinθiEeixeiθ

−Di sinθiEeixh(t,Eiy)+Di cosθiEeiyh(t,Eiy)

− eiθ h(t,Eiy)− c1e2
iθ − c2D2

i cos2 θiE ]. (27)

The above equation can be rewritten as follows:

V̇ =
N

∑
i=1

[
−c1

(
eiθ√

2
+

1√
2

Di sinθiEeix

)2

− c1

(
eiθ√

2
− 1√

2
Di cosθiEeiy

)2

− c2D2
i cos2 θiE

+

(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
. (28)

The first three terms in square brackets on the right hand side
of Eq. (28) are always less or equal to zero. In the next steps
remaining terms will be analysed. One can write their sum as
follows:

V̇r =
N

∑
i=1

[(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

(29)

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
.

Eq. (29) can be transformed to the following form:

V̇r =
N

∑
i=1

[
D2

i
c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy (30)

− Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)] .

The condition V̇r ≤ 0 is fulfilled if for all i the following
inequalities hold true:

D2
i

c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy

≤
∣∣−Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)

∣∣
≤ Di|sinθEi||eix||h(t,Eiy)|+Di|cosθEi||eiy||h(t,Eiy)|
+ |eiθ ||h(t,Eiy)|
≤ Di|eix||h(t,Eiy)|+Di|eiy||h(t,Eiy)|+ |eiθ ||h(t,Eiy)| (31)

that can be rewritten in the compact form as follows:

Di||e∗i |||h(t,Eiy)|+ |eiθ ||h(t,Eiy)|

≥ D2
i

c1

2
(sin2 θEie2

ix + cos2 θEie2
iy) (32)

where e∗i = [eix eiy]
T .

Reduction of the parameter c1 increases the chances of satis-
fying inequality (32) that supports stability of the closed-loop
system (V̇ ≤ 0). Notice, however, that satisfying V̇r ≤ 0 may
not always be possible. In such case stability of the system can
be achieved by increasing the value of parameter c2 (refer to
Eq. (28)). Note that the procedure described in Assumption 3
pushes the robot away from the state where auxiliary orienta-
tion variable θiE ∼= π

2 +πd. In result term cos2 θiE in Eq. (28)
cannot be arbitrarily close to zero.
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Example of article

the analysis given in [7] is actual and will be no repeated here.
Further the analysis for the situation in which the i-th robot is
in the collision region of other robot is presented.

Consider the following Lyapunov-like function:

V =
N

∑
i=1

[
1
2
(e2

ix + e2
iy + e2

iθ )+
N+M

∑
j=1, j �=i

Vai j

]
. (22)

If robots are in the collision avoidance regions of other
robots, time derivative of the Lyapunov-like function is cal-
culated as follows:

dV
dt

=
N

∑
i=1

[eixėix + eiyėiy + eiθ ėiθ

+
N+M

∑
j=1, j �=i

(
∂Vai j

∂eix
ėix +

∂Vai j

∂eiy
ėiy

)]
(23)

=
N

∑
i=1

[
eixėix + eiyėiy + eiθ ėiθ +

N+M

∑
j=1, j �=i

(wi jxėix +wi jyėiy)

]
.

Taking into account Eqs. (17) the above formula can be trans-
formed to the following form:

dV
dt

=
N

∑
i=1

[Eixėix +Eiyėiy + eiθ ėiθ ] . (24)

Next, using Eq. (21) one obtains:

V̇ =
N

∑
i=1

[c1Eixeiyeiθ − c1Eiyeixeiθ −Eiyeixh(t,Eiy)

+Eixeiyh(t,Eiy)− eiθ h(t,Eiy)− c1e2
iθ − c2E2

ix]. (25)

For further analysis a new variable is introduced:

θiE = Atan2(−Eiy,−Eix), (26)

the auxiliary orientation variable; function Atan2(•,•) is a ver-
sion of the Atan(•) covering all four quarters of the Euclidean
plane.

Substituting Eix = Di cosθiE and Eiy = Di sinθiE , Di =√
E2

ix +E2
iy in the above equation one obtains:

V̇ =
N

∑
i=1

[c1Di cosθiEeiyeiθ − c1Di sinθiEeixeiθ

−Di sinθiEeixh(t,Eiy)+Di cosθiEeiyh(t,Eiy)

− eiθ h(t,Eiy)− c1e2
iθ − c2D2

i cos2 θiE ]. (27)

The above equation can be rewritten as follows:

V̇ =
N

∑
i=1

[
−c1

(
eiθ√

2
+

1√
2

Di sinθiEeix

)2

− c1

(
eiθ√

2
− 1√

2
Di cosθiEeiy

)2

− c2D2
i cos2 θiE

+

(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
. (28)

The first three terms in square brackets on the right hand side
of Eq. (28) are always less or equal to zero. In the next steps
remaining terms will be analysed. One can write their sum as
follows:

V̇r =
N

∑
i=1

[(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

(29)

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
.

Eq. (29) can be transformed to the following form:

V̇r =
N

∑
i=1

[
D2

i
c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy (30)

− Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)] .

The condition V̇r ≤ 0 is fulfilled if for all i the following
inequalities hold true:

D2
i

c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy

≤
∣∣−Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)

∣∣
≤ Di|sinθEi||eix||h(t,Eiy)|+Di|cosθEi||eiy||h(t,Eiy)|
+ |eiθ ||h(t,Eiy)|
≤ Di|eix||h(t,Eiy)|+Di|eiy||h(t,Eiy)|+ |eiθ ||h(t,Eiy)| (31)

that can be rewritten in the compact form as follows:

Di||e∗i |||h(t,Eiy)|+ |eiθ ||h(t,Eiy)|

≥ D2
i

c1

2
(sin2 θEie2

ix + cos2 θEie2
iy) (32)

where e∗i = [eix eiy]
T .

Reduction of the parameter c1 increases the chances of satis-
fying inequality (32) that supports stability of the closed-loop
system (V̇ ≤ 0). Notice, however, that satisfying V̇r ≤ 0 may
not always be possible. In such case stability of the system can
be achieved by increasing the value of parameter c2 (refer to
Eq. (28)). Note that the procedure described in Assumption 3
pushes the robot away from the state where auxiliary orienta-
tion variable θiE ∼= π

2 +πd. In result term cos2 θiE in Eq. (28)
cannot be arbitrarily close to zero.
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The first three terms in square brackets on the right hand 
side of Equation 28 are always less or equal to zero. In the next 
steps remaining terms will be analysed. One can write their 
sum as follows:

	

Example of article

the analysis given in [7] is actual and will be no repeated here.
Further the analysis for the situation in which the i-th robot is
in the collision region of other robot is presented.

Consider the following Lyapunov-like function:

V =
N

∑
i=1

[
1
2
(e2

ix + e2
iy + e2

iθ )+
N+M

∑
j=1, j �=i

Vai j

]
. (22)

If robots are in the collision avoidance regions of other
robots, time derivative of the Lyapunov-like function is cal-
culated as follows:

dV
dt

=
N

∑
i=1

[eixėix + eiyėiy + eiθ ėiθ

+
N+M

∑
j=1, j �=i

(
∂Vai j

∂eix
ėix +

∂Vai j

∂eiy
ėiy

)]
(23)

=
N

∑
i=1

[
eixėix + eiyėiy + eiθ ėiθ +

N+M

∑
j=1, j �=i

(wi jxėix +wi jyėiy)

]
.

Taking into account Eqs. (17) the above formula can be trans-
formed to the following form:

dV
dt

=
N

∑
i=1

[Eixėix +Eiyėiy + eiθ ėiθ ] . (24)

Next, using Eq. (21) one obtains:

V̇ =
N

∑
i=1

[c1Eixeiyeiθ − c1Eiyeixeiθ −Eiyeixh(t,Eiy)

+Eixeiyh(t,Eiy)− eiθ h(t,Eiy)− c1e2
iθ − c2E2

ix]. (25)

For further analysis a new variable is introduced:

θiE = Atan2(−Eiy,−Eix), (26)

the auxiliary orientation variable; function Atan2(•,•) is a ver-
sion of the Atan(•) covering all four quarters of the Euclidean
plane.

Substituting Eix = Di cosθiE and Eiy = Di sinθiE , Di =√
E2

ix +E2
iy in the above equation one obtains:

V̇ =
N

∑
i=1

[c1Di cosθiEeiyeiθ − c1Di sinθiEeixeiθ

−Di sinθiEeixh(t,Eiy)+Di cosθiEeiyh(t,Eiy)

− eiθ h(t,Eiy)− c1e2
iθ − c2D2

i cos2 θiE ]. (27)

The above equation can be rewritten as follows:

V̇ =
N

∑
i=1

[
−c1

(
eiθ√

2
+

1√
2

Di sinθiEeix

)2

− c1

(
eiθ√

2
− 1√

2
Di cosθiEeiy

)2

− c2D2
i cos2 θiE

+

(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
. (28)

The first three terms in square brackets on the right hand side
of Eq. (28) are always less or equal to zero. In the next steps
remaining terms will be analysed. One can write their sum as
follows:

V̇r =
N

∑
i=1

[(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

(29)

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
.

Eq. (29) can be transformed to the following form:

V̇r =
N

∑
i=1

[
D2

i
c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy (30)

− Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)] .

The condition V̇r ≤ 0 is fulfilled if for all i the following
inequalities hold true:

D2
i

c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy

≤
∣∣−Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)

∣∣
≤ Di|sinθEi||eix||h(t,Eiy)|+Di|cosθEi||eiy||h(t,Eiy)|
+ |eiθ ||h(t,Eiy)|
≤ Di|eix||h(t,Eiy)|+Di|eiy||h(t,Eiy)|+ |eiθ ||h(t,Eiy)| (31)

that can be rewritten in the compact form as follows:

Di||e∗i |||h(t,Eiy)|+ |eiθ ||h(t,Eiy)|

≥ D2
i

c1

2
(sin2 θEie2

ix + cos2 θEie2
iy) (32)

where e∗i = [eix eiy]
T .

Reduction of the parameter c1 increases the chances of satis-
fying inequality (32) that supports stability of the closed-loop
system (V̇ ≤ 0). Notice, however, that satisfying V̇r ≤ 0 may
not always be possible. In such case stability of the system can
be achieved by increasing the value of parameter c2 (refer to
Eq. (28)). Note that the procedure described in Assumption 3
pushes the robot away from the state where auxiliary orienta-
tion variable θiE ∼= π

2 +πd. In result term cos2 θiE in Eq. (28)
cannot be arbitrarily close to zero.
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the analysis given in [7] is actual and will be no repeated here.
Further the analysis for the situation in which the i-th robot is
in the collision region of other robot is presented.

Consider the following Lyapunov-like function:
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1
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robots, time derivative of the Lyapunov-like function is cal-
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dV
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=
N

∑
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(
∂Vai j
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∑
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.

Taking into account Eqs. (17) the above formula can be trans-
formed to the following form:

dV
dt

=
N

∑
i=1

[Eixėix +Eiyėiy + eiθ ėiθ ] . (24)

Next, using Eq. (21) one obtains:

V̇ =
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i=1

[c1Eixeiyeiθ − c1Eiyeixeiθ −Eiyeixh(t,Eiy)

+Eixeiyh(t,Eiy)− eiθ h(t,Eiy)− c1e2
iθ − c2E2

ix]. (25)

For further analysis a new variable is introduced:

θiE = Atan2(−Eiy,−Eix), (26)

the auxiliary orientation variable; function Atan2(•,•) is a ver-
sion of the Atan(•) covering all four quarters of the Euclidean
plane.

Substituting Eix = Di cosθiE and Eiy = Di sinθiE , Di =√
E2

ix +E2
iy in the above equation one obtains:

V̇ =
N

∑
i=1

[c1Di cosθiEeiyeiθ − c1Di sinθiEeixeiθ

−Di sinθiEeixh(t,Eiy)+Di cosθiEeiyh(t,Eiy)

− eiθ h(t,Eiy)− c1e2
iθ − c2D2

i cos2 θiE ]. (27)

The above equation can be rewritten as follows:

V̇ =
N

∑
i=1

[
−c1

(
eiθ√

2
+

1√
2

Di sinθiEeix

)2

− c1

(
eiθ√

2
− 1√

2
Di cosθiEeiy

)2

− c2D2
i cos2 θiE

+

(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
. (28)

The first three terms in square brackets on the right hand side
of Eq. (28) are always less or equal to zero. In the next steps
remaining terms will be analysed. One can write their sum as
follows:

V̇r =
N

∑
i=1

[(√
c1

2
Di sinθiEeix −

h(t,Eiy)√
2c1

)2

+

(√
c1

2
Di cosθiEeiy +

h(t,Eiy)√
2c1

)2

(29)

−
h2(t,Eiy)

c1
− eiθ h(t,Eiy)

]
.

Eq. (29) can be transformed to the following form:

V̇r =
N

∑
i=1

[
D2

i
c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy (30)

− Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)] .

The condition V̇r ≤ 0 is fulfilled if for all i the following
inequalities hold true:

D2
i

c1

2
sin2 θEie2

ix +D2
i

c1

2
cos2 θEie2

iy

≤
∣∣−Di sinθEieixh(t,Eiy)+Di cosθEieiyh(t,Eiy)− eiθ h(t,Eiy)

∣∣
≤ Di|sinθEi||eix||h(t,Eiy)|+Di|cosθEi||eiy||h(t,Eiy)|
+ |eiθ ||h(t,Eiy)|
≤ Di|eix||h(t,Eiy)|+Di|eiy||h(t,Eiy)|+ |eiθ ||h(t,Eiy)| (31)

that can be rewritten in the compact form as follows:

Di||e∗i |||h(t,Eiy)|+ |eiθ ||h(t,Eiy)|

≥ D2
i

c1

2
(sin2 θEie2

ix + cos2 θEie2
iy) (32)

where e∗i = [eix eiy]
T .

Reduction of the parameter c1 increases the chances of satis-
fying inequality (32) that supports stability of the closed-loop
system (V̇ ≤ 0). Notice, however, that satisfying V̇r ≤ 0 may
not always be possible. In such case stability of the system can
be achieved by increasing the value of parameter c2 (refer to
Eq. (28)). Note that the procedure described in Assumption 3
pushes the robot away from the state where auxiliary orienta-
tion variable θiE ∼= π

2 +πd. In result term cos2 θiE in Eq. (28)
cannot be arbitrarily close to zero.
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� (29)

Equation 29 can be transformed to the following form:

	

V ̇ r = 
i = 1

N

∑ Di
2 c1

2
sin2θEi e2

ix + Di
2 c1

2
cos2θEi e2

iy

V ̇ r ¡ Di sinθEi eix h(t, Eiy) + Di cosθEi eiy h(t, Eiy)

V ̇ r ¡ eiθ h(t, Eiy) .

� (30)

The condition V ̇ r ∙ 0 is fulfilled if for all i the following 
inequalities hold true:

Di
2 c1

2
sin2θEi e2

ix + Di
2 c1

2
cos2θEi e2

iy ∙

∙ j– Di sinθEi eix h(t, Eiy) + Di cosθEi eiy h(t, Eiy)

¡ eiθ h(t, Eiy)j ∙ Di jsinθEikeixkh(t, Eiy)j

+ Di jcosθEikeiykh(t, Eiy)j + jeiθkh(t, Eiy)j

∙ Di jeixkh(t, Eiy)j + Di jeiykh(t, Eiy)j + jeiθkh(t, Eiy)j

�(31)

that can be rewritten in the compact form as follows:

	
Dikei

¤kjh(t, Eiy)j + jeiθkh(t, Eiy)j

¸ Di
2 c1

2
(sin2θEi e2

ix + cos2θEi e2
iy)

� (32)

where ei* = [eix eiy]
T.

Reduction of the parameter c1 increases the chances of sat-
isfying inequality (32) that supports stability of the closed-loop 
system (V ̇  ∙ 0). Notice, however, that satisfying (V ̇ r ∙ 0) may 
not always be possible. In such case stability of the system can 
be achieved by increasing the value of parameter c2 (refer to 
Equation 28). Note that the procedure described in Assump-
tion 3 pushes the robot away from the state where auxiliary 
orientation variable θ iE ¡¡» π/2 + πd. In result term cos2θ iE in 
Equation 28 cannot be arbitrarily close to zero.

The error dynamics (20) with frozen reference signals may 
be decomposed into two subsystems (Fig. 6). Properties of these 
subsystems are inherited from the non-collision case described 
in [7]: the system Σ1 is uniformly asymptotically stable at the 
origin, provided that c2 > 0 and ω i is persistently exciting, 
globally Lipschitz, and bounded. The origin of the system Σ2 
is exponentially stable if c1 > 0. As a matter of fact, it may also 
be established that each of these subsystems is input to state 
stable (ISS). The subsystem h(t, Eiy) is also uniformly bounded 
and satisfy h(t, 0) ´ 0. Stability of the origin may be concluded 
invoking the small-gain theorem for ISS systems [5].

Fig. 6. Diagram of the control system in the collision avoidance mode

If the i-th robot is in the collision avoidance area of the 
j-th obstacle, but close to its outer edge (in this case kwijk <<  
<< k[eix eiy]Tk), collision avoidance terms can be neglected. 
Correction variables (17) are approximated as follows:

	 Eix ¡¡» eix,  Eiy ¡¡» eiy ,� (33)

the algorithm becomes the same as in [7] and the stability anal-
ysis presented there is applicable.

In the opposite situation, i.e. for kwijk >> k[eix eiy]Tk (i-th 
robot is close to the boundary of the j-th obstacle, error terms 
and terms related to collision avoidance with other obstacles 
are neglected) the correction variables can be approximated in 
the following way (refer to Equation 17):

	 Eix ¡¡» 
∂Vaij

∂eix
,  Eiy ¡¡» 

∂Vaij

∂eiy
.� (34)

When i-th robot is close to the j-th obstacle, in most cases the 
condition jEixj >> 0 is fulfilled. The exception is situation when 
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θ iE is in the neighbourhood of π/2 + πd (refer to Equation 26). 
This state is non-attracting, but procedure given in Assump-
tion 3 is applied to push the robot away from this region (if Eix 
is close to zero linear velocity control vi is close to zero, refer to 
Equation 18). Notice that in this case the centre of the obstacle 
lays close to the axis of the robot wheels (Fig. 7), and thus,  
application of some arbitrary linear velocity control ṽi to the 
robot does not carry the risk of collision with the j-th obstacle.

From the Equation 36 it is clear that e ̇ ix and ∂Vaij/∂eix have dif-
ferent sign and as a result ∂Vaij/∂eixe ̇ ix < 0. To fulfil the condition 
that V ̇ aij = ∂Vaij/∂eixe ̇ ix + ∂Vaij/∂eiye ̇ iy is less then zero the second 
term on the right hand side must be less then the first one taking 
their absolute values. This can be obtained by reducing c1 pa-
rameter (refer to Equation 21). The property V ̇ aij ∙ 0 guarantees 
boundedness of both Vaij and ∂Vaij/∂eix. Finally one can state that 
collision avoidance block, that is input to the system shown in 
Fig. 6, has also bounded output and both error components eix 
and eiy in Σ1 are bounded.

The third considered case is when modules of the position 
error of the i-th robot and gradient of the collision avoidance 
function of the j-th obstacle are similar: k[eix eiy]

Tk ¡¡» kwijk 
(in this case collision avoidance terms of other obstacles are 
neglected). Both vectors can point in arbitrary directions but 
one situation is special, if both of them point in exactly opposite 
directions robot is in the saddle point (Fig. 8). This results in 
Eix = 0 and Eiy = 0 and, finally, vi = 0 that activates procedure 
described in Assumption 3. This pushes the robot out of the 
saddle point usually. The only exception is when the auxiliary 
orientation variables is 0 + πd (this is the worst case, robot 
has the obstacle exactly in the front or exactly at the back and 
its goal is exactly on the other side of the obstacle; notice that 
this state is set of measure zero) which can lead to oscillations 
around the saddle point. In [10] authors of this paper inves-
tigated other method of leaving the saddle point. The paper 
includes extensive tests on real non-holonomic mobile robot.

Fig. 7. Robot in the environment with obstacle, Eiθ = π/2

When the robot is away from this state ∂Vaij/∂eix has a large 
value and the boundedness of the output of the collision avoid-
ance subsystem is necessary to prove stability. Substituting first 
Equation in (17) into first Equation in (21), and using Equa-
tions 15 and 16 one can write:

	 e ̇ ix = hi(t, Eiy)eiy + c1eiy eiθ ¡ c2eix ¡ c2
∂Vaij

∂eix
.� (35)

Note that the above approximation assumes that the robot is 
located close to the boundary of a single obstacle j, and terms 
related to the other obstacles are neglected.

If ∂Vaij/∂eix is sufficiently high (that happens if the robot is 
very close to the obstacle), i.e. ∂Vaij/∂eix >> eix, ∂Vaij/∂eix >> eiy, 
∂Vaij/∂eix >> eiθ , and ∂Vaij/∂eix >> h(t, Eiy) the Equation 35 can be 
approximated as follows:

	 e ̇ ix ¡¡» – c2
∂Vaij

∂eix
.� (36)

Fig. 8. Robot in the environment with obstacle – saddle point

The above considerations assume that the i-th robot is not 
located near the boundaries of two or more obstacles at the same 
time. Taking into account that collision avoidance component 
of the control is large (close to the obstacle) the robot is driven 
away quickly and these considerations are correct in most cases. 
Other situations can be considered exceptional and they are not 
investigated here.
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Fig. 9. Numerical simulation: trajectory tracking for N = 15 robots
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As shown in [8] collision avoidance is guaranteed if V ̇ aij ∙ 0 
and limk[xi yi]

> ¡ [xj yj]>k ! r+Vaij = +1, i  6= j.

5.	 Simulation results

In this section numerical simulation for a group of N = 15 
mobile robots moving in the environment with M = 7 static 
obstacles is presented. Initial coordinates of robots (both posi-
tions and orientations) are pseudo-random. The goal is to build 
ring shaped formation (radius 5 m) moving along straight lines 
and arcs. Virtual leader is located in the middle of the ring. 
Initially most of the robots have to pass through a ‘barrier’ 
composed of seven static circle shaped obstacles with a diam-
eter r = 0.3 m and the range of APF R = 1.2 m (the radiuses 
of robots and the ranges of their APFs are the same). The dis-
tances between these obstacles are 2.5 m, there are only 0.1 m 
wide slots between the neighbouring obstacle APFs. Persistent 
excitation is h(t, Eiy) = φ(t)tanh(Eiy), where function φ(t) is 
non smooth pulse function of an amplitude 0.5, period of 4 s 
and pulse width 80%. It introduces persistent excitation that is 
necessary to stabilize the system in the y direction.

Virtual leader starts the motion at the origin and initially 
moves along x axis with linear velocity vl = 20 m/s. After 
60 s the angular velocity ωl = 0.05rd/s is applied still main-
taining the previous linear speed. Then, after next 31.4 s its 
angular velocity is set to zero. Robot is moving straight along 
y axis for 58.6 s. In the next step angular velocity is set to 
ωl = 0.05rd/s and this control is maintained for 31.4 s after 
which it is set to zero and robot moves along x axis in its 
negative direction.

The following settings of the algorithm are used: c1 = 0.1, 
c2 = 0.5, tu = 1 s. In Fig. 9a motion of robots in xy-plane is 
shown. In Figs. 9b, 9c, 9d time graphs of xi, yi and θi robots 
coordinates are presented, respectively. One can see that robots 
reach their reference signals in about 100 s. In Figs. 9e and 9f 
position errors expressed in the global coordinate frame are 
shown. Figure 9g presents orientation errors as a function of 
time.

In Fig. 9h plots of linear velocity controls are shown. There 
are peaks several times in the initial state. They appear when 
robots are near static obstacles. These control values are not 
realizable in the real systems, and should be scaled down (this 
will extend the convergence time). In Fig. 9i angular controls 
for the robots are shown. One can clearly see the sequence of 
straight motion periods and movement along arcs periods. Fig-
ure 9j shows plot of the ‘freeze’ signals (the reference signals 
was frozen if this signal is set to 1 and unfrozen otherwise). The 
periods of ‘freezing’ reference signal occur for the first 25 s of 
the transient state. In Fig. 9k relative distances between robots 
are shown. This graph is not very readable in the initial part 
because it contains N(N ¡ 1) = 210 signals, but it is clear that 
no pair of robots is getting distance close to 2r = 0.6 m. This 
minds that no collision occurred.

Visualization of the presented experiment is available on the 
web page http://wojciech.kowalczyk.pracownik.put.poznan.pl/
research/formation-control-persistent-excitation/pe.html.

6.	 Conclusion

In this paper control algorithm for a group of differential-
ly-driven mobile robots that tracks desired trajectory is pre-
sented. Robots avoid collision with each other and other obsta-
cles existing in the taskspace. Stability analysis of the closed-
loop system is based on Lyapunov-like function. Simulation 
results for the formation of 15 robots tracking desired trajectory 
in the environment with 7 static obstacles show the effective-
ness of the algorithm. Authors plan to conduct extensive tests 
of the proposed control method on a real two-wheeled mobile 
robots in the near future.
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